4.13 TRANSPORTATION AND TRAFFIC

A Traffic, Circulation, and Parking Study for the project was prepared by Associated Transportation Engineers (ATE) on behalf of the applicant. As part of the preparation of this EIR, the ATE study, dated September 14, 2010, was peer reviewed by Linscott Law and Greenspan (LLG). LLG also conducted supplemental analysis. The LLG peer review and supplemental analysis is provided in a memo dated January 26, 2011. Subsequent to the peer review, ATE submitted a Revised Traffic and Circulation Study dated February 28, 2011.

Following public review of the Draft EIR, the project was revised to include a traffic signal at the intersection of Hollister Avenue and Glen Annie Road. ATE provided revisions to the February 28, 2011 Study to incorporate changes related to the signalization aspect. This transportation and traffic section is based on the ATE Revised Traffic and Circulation Study and the LLG peer review and supplemental analysis. These documents are provided in Appendix H. The traffic analysis was prepared in consultation with the City of Goleta Community Services and Planning and Environmental Services Departments in accordance with the Transportation Element of the City’s General Plan/Coastal Land Use Plan (GP/CLUP, September 2006). City staff provided input on roadway segments, intersections to be analyzed, and specific traffic and circulation issues. The analysis follows the City of Goleta’s traffic study procedures and traffic impact assessment criteria.

4.13.1 Existing Conditions

Street System

The following roadway segments and intersections were selected for analysis in consultation with City Community Services staff in order to determine potential impacts related to the project:

Roadway Segments:
1. Storke Road north of (n/o) Hollister Avenue
2. Storke Road south of (s/o) Hollister Avenue
3. Storke Road s/o Whittier Drive
4. Hollister Avenue west of (w/o) Storke Road
5. Hollister Avenue east of (e/o) Storke Road

Intersections:
1. Storke Road/U.S. Highway 101 (US 101) NB Ramps
2. Storke Road/US 101 SB Ramps
3. Hollister Avenue/Pacific Oaks Road
4. Hollister Avenue/Santa Felicia Drive (unsignalized)
5. Hollister Avenue/Marketplace Drive
6. Hollister Avenue/Glenn Annie Road (unsignalized)
7. Storke Road/Hollister Avenue
8. Storke Road/Marketplace Drive
9. Los Carneros Road/US 101 NB Ramps
10. Los Carneros Road/US 101 SB Ramps
11. Hollister Avenue/Los Carneros Road
This network of streets and intersections serving the project site is illustrated in Figure 4.13-1 and described below.

Roadway Classifications

The City of Goleta utilizes the roadway categories recognized by regional, State, and Federal transportation agencies. There are four categories in the roadway hierarchy, ranging from freeways with the highest capacity to two-lane undivided roadways with the lowest capacity. The roadway categories are summarized as follows:

- **Freeways** are limited-access and high-speed travel ways included in the State and Federal highway systems. Their purpose is to carry regional through-traffic. Access is provided by interchanges with typical spacing of one mile or greater. No local access is provided to adjacent land uses.

- **Arterial roadways** are major streets that primarily serve through-traffic and provide access to abutting properties as a secondary function. Arterials are generally designed with two to six travel lanes and their major intersections are signalized. This roadway type is divided into two categories: major and minor arterials. Major arterials are typically four-or-more lane roadways and serve both local and regional through-traffic. Minor arterials are typically two-to-four lane streets that service local and commuter traffic.

- **Collector roadways** are streets that provide access and traffic circulation within residential and non-residential (e.g., commercial and industrial) areas. Collector roadways connect local streets to arterials and are typically designed with two through travel lanes (i.e., one through travel lane in each direction) that may accommodate on-street parking. They may also provide access to abutting properties.

- **Local roadways** distribute traffic within a neighborhood, or between adjacent neighborhoods, and are not intended for use as through-streets or as links between higher capacity facilities such as collector or arterial roadways. Local streets are fronted by residential uses and do not typically serve commercial uses.

Regional Highway System

US 101 is a freeway located north of the project site, which provides regional vehicular access to the project site. US 101 is a major north-south oriented freeway connecting the Los Angeles metropolitan area to the San Francisco Bay Area. In this study area, the freeway runs east-west and generally contains two mainline freeway lanes in each direction. The closest full freeway connections (i.e., northbound and southbound ramp connections) to the project site are provided at Glenn Annie/Storke Road to the east of the site.

Roadway Descriptions

Brief descriptions of the important roadways in the project site vicinity are as follows:

US 101, located north of the project site, is a multi-lane interstate highway that extends along the Pacific Coast between Los Angeles and the state of Washington. This highway is the principal route connecting the City of Goleta with the adjacent cities of Santa Barbara, Carpentaria, and Ventura to the south; and the cities of Buellton and Santa Maria to the north. Primary access to US 101 would be provided via the Storke Road interchange, with secondary access provided via the Los Carneros Road interchange to the east and the Hollister Avenue-Winchester Canyon interchange to the west.
Project Site Location and Existing Street Network

Source: Associated Transportation Engineers, February 28, 2011.
Hollister Avenue, located along the southern boundary of the project site, is an arterial roadway that is the primary east-west surface street in the City of Goleta. Within the study area, Hollister Avenue is a lane divided arterial with on-street bike lanes. Two new connections to Hollister Avenue would provide access to the project site.

Glen Annie/Storke Road, located east of the project site, is a four-lane north-south arterial roadway that extends from US 101 on the north to El Colegio Road on the south. Storke Road provides freeway access for the western portion of the Goleta Valley via an interchange at US 101. North of the interchange, Storke Road becomes Glen Annie Road and extends as a 2-lane road to Cathedral Oaks Road.

Glen Annie Road, located along the eastern boundary of the project site, extends north from Hollister Avenue and terminates 950 feet north, just south of US 101. The above described Glen Annie Road does not connect to the Glen Annie/Storke Road located approximately 650 feet to the east. Two new connections to Glen Annie Road would provide secondary access to the project site.

Sespe Lane, located east of the project site, is a two-lane road that provides the access point into the Pacific Glen residential development from Glen Annie Road. A new private drive connection to Glen Annie Road opposite the Sespe Lane intersection with a public access easement would travel through the project site and connect to the Hollister Avenue/Marketplace Drive intersection.

Los Carneros Road, located east of the project site, is a north-south arterial street. North of Hollister Avenue, Los Carneros Road extends as a four-lane roadway connecting with the US 101 interchange and continues north to its terminus at Cathedral Oaks Road. Los Carneros Road extends as a two-lane road south of Hollister Avenue to El Colegio, providing access to the Isla Vista-UCSB area.

Marketplace Drive, located south of the project site, is a two-lane road that provides one of the main access points for the Camino Real Marketplace shopping center. A new connection to Hollister Avenue opposite the Marketplace Drive intersection would provide primary access to the project site.

Roadway Operations

The roadway segments in the project vicinity described above were analyzed to determine whether they are operating at a sufficient level to accommodate existing traffic volumes. The average daily traffic (ADT) volume counts for these roadway segments were obtained using ADT automatic 24-hour machine traffic counts conducted in November 2009 and February 2010. (count data is provided in Appendix H). The operations of study-area roadway segments were analyzed by comparing the existing ADT volumes to the roadway design capacity standards that have been adopted by the City of Goleta. Table 4.13-1 shows the existing ADT volumes and the acceptable capacity for the road segments.
Table 4.13-1
Existing Average Daily Roadways Volumes

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Roadway Classification</th>
<th>Geometry</th>
<th>Acceptable Capacity</th>
<th>Existing ADT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storke Road n/o Hollister Avenue</td>
<td>Major Arterial</td>
<td>4-Lane</td>
<td>34,000</td>
<td>33,800</td>
</tr>
<tr>
<td>Storke Road s/o Hollister Avenue</td>
<td>Major Arterial</td>
<td>4-Lane</td>
<td>34,000</td>
<td>17,600</td>
</tr>
<tr>
<td>Storke Road s/o Whittier Drive</td>
<td>Major Arterial</td>
<td>2-Lane</td>
<td>14,300</td>
<td>13,200</td>
</tr>
<tr>
<td>Hollister Avenue w/o Storke Road</td>
<td>Major Arterial</td>
<td>4-Lane</td>
<td>34,000</td>
<td>26,300</td>
</tr>
<tr>
<td>Hollister Avenue e/o Storke Road</td>
<td>Major Arterial</td>
<td>4-Lane</td>
<td>34,000</td>
<td>20,900</td>
</tr>
</tbody>
</table>

1 Acceptable Capacity was determined through the City's standards for roadway classifications, design capacities, and ADT. These capacities establish a Level of Service (LOS) C. Los C provides that the volume/capacity Ratio (v/c) is 0.71 – 0.80 (GP/CLUP, 2006: Transportation Element, Table 7-3).

The volume data in Table 4.13-1 shows that the roadway segments are operating within the acceptable capacity. However, it is noted that the volumes on the segments of Storke Road north of Hollister Avenue and Storke Road south of Whittier Drive are close to the acceptable capacity of these roads.

Intersection Operations

A traffic flow analysis was conducted to determine the operating conditions of critical intersections during peak travel periods within the project study area. Intersection operations are rated using Levels of Service (LOS) A through F, with LOS A indicating free flow operations and LOS F indicating congested operations (more complete definitions of levels of service are included in Appendix H). The minimum acceptable operating level for intersections within the City is normally LOS C, but the City has accepted a LOS D at the Storke Road/Hollister Avenue intersection (GP/CLUP, 2006: Transportation Element, Table 7-1).

Existing peak hour volumes at the study-area intersections were obtained from turning movement traffic counts conducted in November of 2009, February 2010, August 2010, and February 2011; a two-way stop control summary collected count data for the Hollister Avenue/Santa Felicia Drive in October 2006, November 2009 and February 2011 and Hollister Avenue/Glen Annie Road intersections in October 2006 and November 2009 (complete traffic count data is provided in Appendix H). The AM peak hour occurs between 7:00 AM to 9:00 AM and PM peak hour occurs between 4:00 PM to 6:00 PM. These hours are considered peak since they capture the commuter period. Figure 4.13-2 shows the existing traffic controls and lane geometries for the study-area intersections, and Figures 4.13-3 and 4.13-4 present the existing AM and PM peak hour traffic volumes for these intersections, respectively.

Levels of service were calculated for the signalized intersections using the Intersection Capacity Utilization (ICU) methodology, and levels of service for the un-signalized intersections were calculated using the methodology outlined in the Highway Capacity Manual (HCM).1 It is the

Study-Area Intersections, Existing Lane Geometries, and Traffic Controls

Source: Associated Transportation Engineers, February 28, 2011.
Existing AM Peak Hour Volumes

Source: Associated Transportation Engineers, February 28, 2011.
Existing PM Peak Hour Volumes

Source: Associated Transportation Engineers, February 28, 2011.
standard practice of the City (along with all local jurisdictions in Santa Barbara County and the Santa Barbara County Association of Governments) in meeting the requirements of CEQA, to use the critical 1-hour A.M. and P.M. peak traffic volumes to calculate LOS at signalized intersections according to the ICU method as it better reflects actual conditions (as opposed to the HCM method, which is based on a theoretical peak period LOS). Similarly, in analyzing intersections where signal phases are triggered by traffic demands, actual signal timing is assumed in order to calculate existing LOS. **Table 4.13-2** summarizes the existing levels of service for the study-area intersections (the calculation worksheets are contained in Appendix H).

Table 4.13-2

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Control</th>
<th>AM Peak</th>
<th>PM Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ICU/Delay</td>
<td>LOS</td>
</tr>
<tr>
<td>Storke Road/U.S. 101 NB Ramps</td>
<td>Signal</td>
<td>0.71</td>
<td>LOS C</td>
</tr>
<tr>
<td>Storke Road/U.S. 101 SB Ramps</td>
<td>Signal</td>
<td>0.78</td>
<td>LOS C</td>
</tr>
<tr>
<td>Hollister Avenue/Pacific Oaks Road</td>
<td>Signal</td>
<td>0.41</td>
<td>LOS A</td>
</tr>
<tr>
<td>Hollister Avenue/Santa Felicia Drive</td>
<td>Stop-Sign</td>
<td>11.8 sec.</td>
<td>LOS B</td>
</tr>
<tr>
<td>Hollister Avenue/Marketplace Drive</td>
<td>Signal</td>
<td>0.46</td>
<td>LOS A</td>
</tr>
<tr>
<td>Hollister Avenue/Glenn Annie Roada</td>
<td>Stop-Sign</td>
<td>14.9 sec.</td>
<td>LOS B</td>
</tr>
<tr>
<td>Storke Road/Hollister Avenue</td>
<td>Signal</td>
<td>0.61</td>
<td>LOS B</td>
</tr>
<tr>
<td>Storke Road/Marketplace Drive</td>
<td>Signal</td>
<td>0.35</td>
<td>LOS A</td>
</tr>
<tr>
<td>Los Carneros Road/U.S. 101 NB Ramps</td>
<td>Signal</td>
<td>0.54</td>
<td>LOS A</td>
</tr>
<tr>
<td>Los Carneros Road/U.S. 101 SB Ramps</td>
<td>Signal</td>
<td>0.52</td>
<td>LOS A</td>
</tr>
<tr>
<td>Hollister Avenue/Los Carneros Road</td>
<td>Signal</td>
<td>0.42</td>
<td>LOS A</td>
</tr>
</tbody>
</table>

* Unsignalized intersection. LOS based on average weighted control delay per vehicle in seconds.

The data presented in **Table 4.13-2** show that all of the study-area intersections currently operate at LOS C or better during the AM and PM peak hour periods. These operations are considered acceptable based on the City’s LOS C operating standard.

4.13.2 Thresholds of Significance

The significance of the potential impacts of project generated traffic at each study intersection was identified using criteria set forth in the City of Goleta’s General Plan/Coastal Land Use Plan Final Environmental Impact Report (FEIR), Transportation and Circulation Section, September 2006. According to the City’s threshold criteria, a significant adverse traffic impact occurs under any of the following conditions:

1) The addition of project traffic to an intersection increases the volume to capacity (V/C) ratio by the value provided below or sends at least 5, 10, or 15 trips to intersections operating at LOS F, E, or D, respectively.
2) Project access to a major road or arterial road would require access that would create an unsafe situation, a new traffic signal, or major revisions to an existing traffic signal.

3) The project adds traffic to a roadway that has design features (e.g., narrow width, roadside ditches, sharp curves, poor sight distance, inadequate pavement structure) that would become potential safety problems with the addition of project or cumulative traffic.

4) Project traffic would utilize a substantial portion of an intersection’s capacity where the intersection is currently operating at acceptable levels of service (A through C), but with cumulative traffic would degrade to, or approach LOS D (V/C 0.80) or lower. Substantial is defined as a minimum change of 0.03 V/C for intersections which would operate from 0.80 to 0.85 V/C and a change of 0.02 V/C for intersections which would operate from 0.86 to 0.90 V/C, and 0.01 V/C for intersections which would operate greater than 0.90 V/C (LOS E or worse).

5) Based on City practice, a significant impact would occur when a project would increase traffic volumes by more than 1.0 percent (either project specific or project contribution to cumulative impacts) on a roadway currently exceeding the acceptable capacity or are forecast to exceed the acceptable capacity under cumulative conditions.

It should be noted that the City’s project and cumulative impact thresholds are determined based on increases in V/C ratios. Based on consultation with City staff, for purposes of determining project impacts at the unsignalized study intersections, the ICU methodology was utilized to quantify the V/C ratio increases over baseline conditions with the LOS determined through use of the HCM method of analysis.

The Congestion Management Program (CMP) impact thresholds are based on the Santa Barbara County Association of Governments’ (SBCAG) set of traffic impact thresholds to assess the impacts of land use decisions made by local jurisdictions on regional transportation facilities located within the CMP roadway system. Significant project-generated traffic impacts on the regional CMP system would occur if:

1) For any roadway or intersection operating at LOS A or B, a decrease of two levels of service results from the addition of project-generated traffic.

2) For any roadway or intersection operating at LOS C, project-added traffic results in LOS D or worse.

3) For intersections within the CMP system with existing congestion, the following table defines significant impacts:

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Project-Added Peak Hour Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS D</td>
<td>20</td>
</tr>
<tr>
<td>LOS E</td>
<td>10</td>
</tr>
<tr>
<td>LOS F</td>
<td>10</td>
</tr>
</tbody>
</table>
4) For freeway or highway segments with existing congestion, the following table defines significant impacts.

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Project-Added Peak Hour Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS D</td>
<td>100</td>
</tr>
<tr>
<td>LOS E</td>
<td>50</td>
</tr>
<tr>
<td>LOS F</td>
<td>50</td>
</tr>
</tbody>
</table>

4.13.3 Project Impacts

The project would develop a new internal circulation system within the project site, create new access driveway connections to existing roadways, modify existing intersection configurations, generate traffic on the roadway system serving the site, and generate the demand for parking at the site. Access to and circulation within the project site is described in Section 2.0 Project Description and illustrated on Figure 2-3 Project Site Plan. This section describes street network improvements and assesses potential impacts associated with the access and internal circulation system, traffic congestion impacts, and the adequacy of the parking supply.

Street Network Improvements

Improvements would be made to the street network at the Hollister Avenue/Marketplace Drive and Hollister Avenue/Glen Annie Road intersections to accommodate access and circulation for project-related increases to traffic. The County of Santa Barbara’s planned improvements to these intersections were originally designed as part of its Goleta Transportation Improvement Plan (GTIP) to accommodate future area traffic. Upon incorporation, the City adopted those GTIP improvement plans. Currently, left and right turns onto Hollister Avenue from Glenn Annie are allowed and controlled by a stop sign on the Glen Annie Road approach. According to the City’s GTIP, there would not be enough gaps in traffic volumes along Hollister Avenue to allow left turns from southbound Glenn Annie Road onto Hollister Avenue (eastbound) as traffic volumes continue to increase on Hollister Avenue. The GTIP recommendations include construction of a new roadway that would connect Glen Annie Road north of Hollister Avenue to the Hollister Avenue/Marketplace Drive intersection to provide an alternative to using the Hollister Avenue/Glen Annie Road intersection. The project includes this new roadway (see Figure 2-3 in Section 2.0 Project Description) in accordance with the GTIP. Figure 4.13-5 shows the conceptual design for the intersection. The following is a summary of each of the improvements.

Hollister Avenue/Marketplace Drive

Primary access to the project would be via a new private drive with a public access easement connection to the Hollister Avenue/Marketplace Drive intersection, which is presently a "T" intersection controlled by traffic signals. The project’s main access drive would form the north leg of the intersection, resulting in a conventional four-leg intersection at Hollister Avenue/Marketplace Drive and continue to Glen Annie Road/Sespe Lane. The new leg would contain one left-turn lane and one shared left+thru+right-turn lane for traffic outbound from the site plus two inbound lanes. Hollister Avenue would be widened along the project's frontage to provide an eastbound left-turn lane and a westbound right-turn lane for traffic inbound to the site. The northbound approach from Marketplace Drive (outbound from Camino Real Marketplace) would be restriped to provide one shared left-thru lane and one right-turn lane. The northbound right-turn lane is currently served by an overlap arrow so that the right turns proceed concurrently with the westbound Hollister left-turn movement. This overlap would be
retained as part of the project; thus, westbound Hollister Avenue U-turns would continue to be prohibited. Vehicles that would be diverted from the turn restriction planned at the Hollister Avenue/Glen Annie Road intersection would (see below discussion), would not be able to make a U-turn here, but instead would use the new signal at the project entrance to turn left onto Hollister Avenue. It is estimated that the U-turn restriction would affect less than 15 vehicles per hour.

Hollister Avenue/Glen Annie Road
As part of the project, GTIP improvements would be made to the Glen Annie Road/Hollister Avenue intersection. The center median adjacent to the Hollister Avenue/Glen Annie Road intersection would be reconfigured to restrict southbound left turns from Glen Annie Road onto Hollister Avenue (eastbound). The design would include "Right-Turn Only" striping on the Glen Annie approach (as shown on the site plan). Additionally, "No Left-Turn" or "One-Way" signs would be installed on the Hollister Avenue median in front of the intersection to inform and direct approaching motorists. It is noted that the Hollister Avenue/Glen Annie Road intersection modifications would also increase the eastbound left-turn storage bays that extend from the Hollister Avenue/Storke Road intersection, which is also planned by the City.

Full access is currently provided at the Glen Annie Road/Hollister Avenue intersection, which is controlled by a stop sign on the Glen Annie Road southbound approach. As part of the project, GTIP improvements would be made to this intersection. Through the development approval process, the applicant would be required to dedicate a right-of-way easement along the north side of Hollister Avenue to allow for an additional eastbound lane between Marketplace Drive and Glen Annie Road, as identified in the City’s Capital Improvement Program. Since the widening is a City project, the dedication of right-of-way would be counted against the project’s GTIP fees.

The project would provide a traffic signal and crosswalks at this intersection, which are in addition to the GTIP improvements described immediately above. This signal would accommodate the southbound left-turns onto Hollister Avenue and would allow pedestrians to safely cross Glen Annie Road and Hollister Avenue at this intersection. These improvements would also necessitate minor changes to the median improvement plans as part of the Hollister Avenue/Storke Road intersection GTIP improvements as required below under Intersection Operations Impacts. A conceptual delineation of the Hollister Avenue/Glen Annie Road conceptual median an signal plan is provide in Figure 4.13-5.

Vehicular Site Access and Internal Circulation
Impact TR 1: The design of the central intersection within the project raises potential safety concerns.
Significance Before Mitigation: Potentially Significant

Site Access
Primary access to the project would be provided via a new connection to the Hollister Avenue/Marketplace Drive intersection, as described above. The design of this access does not raise potential safety issues as it is engineered to be a conventional four-leg intersection. (Discussion regarding the service levels at this intersection is provided below.)
Hollister Avenue/Glen Annie Road – Proposed Median Configuration

Source: Associated Transportation Engineers, February 28, 2011.
Secondary access for the project would be provided via a new driveway connection to Hollister Avenue at the west end of the project site and two connections to Glen Annie Road along the east side of the site. The driveway connection to Hollister Avenue at the west end of the site would be limited to right turns (ingress and egress) by the raised median on Hollister Avenue. This access driveway/road is forecast to carry low volumes as the number of vehicles using the driveway/road would be minimal. The northernmost connection to Glen Annie Road would be located opposite Sespe Lane. Stop signs would be installed on the Sespe Lane approach and the project’s internal driveway/road approach to Glen Annie Road to control traffic flows. As this connection is also forecast to carry low volumes, delays for vehicles would be minimal. The southern connection to Glen Annie Road would be located opposite the driveway to the existing office buildings (Storke/Hollister Research Center) on Glen Annie Road and stop signs would be installed on the project’s internal driveway approach to control traffic flows. This connection is also forecast to carry low volumes and therefore, delays for vehicles would be minimal. The design of these secondary access points does not raise potential safety concerns.

Internal Circulation
The internal access and circulation system for the project site would adequately accommodate the traffic volumes that would be generated by the project. Internal driveways/road are required to meet California Building Code standard for widths, turning radii, and emergency vehicle access. LLG reviewed the internal circulation system and identified one intersection, the main/central intersection, which, based on the project plans, raised potential safety concerns. This main/central intersection involves four legs with crosswalks on three sides, and other legs intersecting in close proximity, also with crosswalks. Approximately 566 PM peak hour trips, including potential delivery truck trips, would traverse through this intersection. The project plans include stop signs at the east and west approaches to this intersection, but not at the north and south approaches. In addition, the curb lines for east-west travel are not completely aligned. These stop sign and alignment issues raise potential safety concerns for pedestrians within the crosswalks. This is considered a potentially significant impact.

Traffic Congestion
The street network improvements to the Hollister Avenue/Marketplace Drive and Hollister Avenue/Glen Annie Road intersections would be constructed prior to before the City issues certificates of occupancy of for the development. As such Accordingly, the improvements are assumed to be in place for estimating the project’s impacts to the traffic flow under the Existing + Project and Cumulative + Project scenarios that are analyzed below.

Project Trip Generation
Trip generation estimates for the project are based on rates contained in the Institute of Transportation Engineers (ITE) Trip Generation report. The ITE report provides standard generation rates for specified types of land uses. The ADT generation estimates for the project were calculated using the ITE specified standard rates for “Shopping Centers,” “Apartments,” and “Residential Townhouse/Condominiums” to address the mix of land uses. The impact of the project in terms of vehicle trip generation is based on the net change after demolition of existing uses (television studio offices and drive-thru ATM kiosk) that currently generate trips. The existing peak hour trip estimates for these existing on-site uses are based on the driveway counts of these facilities conducted by ATE in August 2010 (count data is provided in Appendix H). A summary of the trip generation estimates for the project is provided in Table 4.13-3.

\[^{2}\text{Trip Generation, Institute of Transportation Engineers, 7th Edition, 2003.}\]

Westar Mixed-Use Village

Final EIR
July 2012
Table 4.13-3
Project Trip Generation

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Size</th>
<th>ADT</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Rate</td>
<td>Trips</td>
<td>Rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rate</td>
<td>(In/Out)</td>
<td>Rate</td>
</tr>
<tr>
<td>Proposed Uses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shopping Center</td>
<td>90,054 sf</td>
<td>70.45</td>
<td>6,334</td>
<td>1.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>145 (88/57)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>593 (291/302)</td>
</tr>
<tr>
<td>Apartments</td>
<td>274 units</td>
<td>6.65</td>
<td>1,822</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>140 (28/112)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>170 (109/61)</td>
</tr>
<tr>
<td>Condominiums</td>
<td>5 units</td>
<td>5.81</td>
<td>29</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 (0/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 (2/1)</td>
</tr>
<tr>
<td>Subtotals</td>
<td></td>
<td>8,195</td>
<td></td>
<td>287 (116/171)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>766 (402/364)</td>
</tr>
<tr>
<td>Existing Uses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TV Studio & ATMs</td>
<td>N/A</td>
<td>N/A</td>
<td>340</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7 (4/3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34 (18/16)</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>7,855</td>
<td></td>
<td>280 (112/168)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>732 (384/348)</td>
</tr>
</tbody>
</table>

*Trip rates are per 1,000 sf for commercial uses and per unit for residential uses.

The data presented in Table 4.13-3 show that the project is forecast to generate a net increase of 7,855 ADT, 280 AM peak hour trips, and 732 PM peak hour trips.

The trip generation analysis also accounts for the various trip types that would occur at the site, including "internal capture," "primary," "diverted-linked," and "pass-by" trips (a breakdown of the project's trips by type is shown on the trip generation worksheet contained in Appendix H). The following text outlines the trip type forecasts for the site uses.

Internal capture trips are those made within the project site between the retail and residential land uses (as residents of the apartments would patronize the on-site retail uses rather than leave the site to shop elsewhere). These trips would occur on-site and would not affect the study-area street network. The ITE mixed-use traffic model[^3] was used to determine the number of trips that would be captured on the site (a copy of the mixed-use model is provided in Appendix H for reference). The mixed-use model shows that 14.4 percent of the daily trips (1,182 ADT) and 15.6 percent of the PM peak hour trips (120 peak hour trips) would be internal to the site. The ITE mixed-use model does not contain data for the AM peak hour; so internal trips were not calculated for this period.

Primary trips are single-purpose trips in which the sole purpose of the trip is related to the uses (i.e., from a home to the store and then back home). These trips would be new to the study-area street network. Based on the data contained in the ITE Trip Generation Handbook, 66 percent of the average daily and PM peak hour trips generated by the commercial uses would be primary trips.

Diverted-linked trips are trips that would divert to the retail shops from nearby roadways. These would include trips that are traveling on Storke Road that divert from their normal travel route to patronize the new commercial center and then return to Storke Road and continue to their final destination. Based on the data presented in the ITE Trip Generation Handbook and input

provided by City staff, it is assumed that 9 percent of the commercial trips would be diverted-linked trips from Storke Road.

Pass-by trips are trips that come from the existing traffic stream on Hollister Avenue directly adjacent to the project site. These trips would not affect the study-area street network beyond the project site. Based on the data presented in the ITE Trip Generation Handbook and input provided by City staff, it is assumed that 9 percent of the commercial trips would be pass-by trips from the Hollister Avenue traffic stream adjacent to the site. The ITE Trip Generation Handbook does not contain data for the AM peak hour, so pass-by trips were not calculated for this period.

As noted, internal capture trips and pass-by trips would not affect the study-area intersections and roadways beyond the project site. Table 4.13-4 shows the total trips that would affect the study-area roadways and intersections beyond the project site.

Table 4.13-4
Project Trip Generation – Less Internal and Pass-By Trips

<table>
<thead>
<tr>
<th>Trip Generation</th>
<th>ADT</th>
<th>AM Peak Trips (In/Out)</th>
<th>PM Peak Trips (In/Out)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Project (All Trips)</td>
<td>7,855</td>
<td>280 (112/168)</td>
<td>732 (384/348)</td>
</tr>
<tr>
<td>Less Internal Trips</td>
<td>-1,182</td>
<td>NA^a</td>
<td>-120 (60/60)</td>
</tr>
<tr>
<td>Less Pass-By Trips</td>
<td>-1,438</td>
<td>NA^a</td>
<td>-133 (66/67)</td>
</tr>
<tr>
<td>Net Project Trips b</td>
<td>5,235</td>
<td>280 (112/168)</td>
<td>479 (258/221)</td>
</tr>
</tbody>
</table>

^a Internal Capture and pass-by not applied to AM peak hour trips.

^b Net trips are those trips that would affect the study-area roadways and intersections beyond the project site.

As shown, the project would generate a net increase of 5,235 ADT, 280 AM peak hour trips, and 479 PM peak hour trips on the study-area street network beyond the project site.

Trip Distribution

Trip distribution percentages were developed for the retail and residential components of the project based on data derived from the City’s traffic model, existing traffic flows, previous traffic studies, consideration of the population centers in the surrounding area, and input from the City staff. Table 4.13-5 and Figure 4.13-6 present the trip distribution percentages projected for the project. Project-added traffic volumes are presented on Figure 4.13-7. Project-added AM and PM peak hour volumes are shown on Figures 4.13-8 and 4.13-9. The project-added volumes shown in the figures include adjustments for pass-by and diverted link trips.
Project-Added Average Daily Traffic Volumes

Source: Associated Transportation Engineers, February 28, 2011.

Not to Scale
Table 4.13-5
Project Trip Distribution Percentages

<table>
<thead>
<tr>
<th>Origin/Destination</th>
<th>Direction</th>
<th>Retail Percentage</th>
<th>Residential Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 101</td>
<td>North</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>South</td>
<td>47%</td>
<td>57%</td>
</tr>
<tr>
<td>Hollister Avenue</td>
<td>East</td>
<td>8%</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td>West</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>Storke Road</td>
<td>North</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>South</td>
<td>12%</td>
<td>8%</td>
</tr>
<tr>
<td>Los Carneros Road</td>
<td>North</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>South</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>Marketplace Drive</td>
<td>South</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Roadway Segment Impacts

Impact TR 2: The project would increase traffic volumes on local roadway segments. The increase along Storke Road north of Hollister Avenue would be significant.

Significance Before Mitigation: Significant

The Existing + Project ADT volume forecasts for the study-area roadways are shown on Figure 4.13-10. Table 4.13-6 compares the Existing and Existing + Project ADT roadway volumes and identifies the potential impacts of the project’s traffic additions based on the City’s capacity thresholds.

Table 4.13-6
Existing + Project Roadway Volumes

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Acceptable Capacity</th>
<th>Existing ADT</th>
<th>Existing + Project ADT</th>
<th>Percent Change</th>
<th>Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storke Road n/o Hollister Avenue</td>
<td>34,000</td>
<td>33,800</td>
<td>36,520</td>
<td>8.0%</td>
<td>YES</td>
</tr>
<tr>
<td>Storke Road s/o Hollister Avenue</td>
<td>34,000</td>
<td>17,600</td>
<td>18,116</td>
<td>2.9%</td>
<td>NO</td>
</tr>
<tr>
<td>Storke Road s/o Whittier Drive</td>
<td>14,300</td>
<td>13,200</td>
<td>13,716</td>
<td>3.9%</td>
<td>NO</td>
</tr>
<tr>
<td>Hollister Avenue w/o Storke Road</td>
<td>34,000</td>
<td>26,300</td>
<td>30,827</td>
<td>17.2%</td>
<td>NO</td>
</tr>
<tr>
<td>Hollister Avenue e/o Storke Road</td>
<td>34,000</td>
<td>20,900</td>
<td>21,673</td>
<td>3.7%</td>
<td>NO</td>
</tr>
</tbody>
</table>

The data presented in Table 4.13-6 show that the segment of Storke Road north of Hollister Avenue is forecast to carry volumes above the acceptable capacity standard with the addition of project generated traffic. It is the City's practice to define a significant impact if a project would increase traffic volumes by more than 1.0 percent on roadways that are forecast to exceed the acceptable capacity standard. The project would increase traffic volumes on Storke Road north of Hollister Avenue by 8.0 percent, thus generating a significant roadway impact based on the City’s threshold.
Existing + Project Average Daily Traffic Volumes

Source: Associated Transportation Engineers, February 28, 2011.

LEGEND

X - Average Daily Traffic Volume
Intersection Operations Impacts

Impact TR 3: The project would increase traffic volumes at local intersections. The associated impact on the level of service at the US 101 SB Ramps/Storke Road intersection during the AM peak hour and on the left-turn queue from eastbound Hollister Avenue to northbound Storke Road would be significant.

Significance Before Mitigation: Significant

Levels of service were calculated for study-area intersections assuming the Existing+Project AM peak and PM peak hour volumes as presented in Figures 4.13-11 and Figure 4.13-12, respectively. Tables 4.13-7 and 4.13-8 compare the Existing and Existing+Project levels of service and identify project-specific impacts. It is noted that the Existing + Project level of service forecasts assume the improvements planned as part of the project, as described above.

Table 4.13-7

Existing + Project AM Peak Hour Levels of Service

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Existing</th>
<th>Existing + Project</th>
<th>Project Added Trips</th>
<th>V/C Change</th>
<th>Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICU</td>
<td>LOS</td>
<td>ICU</td>
<td>LOS</td>
<td>Added Trips</td>
<td>V/C Change</td>
</tr>
<tr>
<td>US 101 NB Ramps/Storke Road</td>
<td>0.71</td>
<td>LOS C</td>
<td>0.72</td>
<td>LOS C</td>
<td>78</td>
</tr>
<tr>
<td>US 101 SB Ramps/Storke Road</td>
<td>0.78</td>
<td>LOS C</td>
<td>0.83</td>
<td>LOS D</td>
<td>172</td>
</tr>
<tr>
<td>Hollister Avenue/Pacific Oaks Drive</td>
<td>0.41</td>
<td>LOS A</td>
<td>0.42</td>
<td>LOS A</td>
<td>20</td>
</tr>
<tr>
<td>Hollister Avenue/Santa Felicia Drive</td>
<td>11.8 sec.</td>
<td>LOS B</td>
<td>11.9 sec</td>
<td>LOS B</td>
<td>20</td>
</tr>
<tr>
<td>Hollister Avenue/Marketplace Drive</td>
<td>0.49</td>
<td>LOS A</td>
<td>0.51</td>
<td>LOS A</td>
<td>3000200</td>
</tr>
<tr>
<td>Hollister Avenue/Glen Annie Road</td>
<td>14.9 sec</td>
<td>LOS B</td>
<td>11.4 sec</td>
<td>LOS A</td>
<td>239</td>
</tr>
<tr>
<td>Hollister Avenue/Storke Road</td>
<td>0.61</td>
<td>LOS B</td>
<td>0.65</td>
<td>LOS B</td>
<td>239</td>
</tr>
<tr>
<td>Marketplace Drive/Storke Road</td>
<td>0.35</td>
<td>LOS A</td>
<td>0.36</td>
<td>LOS A</td>
<td>28</td>
</tr>
<tr>
<td>US 101 NB Ramps/Los Carneros Road</td>
<td>0.54</td>
<td>LOS A</td>
<td>0.55</td>
<td>LOS A</td>
<td>16</td>
</tr>
<tr>
<td>US 101 SB Ramps/Los Carneros Road</td>
<td>0.52</td>
<td>LOS A</td>
<td>0.53</td>
<td>LOS A</td>
<td>19</td>
</tr>
<tr>
<td>Hollister Avenue/Los Carneros Road</td>
<td>0.42</td>
<td>LOS A</td>
<td>0.42</td>
<td>LOS A</td>
<td>43</td>
</tr>
</tbody>
</table>

- Unsignalized Intersection. LOS based on average weighted control delay per vehicle in seconds.
- Existing + Project assumes Goleta Mixed-Use Village improvements.
- Existing LOS assumes unsignalized intersection. Existing + Project LOS assumes signalized intersection as part of the project.
EXISTING + PROJECT A.M. PEAK HOUR VOLUMES

FIGURE 4.13-11

WESTAR MIXED-USE VILLAGE

Source: Associated Transportation Engineers, February 28, 2011.
Existing + Project P.M. Peak Hour Volumes

Source: Associated Transportation Engineers, February 28, 2011.

WESTAR MIXED-USE VILLAGE
As shown in Table 4.13-8 the US 101 SB Ramps/Storke Road intersection is forecast to operate at LOS D during the AM peak hour period with the addition of project traffic. The project would add 172 trips to the intersection during the AM peak hour, which is considered a significant impact based on the City’s LOS D impact threshold of 15 or more peak hour trips added to a below standard intersection. No significant impacts would occur during the PM peak hour.

A portion of the project could be constructed and occupied before a significant impact to the US 101 SB Ramps/Storke Road intersection would be created. An analysis of the project at various levels of development including the complete residential component only, up to 68 percent of the residential component, and the commercial component only, was considered and is summarized in Table 4.13-9.
Table 4.13-9
US 101 SB Ramps/Storke Road AM Peak Hour Level of Service Breakdown

<table>
<thead>
<tr>
<th>Project Development Occupancy</th>
<th>Size</th>
<th>Existing ICU / LOS</th>
<th>Existing+Project ICU / LOS</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential Component (Total) Only (No Commercial)</td>
<td>279 Units</td>
<td>0.78 / LOS C</td>
<td>0.81 / LOS D</td>
<td>YES</td>
</tr>
<tr>
<td>68 Percent of the Residential Component Only (No Commercial)</td>
<td>190 Units</td>
<td>0.78 / LOS C</td>
<td>0.80 / LOS C</td>
<td>NO</td>
</tr>
<tr>
<td>Commercial Component Only (No Residential)</td>
<td>90,054</td>
<td>0.78 / LOS C</td>
<td>0.76 / LOS C</td>
<td>NO</td>
</tr>
</tbody>
</table>

As shown, the project would not trigger significant impact at this intersection if 190 of the residential units alone are constructed and occupied without any portion of the commercial component being occupied. Similarly, the project would not trigger a significant impact at this intersection if just the commercial component were to be constructed and occupied alone without any portion of the residential component occupied. Based on a review of this analysis, the Community Services Department determined that the project's 84th AM peak hour vehicle trip, for any combination of residential or commercial development of the project would trigger the significant impact to the US 101 SB Ramps/Storke Road intersection during the AM peak hour.

Impacts on Left-Turn Queues and Storage Requirements

City staff requested an analysis of left-turn queues within the Hollister Avenue corridor between Cortona Drive on the east and Pacific Oaks Road on the west in order to evaluate the project's potential impacts to left-turn queues and storage requirements. The analysis was completed using the Existing and Existing + Project PM peak hour traffic forecasts, since the PM peak hour is the period with the highest traffic demands within the corridor.

The SYNCHRO software program was used for the analysis. SYNCHRO implements the Highway Capacity Manual operations method and produces level of service, delay, queue forecasts, etc. The SYNCHRO model predicts both "50th Percentile" and "95th Percentile" queue forecasts for the peak period. The 50th Percentile queue forecasts represent the average queues during the peak period. The 95th Percentile queue forecasts represent the peak queue during the peak period and is recommended for design purposes. The following analysis is based on the 95th percentile queue forecasts. Worksheets showing the queue forecasts are contained in the Appendix H for reference. Table 4.13-9 summarizes the Existing and Existing + Project left-turn storage and peak queue forecasts for the Hollister Avenue corridor between Cortona Drive and Pacific Oaks Road. The Existing + Project forecasts assume the improvements planned as part of the project (modifications to Hollister Avenue/Marketplace Drive and Hollister Avenue/Glen Annie Road).
Table 4.13-910
Existing and Existing + Project Peak Queue Forecasts and Storage Requirements

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Left-Turn Storage (Feet)</th>
<th>Peak Queue Forecast (Feet)</th>
<th>Existing</th>
<th>Existing + Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hollister Avenue/Pacific Oaks Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB Left-Turn</td>
<td>300</td>
<td>114</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Hollister Avenue/Santa Felicia Drive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB Left-Turn</td>
<td>140</td>
<td>20(a)</td>
<td>20(a)</td>
<td></td>
</tr>
<tr>
<td>WB Left-Turn</td>
<td>300</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Hollister Avenue/Marketplace Drive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB Left-Turn (b)</td>
<td>120</td>
<td>N/A</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>WB Left-Turn (b)(c)</td>
<td>235</td>
<td>96</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>Hollister Avenue/Glen Annie Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB Left-Turn</td>
<td>160</td>
<td>20(a)</td>
<td>20(a)</td>
<td></td>
</tr>
<tr>
<td>Hollister Avenue/Storke Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB Left-Turn (c)</td>
<td>415(d)/565(d)</td>
<td>647</td>
<td>461(b)</td>
<td></td>
</tr>
<tr>
<td>WB Left-Turn (c)</td>
<td>255</td>
<td>149</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>Hollister Avenue/Cortona Drive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB Left-Turn</td>
<td>100</td>
<td>20(a)</td>
<td>20(a)</td>
<td></td>
</tr>
</tbody>
</table>

(a) Forecast calculated at less than 1 vehicle. Length of 1 vehicle used.
(b) Storage/queue forecasts assume improvements planned by the permittee.
(c) Dual left-turn lanes. Storage/queue forecasts based on average capacity of both lanes.
(d) Existing storage=415 X 2 lanes= 830 total. Existing +Project storage= 565 X 2 lanes= 1,180 total.

The existing conditions data presented in Table 4.13-9 show that the left-turn storage provided at the intersections along Hollister Avenue accommodates PM peak hour queues, except for the eastbound Hollister Avenue left-turn movement at the Storke Road/Hollister Avenue intersection. The eastbound Hollister Avenue approach currently contains two left-turn lanes, with the Number 1 left-turn lane providing approximately 300 feet of vehicle storage and the Number 2 left-turn lane providing approximately 530 feet of vehicle storage, for a total of 830 feet of vehicle storage. Observations made by ATE found unequal loading within the left-turn lanes, with approximately 25 percent of the left-turn vehicles queued in the Number 1 left-turn lane and 75 percent queued in the Number 2 left-turn lane (the Existing queue model assumes this lane utilization). The unequal loading occurs because most of the left-turn vehicles are destined for southbound US 101 at the US 101/Storke Road interchange and using the Number 2 left-turn lane does not require merging after clearing the Storke Road/Hollister Avenue intersection. The queue in the Number 2 left-turn lane often extends back so that it blocks access to the Number 1 left-turn lane.

The Existing + Project queue model assumes the street network improvements proposed as part of the project (described above), i.e., modifications to Hollister Avenue/Glen Annie Road, which would increase the eastbound Hollister Avenue left-turn storage bays at Hollister Avenue/Storke Road to 565 feet in each lane (total of 1,130 feet of vehicle storage). The model also assumes an additional northbound lane on northbound Storke Road between Hollister Avenue and the US 101 Southbound Ramp and changing the northbound right-turn lane at the US 101 Southbound Ramp intersection to a free right-turn lane. These measures are identified
to mitigate the project’s traffic congestion impacts on the Storke Road street segment and at the US 101 SB Ramp/Storke Road intersection (see Mitigation Measures TR 2-1 and TR 3-1, below). Prior to the implementation of these measures, the project would cause a result in the potentially for a significant impact without the mitigation measures.

Congestion Management Plan (CMP) Impacts

CMP Intersection Impacts

Impact TR 4: The project would add to traffic volumes at CMP intersections. The increase at the US 101 SB Ramps/Storke Road intersection during the AM peak hour would result in a significant impact under CMP criteria.

Significance Before Mitigation: Significant

The following study-area intersections are located within the CMP network:

- Storke Road/US 101 NB Ramps
- Storke Road/US 101 SB Ramps
- Storke Road/Hollister Avenue
- Los Carneros Road/US 101 NB Ramps
- Los Carneros Road/US 101 SB Ramps
- Los Carneros Road/Hollister Avenue

As shown in Table 4.13-7 above, the US 101 SB Ramp/Storke Road intersection is forecast to operate at LOS D during the AM peak period under Existing+Project conditions. The project would add more than 20 trips to this intersection; thus, it would result in a significant impact under CMP criteria.

CMP Freeway Impacts

Impact TR 5: The project would add to traffic volumes along US 101. The project’s increase would not exceed CMP criteria.

Significance Before Mitigation: Less Than Significant

The 2009 CMP report shows that the segment of US 101 between Storke Road and Los Carneros operates at LOS B during the AM peak hour and at LOS C during the PM peak hour. The project is forecast to add 145 AM peak hour trips and 205 PM peak hour trips to this segment of US 101. The CMP threshold for freeway impacts is 50 trips for segments operating at LOS E or LOS F and 100 trips for segments operating at LOS D. There are no CMP thresholds for freeway impacts for segments operating at LOS A, LOS B or LOS C. Based on CMP criteria, the project’s impacts to the freeway segments located in the study-area would be less than significant.

Parking

Refer to Section 4.9 Land Use and Planning for a discussion of the project’s parking.
4.13.4 Cumulative Impacts

Cumulative traffic volumes were forecast using the City’s traffic model. The cumulative forecasts include traffic generated by approved and pending projects proposed within the City of Goleta (a list summarizing the approved and pending projects is contained in Appendix H for reference) as well as development of the UCSB Long Range Development Plan, the Santa Barbara Airport Specific Plan, and regional growth in the Goleta-Santa Barbara area. Planned improvements that are assumed in the City’s traffic model include: construction of a new freeway overcrossing that would be located between Hollister Avenue and Storke Road/US 101 interchanges and extension of Phelps Road from Storke Road to Los Carneros Road. This analysis conservatively assumes the volumes provided by the traffic model, but not the anticipated street improvements.

Cumulative Impacts on Roadway Segments

Impact TR 6: Project-generated traffic volumes would result in significant cumulative impacts on the following roadway segments:

- Storke Road north of Hollister Avenue
- Storke Road south of Whittier Drive

Significance Before Mitigation: Significant

Cumulative ADT volumes were developed based on the change in PM peak hour link volumes. The change in peak hour volumes was forecast by a peak hour factor and then added to the existing ADT volumes. Cumulative ADT roadway volumes are shown in Figure 4.13-13. Figures 4.13-14 and 4.13-15 present the Cumulative AM and PM peak hour intersection volumes. Cumulative + Project ADT roadway volumes are shown on Figure 4.13-16. Cumulative + Project AM and PM peak hour intersection volumes are presented in Figures 4.13-17 and 4.13-18. Table 4.13-10 lists the Cumulative roadway volumes and identifies the impacts of the project-added traffic based on the City’s capacity thresholds.

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Acceptable Capacity</th>
<th>Cumulative ADT</th>
<th>Project Added ADT</th>
<th>% Change</th>
<th>Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storke Road n/o Hollister Avenue</td>
<td>34,000</td>
<td>38,087</td>
<td>40,807</td>
<td>7.1%</td>
<td>YES</td>
</tr>
<tr>
<td>Storke Road s/o Hollister Avenue</td>
<td>34,000</td>
<td>26,641</td>
<td>27,157</td>
<td>1.9%</td>
<td>NO</td>
</tr>
<tr>
<td>Storke Road s/o Whittier Drive</td>
<td>14,300</td>
<td>18,141</td>
<td>18,657</td>
<td>2.8%</td>
<td>YES</td>
</tr>
<tr>
<td>Hollister Avenue w/o Storke Road</td>
<td>34,000</td>
<td>27,889</td>
<td>32,416</td>
<td>16.2%</td>
<td>NO</td>
</tr>
<tr>
<td>Hollister Avenue e/o Storke Road</td>
<td>34,000</td>
<td>30,361</td>
<td>31,134</td>
<td>2.5%</td>
<td>NO</td>
</tr>
</tbody>
</table>
Cumulative Average Daily Traffic Volumes

Source: Associated Transportation Engineers, February 28, 2011.

ENVICOM CORPORATION
Source: Associated Transportation Engineers, February 28, 2011.

WESTAR MIXED-USE VILLAGE

Cumulative + Project A.M. Peak Hour Volumes

Not to Scale
Cumulative + Project P.M. Peak Hour Volumes

Source: Associated Transportation Engineers, February 28, 2011.
Cumulative + Project Average Daily Traffic Volumes

Source: Associated Transportation Engineers, February 28, 2011.
Cumulative + Project PM Peak Hour Volumes

Source: Associated Transportation Engineers, February 28, 2011.
As shown in Table 4.13-10, the segment of Storke Road north of Hollister Avenue, and the segment of Storke Road south of Whittier Drive are forecast to exceed the acceptable capacity standard under Cumulative and Cumulative + Project conditions. The project would increase the traffic volume on these two segments by more than 1.0 percent, which exceeds the City’s impact threshold and would result in a significant impact.

Cumulative Impacts on Intersection Operations

Impact TR 7: Project-generated traffic volumes would result in significant cumulative traffic impacts at the following intersections:

- US 101 SB Ramps/Storke Road
- Hollister Avenue/Storke Road

Significance Before Mitigation: Significant
Cumulative and the Cumulative+Project levels of service and V/C ratios for the study area intersections during AM and PM peak hours are provided in Tables 4.13-11 and 4.13-12, respectively.

Table 4.13-11/12

Cumulative and Cumulative + Project AM Peak Hour Levels of Service

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Cumulative</th>
<th>Cumulative+Project</th>
<th>Change in V/C</th>
<th>Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICU</td>
<td>LOS</td>
<td>ICU</td>
<td>LOS</td>
</tr>
<tr>
<td>US 101 NB Ramps/Storke Road</td>
<td>0.73</td>
<td>LOS C</td>
<td>0.75</td>
<td>LOS C</td>
</tr>
<tr>
<td>US 101 SB Ramps/Storke Road</td>
<td>0.89</td>
<td>LOS D</td>
<td>0.94</td>
<td>LOS E</td>
</tr>
<tr>
<td>Hollister Avenue/Pacific Oaks Drive</td>
<td>0.50</td>
<td>LOS A</td>
<td>0.50</td>
<td>LOS A</td>
</tr>
<tr>
<td>Hollister Avenue/Santa Felicia Drive (a)</td>
<td>16.7 sec.</td>
<td>LOS C</td>
<td>17.0 sec</td>
<td>LOS C</td>
</tr>
<tr>
<td>Hollister Avenue/Marketplace Drive (b)</td>
<td>4.460.44</td>
<td>LOS A</td>
<td>0.460.48</td>
<td>LOS A</td>
</tr>
<tr>
<td>Hollister Avenue/Glen Annie Road (a)(b)(c)</td>
<td>4.77 sec.0.35</td>
<td>LOS CA</td>
<td>10.0 sec 0.40</td>
<td>LOS A</td>
</tr>
<tr>
<td>Hollister Avenue/Storke Road</td>
<td>0.71</td>
<td>LOS B</td>
<td>0.74</td>
<td>LOS C</td>
</tr>
<tr>
<td>Marketplace Drive/Storke Road</td>
<td>0.39</td>
<td>LOS A</td>
<td>0.39</td>
<td>LOS A</td>
</tr>
<tr>
<td>US 101 NB Ramps/Los Carneros Road</td>
<td>0.65</td>
<td>LOS B</td>
<td>0.65</td>
<td>LOS B</td>
</tr>
<tr>
<td>US 101 SB Ramps/Los Carneros Road</td>
<td>0.66</td>
<td>LOS B</td>
<td>0.67</td>
<td>LOS B</td>
</tr>
<tr>
<td>Hollister Avenue/Los Carneros Road</td>
<td>0.48</td>
<td>LOS A</td>
<td>0.48</td>
<td>LOS A</td>
</tr>
</tbody>
</table>

- (a) Unsignalized Intersection. LOS based on average weighted control delay per vehicle in seconds.
- (b) Cumulative + Project LOS assumes Goleta Mixed-Use Village Project improvements.
- (c) Cumulative LOS assumes signalized intersection as part of the project.
Table 4.13-12

Cumulative and Cumulative + Project PM Peak Hour Levels of Service

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Cumulative ICU</th>
<th>Cumulative LOS</th>
<th>Cumulative+Project ICU</th>
<th>Cumulative+Project LOS</th>
<th>Change in V/C</th>
<th>Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 101 NB Ramps/Storke Road</td>
<td>0.72</td>
<td>LOS C</td>
<td>0.75</td>
<td>LOS C</td>
<td>0.027</td>
<td>NO</td>
</tr>
<tr>
<td>US 101 SB Ramps/Storke Road</td>
<td>0.84</td>
<td>LOS D</td>
<td>0.89</td>
<td>LOS D</td>
<td>0.048</td>
<td>YES</td>
</tr>
<tr>
<td>Hollister Avenue/Pacific Oaks Drive</td>
<td>0.50</td>
<td>LOS A</td>
<td>0.50</td>
<td>LOS A</td>
<td>0.006</td>
<td>NO</td>
</tr>
<tr>
<td>Hollister Avenue/Santa Felicia Drive</td>
<td>17.5 sec.</td>
<td>LOS C</td>
<td>17.9 sec</td>
<td>LOS C</td>
<td>N/A</td>
<td>NO</td>
</tr>
<tr>
<td>Hollister Avenue/Marketplace Drive</td>
<td>0.530.54</td>
<td>LOS A</td>
<td>0.630.59</td>
<td>LOS BA</td>
<td>0.0930.055</td>
<td>NO</td>
</tr>
<tr>
<td>Hollister Avenue/Glen Annie Road</td>
<td>25.1 sec.0.57</td>
<td>LOS DDA</td>
<td>44.6 sec0.69</td>
<td>LOS B</td>
<td>N/A0.118</td>
<td>NO</td>
</tr>
<tr>
<td>Hollister Avenue/Storke Road</td>
<td>0.87</td>
<td>LOS D</td>
<td>0.92</td>
<td>LOS E</td>
<td>0.047</td>
<td>YES</td>
</tr>
<tr>
<td>Marketplace Drive/Storke Road</td>
<td>0.64</td>
<td>LOS B</td>
<td>0.65</td>
<td>LOS B</td>
<td>0.011</td>
<td>NO</td>
</tr>
<tr>
<td>US 101 NB Ramps/Los Carneros Road</td>
<td>0.65</td>
<td>LOS B</td>
<td>0.65</td>
<td>LOS B</td>
<td>0.006</td>
<td>NO</td>
</tr>
<tr>
<td>US 101 SB Ramps/Los Carneros Road</td>
<td>1.00</td>
<td>LOS E</td>
<td>1.00</td>
<td>LOS E</td>
<td>0.002</td>
<td>NO</td>
</tr>
<tr>
<td>Hollister Avenue/Los Carneros Road</td>
<td>0.80</td>
<td>LOS C</td>
<td>0.81</td>
<td>LOS D</td>
<td>0.012</td>
<td>NO</td>
</tr>
</tbody>
</table>

Notes:

- (a) Unsignalized Intersection. LOS based on average weighted control delay per vehicle in seconds.
- (b) Existing + Project LOS assumes Goleta Mixed-Use Village Project improvements.
- (c) Cumulative LOS assumes signalized intersection as part of the project.

As shown in Tables 4.13-11 and Table 4.13-12, the project would result in significant cumulative impacts at the US 101 SB Ramps/Storke Road intersection during the AM and PM peak periods and at the Hollister Avenue/Storke Road intersection during the PM peak period.

Cumulative Congestion Management Plan Impacts

Impact TR 8: Under cumulative conditions, the project would exceed CMP thresholds at the following intersections:

- US 101 SB Ramps/Storke Road intersection
- Hollister Avenue/Storke Road intersection
- Hollister Avenue/Los Carneros Road intersection
- US 101 SB Ramp/Los Carneros Road intersection
Significance Before Mitigation: Significant

As shown in Tables 4.13-11 and 4.13-12, the above intersections are forecast to operate at LOS D or LOS E under Cumulative + Project conditions. Therefore, the project is forecast to exceed the CMP impact thresholds at these locations.

4.13.5 Mitigation Measures

Impact TR 1: The configuration of the central intersection within the project would result in potential safety issues.

TR 1-1: The internal central intersection along the main drive that serves the commercial component must shall be controlled with “all-way Stop” at each approach to allow for pedestrian cross-walks on all legs of the intersection. Minor modifications shall must be made to curb lines of the east-west drive aisle (south of Buildings C through G) where they intersect with the main driveway, to improve motorist alignment.

Plan Requirements and Timing: Prior to Before recordation of the final map, the design of the roadway improvement showing control of the intersection as described above must shall be reviewed and approved by the City Planning and Environmental Services Department Director, or designee, and the on consultation with Community Services Director, or designee.

Monitoring: The City Community Services Director, or designee, must staff shall verify roadway design review and approval prior to before recordation of the final map for the project and shall ensure adequate performance of these improvements prior to before the first occupancy clearance.

Impact TR 2: The project would increase traffic volumes on local roadway segments. The increase along Storke Road north of Hollister Avenue would be significant.

TR 2-1: The permittee must shall construct or monetarily contribute to the construction of provide for an additional northbound lane along Storke Road that would extend from Hollister Avenue to the existing right-turn that serves the US 101 southbound on-ramp at the Storke Road interchange. The new northbound lane must is to be designed to increase the Acceptable Capacity of Storke Road from Hollister Avenue to the US 101 southbound on-ramp to 47,000 ADT and would serve as an acceptor lane and would allow westbound right-turns from Hollister Avenue onto Storke Road to become a free movement. Full improvements for a northbound through lane are required included as a mitigation measure or as Development Plan conditions/mitigation measures of approval for traffic impacts associated with other nearby projects, including the Cabrillo Business Park project and Rincon Palms Hotel. If another project implements these traffic improvements prior before the City issues issuance of the first certificate of

4 It is noted that according to the Revised Traffic and Circulation Study conducted by Associated Transportation Engineers (February 28, 2011), with “all-way Stop” control implemented as provided in Mitigation Measure TR 1-1, the intersection would operate at LOS A, which indicates delays of less than 10 seconds with no congestion or queuing occurring during the PM peak period.
occupancy clearance at the Westar Mixed-Use Village project, the permittee will must be required to pay a fair-share contribution of the cost incurred to implement this improvement.

The construction of the additional northbound through lane improvements along Storke Road or the monetary contribution to construction of these improvements shall must be implemented under one of the following scenarios:

1) If another project has implemented these improvements, then the permittee's shall must pay the project's fair-share contribution shall be provided to the developer of the improvements in accordance with any City reimbursement agreement for these improvements in effect at that time.

2) If another project has not implemented these improvements before the timing requirements for implementation of this mitigation measure, if another project has not implemented these improvements prior to the timing requirements for implementation of this mitigation measure, project developer would be required to implement the permittee must construct the through lane improvements. Under this scenario, the City would shall establish a reimbursement agreement that would require future projects contributing to traffic impacts necessitating these improvements to pay the project developer their pro-rata share of the improvement costs.

3) If GTIP improvements are identified for this location before prior to project approval, the permittee would be required to contribute must pay GTIP fees to the GTIP fund.

Plan Requirements and Timing: The design of the roadway improvement described above shall be reviewed and approved by the City prior to recordation of the final map. This improvement shall be either: 1) constructed by the permittee prior to the first occupancy clearance for the project, or 2) the permittee shall post a performance security deemed adequate by the City to cover the cost of all such improvements prior to the first occupancy clearance. Occupancy clearance shall not be issued until all of the aforementioned improvements are either fully completed or bonded.

Scenario #1
In the event that the permittee pays all monetary contribution for the additional northbound through lane improvements, such contribution must be paid pursuant to any applicable reimbursement agreement and before the recordation of the final map.

Scenario #2
In the event that the permittee constructs the additional northbound through lane improvements:

a. The design plans of the additional northbound through lane improvements described above must be submitted to the Community Services Director, or designee for review before recordation of the final map.

b. Plans must be approved prior to the issuance of the first LUP for either
commercial or residential buildings.

c. The permittee must enter into a subdivision improvement agreement for the construction of the additional northbound through lane improvements, in a form approved by the City Attorney and post a performance security deemed adequate by the Community Services Director, or designee, to cover the cost of all such improvements before recordation of the final map or constructed construct the improvements before the first certificate of occupancy.

Scenario #3
In the event that the permittee must pay a monetary contribution for the additional northbound through lane improvements such contribution must be paid per the current GTIP ordinance.

Monitoring: The City Community Services Director, or designee, must verify roadway design and approval before recordation of the final map or the issuance of any Land Use Permit for the project. The Community Services Director, or designee, must verify posting of an adequate performance security in an amount accepted by the City Community Services Director, or designee, for these improvements prior to before the first occupancy clearance recordation of the final map and verify completion of construction of the improvement per the approved plans prior to issuance of the first occupancy clearance.

In the event that the permittee pays a monetary contribution for the additional northbound through lane improvements under scenarios 1 or 3, the Community Services Director, or designee, must verify such contribution was consistent with agreement or applicable GTIP fees.

Impact TR 3: The project would increase traffic volumes at local intersections. The associated impact on the level of service at the US 101 SB Ramps/Storke Road intersection during the AM peak hour would be significant.

TR 3-1: The permittee shall applicant must modify the northbound right-turn lane channelization island for vehicles turning right from Storke Road onto the US 101 southbound on-ramp. The improvements are to be designed and constructed to achieve a LOS A/C operating condition during the AM peak hour and shall include, but not be limited to, the following:

- Installation of a physical barrier for vehicles entering the lane dedicated for the northbound Storke Road to southbound US 101 movement;
- Upgrades to the traffic signal to provide a constant green arrow for northbound right-turn traffic, thereby creating a free right-turn lane;
- Evaluation of the need for, and if needed, the installation of, ramp meters;
- Other improvements required to insure safe bicycle passage through the modified intersection; and
- The permittee must enter into a subdivision improvement agreement for the construction of the additional northbound through lane improvements, in a form approved by the City Attorney and post a performance security security.

See Figure 4.13-19 Conceptual Storke Road Widening & US 101 SB Ramp/Storke Road Mitigation.
A significant impact to this intersection would not occur until the entire commercial component is operational, or, when considered discretely, up to 190 of the 279 residential units are occupied. Mitigation improvements outlined in this mitigation measure are required when the project reaches a total of 84 AM peak hour trips for any combination of the commercial or residential uses.

Impact TR 4: The project would add to traffic volumes at CMP intersections. The increase at the US 101 SB Ramps/Storke Road intersection during the AM peak hour would result in a significant impact under CMP criteria.

Mitigation Measure TR 3-1 above would also mitigate the project’s impacts under CMP criteria.

Impact TR 5: The project would add to traffic volumes along US 101. The project’s increase would not exceed CMP criteria.

This impact is determined to be less than significant and no mitigation measures are required.

Impact TR 6: Project-generated traffic volumes would result in significant cumulative impacts on the following roadway segments:

- Storke Road north of Hollister Avenue (See Mitigation Measure TR 6-1, below)
- Storke Road south of Whittier Drive (See Mitigation Measure TR 6-2, below)
Mitigation Measure TR 2-1 would also mitigate the project’s cumulative impact on Storke Road north of Hollister Avenue.

The permittee must shall construct or monetarily contribute to the construction of the widening of Storke Road south of Whittier Drive to provide two travel lanes in each direction, creating a four-lane roadway. To improve this section to a four-lane roadway, improvements to Storke Road north of Whittier Drive (to a few hundred feet south of Phelps Road) are also required. The widened Storke Road south of Whittier Drive must is to be designed to increase the Acceptable Capacity of Storke Road from Whittier Drive to El Colegio Road to 34,000 ADT. Should another project implement these traffic improvements prior to issuance of the first occupancy clearance at the project, the permittee will be required to pay a fair-share contribution of the cost incurred to implement this improvement. The widening improvements or contribution to these improvements shall must be implemented under one of the following scenarios:

1) If another project has implemented these improvements, the permittee must shall pay the project’s fair-share contribution shall be provided to the developer of the improvements in accordance with any City reimbursement agreement for these improvements in effect at that time.

2) If another project has not implemented these improvements before the timing requirements for implementation of this mitigation measure, the project developer would permittee must shall construct be required to implement the widening improvements. Under this scenario, the City of Goleta and Santa Barbara County may shall may establish a reimbursement agreement that would require future projects contributing to traffic impacts necessitating these improvements to pay the project developer their pro-rata share of the improvement costs.

3) If GTIP improvements are identified for this location prior to project approval, the permittee must shall would be required to pay GTIP contribute fees to the GTIP fund.

4) The permittee must execute a Traffic Agreement with the City as approved by the City Attorney's Office requiring the permittee to pay the project’s fair-share contribution for the widening improvements.

Plan Requirements and Timing: The design of the roadway improvement described above shall be reviewed and approved by the City Community Services, in consultation with Santa Barbara County Public Works staff, prior to recordation of the final map. Prior to issuance of first occupancy clearance, permittee shall post a performance security deemed adequate by the City and construct said improvements in accordance with approved plans.

Scenario #1
In the event that the permittee pays a monetary contribution for the widening of Storke Road south of Whittier Drive, such contribution must be paid pursuant to any applicable reimbursement agreement and before the recordation of the Final Map.
Scenario #2
In the event that the permittee constructs the widening of Storke Road south of Whittier Drive improvements:

a. The design plans of the widening of Storke Road south of Whittier Drive improvements described above must be submitted to the Community Services Director, or designee for review before recordation of the final map.

b. Plans must be approved prior to the issuance of the first LUP for either commercial or residential buildings.

c. The permittee must enter into a subdivision improvement agreement for the construction of the widening of Storke Road south of Whittier Drive improvements, in a form approved by the City Attorney and post a performance security deemed adequate by the Community Services Director, or designee, to cover the cost of all such improvements before recordation of the final map or constructed construct the improvements before the first certificate of occupancy for either commercial or residential buildings.

Scenario #3
In the event that the permittee must pay a monetary contribution for the widening of Storke Road south of Whittier Drive improvements such contribution must be paid per the current GTIP ordinance.

Scenario #4
In the event that the permittee enters into a Traffic Agreement for the widening of Storke Road south of Whittier Drive improvements must be paid before the recordation of the final map.

Monitoring: In the event that the permittee must construct the widening of Storke Road south of Whittier Drive improvements under scenario #2 above, the Community Services Director, or designee, and Santa Barbara County Public Works Director, or designee, must verify approval of roadway design prior to before recordation of the final map and before the issuance of a Land Use Permit. Moreover, the Community Services Director, or designee, and Santa Barbara County Public Works Director, or designee, must either: 1) verify construction of the improvements per the approved plans before the issuance of any certificate of occupancy for the project, or 2) execute a subdivision improvement agreement and verify Prior to issuance of first occupancy clearance, Community Services Department staff shall verify the posting of an adequate performance security in an amount accepted by the Community Services Director, or designee, and Santa Barbara County Public Works Director, or designee, for these improvement before the recordation of the final map and completion of construction in accordance with approved plans.

In the event that the permittee must pay a monetary contribution for the widening of Storke Road south of Whittier Drive improvements under scenarios 1 or 3, the Community Services Director, or designee, must verify such payment was consistent with the agreement or applicable GTIP fees.
In the event that the permittee enters into a Traffic Agreement for the widening of Storke Road south of Whittier Drive improvements under scenario 4, the Community Services Director, or designee, must verify payments were collected before the recordation of the final map and any additional terms identified in the Traffic Agreement are met.

Impact TR 7: Project-generated traffic volumes would result in significant cumulative traffic impacts at the following intersections:

- US 101 SB Ramps/Storke Road (See Mitigation Measure TR 7-1, below)
- Hollister Avenue/Storke Road (See Mitigation Measure TR 7-2 below)

TR 7-1: Mitigation Measure TR 3-1 would mitigate the project’s cumulative impact to the US 101 SB Ramps/Storke Road intersection.

TR 7-2: The Capital Improvements Program includes an improvement project to add a free southbound right-turn lane on Hollister Avenue at the Hollister Avenue/Storke Road intersection. This improvement along with restriping the intersection to accommodate the additional northbound through lane would mitigate the project specific cumulative impacts.

The project would be subject by ordinance to payment of Development Impact Fees (DIFs) adopted for the purpose of requiring projects to pay a fair share of transportation improvements associated with cumulative development. Fees would be paid before recordation of the Final map. As a result of payment of these fees, the project’s contribution to cumulative impacts at the Hollister Avenue/Storke Road intersection would be less than cumulatively considerable and is considered less than significant.

The GTIP was established to collect funds to implement future identified improvements within the City. The Hollister Avenue/Storke Road intersection is included in the GTIP although a specific method for improving this intersection has not been identified. The traffic study identified two feasible options that can be implemented to improve this intersection\(^6\). The improvements are to be designed to achieve a LOS D operating condition during the PM peak hour. The permittee will be required to contribute fees to the GTIP fund.

Plan Requirements and Timing: The payment of the City’s traffic impact fee shall occur prior to recordation of the Final Map.

Monitoring: The Community Services Director, or designee, must City staff shall verify that payment of this fee has been made prior to recordation of the Final Map.

\(^6\) See Figure 4.13-20 Conceptual Storke Road/Hollister Avenue Mitigation Options.
Cumulative Congestion Management Plan Impacts

Impact TR 8: Under cumulative conditions, the project would exceed CMP thresholds at the following intersections:

- US 101 SB Ramps/Storke Road intersection
- Hollister Avenue/Storke Road intersection
- Hollister Avenue/Los Carneros Road intersection
- US 101 SB Ramp/Los Carneros Road intersection

Mitigation Measures TR 7-1 and TR 7-2 identified above for cumulative impacts at the US 101 SB Ramps/Storke Road and Hollister Avenue/Storke Road intersections would mitigate the project’s CMP impacts at these locations. The Hollister Avenue/Los Carneros Road and US 101 SB Ramp/Los Carneros Road intersections are also included in the GTIP. Therefore Mitigation Measure TR 7-2 (which requires contribution of fees to the GTIP fund) would also mitigate the project’s cumulative CMP impacts at these intersections.

4.13.6 Residual Impacts

With implementation of the mitigation measures identified above, the project’s traffic impacts would be reduced to a less than significant level (Class II). (See the Traffic and Circulation Study provided in Appendix H for levels of service following implementation of these measures.)
Project-Specific Improvement:
Construct physical barrier to allow dedicated right-turn for vehicles entering U.S. 101 southbound. Remove stop bar and modify signal to provide constant green right-turn arrow.

City of Goleta Programmed Improvement:
Add northbound through lane between Hollister Avenue and U.S. 101 Southbound On-Ramp.

Source: Associated Transportation Engineers, February 28, 2011.
Storke Road / Hollister Avenue Mitigation Options

OPTION #1

OPTION #2

Source: Associated Transportation Engineers, February 28, 2011.