Heritage Ridge Residential Project

Draft
Environmental Impact Report
SCH #2015041014

Volume I: Report

Prepared by:

City of Goleta
130 Cremona Drive, Suite B
Goleta, CA 93117
(805) 961-7549

Prepared with the assistance of:

Rincon Consultants, Inc.
1530 Monterey Street, Suite D
San Luis Obispo, California 93401

June 2016
This report is printed on 50% recycled paper with 30% post-consumer content.
TABLE OF CONTENTS

0.0 Executive Summary ... 1

1.0 Introduction .. 37
 1.1 Environmental Impact Report Background .. 37
 1.2 Purpose and Legal Authority ... 38
 1.3 EIR Scope and Content .. 38
 1.4 Lead, Responsible and Trustee Agencies .. 39
 1.5 Environmental Review Process .. 39

2.0 Project Description .. 41
 2.1 Project Applicant .. 41
 2.2 Project Site ... 41
 2.3 Site Characteristics and Uses .. 46
 2.4 Project Objectives .. 48
 2.5 Project .. 48
 2.6 Construction ... 62
 2.7 Required Approvals ... 62

3.0 Related Projects .. 63

4.0 Environmental Impact Analysis ... 69
 4.1 Aesthetics/Visual Resources .. 71
 4.2 Air Quality ... 93
 4.3 Biological Resources .. 111
 4.4 Cultural Resources .. 149
 4.5 Geology and Soils .. 165
 4.6 Greenhouse Gas Emissions .. 175
 4.7 Hazardous Materials/Risk of Upset .. 193
 4.8 Hydrology and Water Quality ... 213
 4.9 Land Use and Planning .. 229
 4.10 Noise .. 269
 4.11 Public Services ... 291
 4.12 Recreation .. 299
 4.13 Transportation/Circulation .. 307
 4.14 Utilities and Service Systems ... 333
 4.15 Effects Found Not to Be Significant .. 349

5.0 Other CEQA Discussions ... 353
 5.1 Growth Inducing Impacts ... 353
 5.2 Significant, Irreversible Changes ... 354
 5.3 Energy Effects ... 355

6.0 Alternatives ... 357
 6.1 Alternative 1: No Project/No Development .. 357
6.2 Alternative 2: Avoid CA-SBA-56 ... 358
6.3 Alternative 3: Increased Railway/Freeway Buffer and Higher Sound Wall 365
6.4 Alternative 4: Reduced Building Height .. 373
6.5 Alternative 5: Mixed Use Development ... 378
6.6 Alternative Sites .. 385
6.7 Environmentally Superior Alternative ... 385

7.0 References and EIR Preparers ... 389
7.1 References .. 389
7.2 EIR Preparers ... 398

List of Figures

Figure 2-1 Regional Location .. 42
Figure 2-2 Site Location ... 43
Figure 2-3 Existing General Plan Land Use Designation in Project Vicinity 44
Figure 2-4 Existing Zoning in Project Vicinity ... 45
Figure 2-5 Proposed Site Plan .. 51
Figure 2-6 Grading and Drainage Plan ... 55
Figure 2-7 Landscaping Plan ... 59
Figure 3-1 Cumulative Projects in the Goleta Area ... 67
Figure 4.1-1 Locations and Directions of Aesthetics Photos .. 73
Figure 4.1-2a Existing Site Conditions .. 74
Figure 4.1-2b Existing Site Conditions .. 75
Figure 4.1-3 Scenic and Visual Resources in the City of Goleta 76
Figure 4.1-4 Locations and Directions of Photo Simulations ... 80
Figure 4.1-5 Existing and Simulated Views from S. Los Carneros Road Looking North
 Toward Project Site ... 81
Figure 4.1-6 Existing and Simulated Views from S. Los Carneros Road Overpass
 Looking Southeast Toward Project Site .. 82
Figure 4.1-7 Existing and Simulated Views from S. Los Carneros Road Looking
 Southeast Toward Project Site .. 83
Figure 4.3-1 Habitat Map ... 114
Figure 4.3-2 Surrounding ESHA Map ... 118
Figure 4.3-3 Special-Status Species and Environmentally Sensitive Habitat Areas 119
Figure 4.8-1 Major Hydrological Features in the City of Goleta 215
Figure 4.8-2 FEMA Flood Map of the Project Location .. 216
Figure 4.12-1 Park and Recreation Plan Map ... 300
Figure 4.13-1 Intersection Lane Geometry and Traffic Controls 308
Figure 4.13-2 Existing Traffic Volumes ... 310
Figure 4.13-3 Project Trip Distribution and Assignment ... 316
Figure 4.13-4 Existing+Project Traffic Volumes .. 318
Figure 4.13-5 Cumulative Traffic Volumes .. 329
Figure 4.13-6 Cumulative+Project Traffic Volumes .. 330
Figure 6-1 Alternative 2: Avoid CA-SBA-56 ... 359
Figure 6-2 Alternative 3: Increased Railway/Freeway Buffer & Higher Sound Wall 367
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table ES-1</td>
<td>Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts ... 5</td>
</tr>
<tr>
<td>Table 1-1</td>
<td>Scoping Issues Received ... 37</td>
</tr>
<tr>
<td>Table 2-1</td>
<td>Existing Site and Surrounding Uses ... 46</td>
</tr>
<tr>
<td>Table 2-2</td>
<td>Summary of Project Residential Building and Unit Count ... 49</td>
</tr>
<tr>
<td>Table 2-3</td>
<td>Project Summary Totals .. 53</td>
</tr>
<tr>
<td>Table 2-4</td>
<td>Utility Service Providers .. 61</td>
</tr>
<tr>
<td>Table 3-1</td>
<td>Cumulative Projects in the Goleta Area ... 63</td>
</tr>
<tr>
<td>Table 3-2</td>
<td>Total Cumulative Development .. 66</td>
</tr>
<tr>
<td>Table 4.2-1</td>
<td>Current Federal and State Ambient Air Quality Standards ... 94</td>
</tr>
<tr>
<td>Table 4.2-2</td>
<td>Ambient Air Quality Data .. 96</td>
</tr>
<tr>
<td>Table 4.2-3</td>
<td>SBCAG Housing Projections for Goleta ... 101</td>
</tr>
<tr>
<td>Table 4.2-4</td>
<td>Estimated Operational Emissions of the Project ... 103</td>
</tr>
<tr>
<td>Table 4.2-5</td>
<td>Estimated Pre-Construction Air Pollutant Emissions, Scenario 1: 9-Cubic Yard Trucks .. 103</td>
</tr>
<tr>
<td>Table 4.2-6</td>
<td>Estimated Construction Air Pollutant Emissions ... 105</td>
</tr>
<tr>
<td>Table 4.2-7</td>
<td>Estimated Annual Emissions from Combined Project Construction and Pre-Construction Export .. 105</td>
</tr>
<tr>
<td>Table 4.2-8</td>
<td>Potential Health Risks at the MEIR Receptors ... 107</td>
</tr>
<tr>
<td>Table 4.2-9</td>
<td>Mitigated Potential Carcinogenic Health Risks Within the Project Site .. 109</td>
</tr>
<tr>
<td>Table 4.3-1</td>
<td>Project Site Habitats .. 116</td>
</tr>
<tr>
<td>Table 4.6-1</td>
<td>SLOPCD GHG Significance Determination Criteria .. 185</td>
</tr>
<tr>
<td>Table 4.6-2</td>
<td>Estimated Construction Emissions of Greenhouse Gases .. 188</td>
</tr>
<tr>
<td>Table 4.6-3</td>
<td>Combined Annual Emissions of Greenhouse Gases (2018) ... 190</td>
</tr>
<tr>
<td>Table 4.6-4</td>
<td>Project Consistency with Applicable Climate Action Plan Measures ... 191</td>
</tr>
<tr>
<td>Table 4.7-1</td>
<td>Environmental Database Summary ... 195</td>
</tr>
<tr>
<td>Table 4.7-2</td>
<td>Businesses that Use Hazardous Materials within 1/4-Mile of the Project Site .. 204</td>
</tr>
<tr>
<td>Table 4.7-3</td>
<td>Hazardous Materials Truck Shipment Characteristics by Hazard Class ... 207</td>
</tr>
<tr>
<td>Table 4.8-1</td>
<td>Pre- and Post-Development Runoff Rates for the Retention Basin .. 214</td>
</tr>
<tr>
<td>Table 4.9-1</td>
<td>Consistency with Policies in the Goleta General Plan .. 233</td>
</tr>
<tr>
<td>Table 4.9-2</td>
<td>Consistency with Zoning Ordinance Requirements .. 265</td>
</tr>
<tr>
<td>Table 4.10-1</td>
<td>Noise Measurement Results ... 271</td>
</tr>
<tr>
<td>Table 4.10-2</td>
<td>Human Response to Different Levels of Groundborne Vibration .. 272</td>
</tr>
<tr>
<td>Table 4.10-3</td>
<td>Goleta Noise and Land Use Compatibility Criteria ... 272</td>
</tr>
<tr>
<td>Table 4.10-4</td>
<td>Significance of Changes in Operational Roadway Noise Exposure .. 276</td>
</tr>
<tr>
<td>Table 4.10-5</td>
<td>Typical Noise Levels at Construction Sites .. 277</td>
</tr>
<tr>
<td>Table 4.10-6</td>
<td>Vibration Levels for Construction Equipment .. 280</td>
</tr>
<tr>
<td>Table 4.10-7</td>
<td>Calculated Exterior Noise Associated with Traffic on Surrounding Roadways During Peak Hour ... 282</td>
</tr>
<tr>
<td>Table 4.10-8</td>
<td>Parking Lot Noise Sources at 50 Feet .. 283</td>
</tr>
<tr>
<td>Table 4.10-9</td>
<td>Highest Calculated Exterior Sound Levels (Cumulative Plus Project) with Eight-Foot High Wall at Northern and Western Project Boundaries ... 284</td>
</tr>
<tr>
<td>Table 4.10-10</td>
<td>Highest Calculated Exterior and Interior Sound Levels (Cumulative Plus Project) with Eight-Foot High Wall at Northern and Western Project Boundaries ... 285</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Table 4.10-11</td>
<td>Highest Calculated Exterior Sound Levels (Cumulative Plus Project) with 7' Barriers at Balconies facing Northern Project Boundaries</td>
</tr>
<tr>
<td>Table 4.10-12</td>
<td>Vibration Levels for Rail Transit</td>
</tr>
<tr>
<td>Table 4.11-1</td>
<td>Current School Enrollment and Capacity</td>
</tr>
<tr>
<td>Table 4.11-2</td>
<td>Project Induced Student Generation at GUSD and SBUSD Schools</td>
</tr>
<tr>
<td>Table 4.12-1</td>
<td>Planned Active Parks</td>
</tr>
<tr>
<td>Table 4.13-1</td>
<td>Existing Roadway Operations</td>
</tr>
<tr>
<td>Table 4.13-2</td>
<td>Level of Service Criteria for Intersections</td>
</tr>
<tr>
<td>Table 4.13-3</td>
<td>Existing Intersection Levels of Service</td>
</tr>
<tr>
<td>Table 4.13-4</td>
<td>Significant Changes in Level of Service</td>
</tr>
<tr>
<td>Table 4.13-5</td>
<td>Project Trip Generation</td>
</tr>
<tr>
<td>Table 4.13-6</td>
<td>Project Trip Distribution</td>
</tr>
<tr>
<td>Table 4.13-7</td>
<td>Existing + Project Roadway Volumes</td>
</tr>
<tr>
<td>Table 4.13-8</td>
<td>Existing + Project Intersection Operations – A.M. Peak Hour</td>
</tr>
<tr>
<td>Table 4.13-9</td>
<td>Existing + Project Intersection Operations – P.M. Peak Hour</td>
</tr>
<tr>
<td>Table 4.13-10</td>
<td>Existing + Project Levels of Service – Los Carneros Road/Calle Koral</td>
</tr>
<tr>
<td>Table 4.13-11</td>
<td>Pre-Construction Soil Removal Phase Trip Generation</td>
</tr>
<tr>
<td>Table 4.13-12</td>
<td>Summary of Volume to Capacity Ratios and Levels of Service, A.M. and P.M. Peak Hours Pre-Construction Soil Removal Using 9 CY Haul Trucks, Existing Traffic</td>
</tr>
<tr>
<td>Table 4.13-13</td>
<td>Summary of Volume to Capacity Ratios and Levels of Service, A.M. and P.M. Peak Hours Pre-Construction Soil Removal Using 20 CY Haul Trucks, Cumulative Traffic</td>
</tr>
<tr>
<td>Table 4.13-14</td>
<td>Summary of Volume to Capacity Ratios and Levels of Service, A.M. and P.M. Peak Hours Pre-Construction Soil Removal Using 20 CY Haul Trucks, Cumulative Traffic</td>
</tr>
<tr>
<td>Table 4.13-15</td>
<td>Summary of Volume to Capacity Ratios and Levels of Service, A.M. and P.M. Peak Hours Analysis of Los Carneros Road/Calle Koral Intersection Including West Leg Pre-Construction Soil Removal</td>
</tr>
<tr>
<td>Table 4.13-16</td>
<td>Cumulative + Project Roadway Volumes</td>
</tr>
<tr>
<td>Table 4.13-17</td>
<td>Cumulative + Project A.M. Peak Hour Levels of Service</td>
</tr>
<tr>
<td>Table 4.13-18</td>
<td>Cumulative + Project P.M. Peak Hour Levels of Service</td>
</tr>
<tr>
<td>Table 4.14-1</td>
<td>Projected 2015-2016 Water Supply and Demand for the Goleta Water District</td>
</tr>
<tr>
<td>Table 4.14-2</td>
<td>Project-Generated Water Demand</td>
</tr>
<tr>
<td>Table 4.14-3</td>
<td>Existing + Project Wastewater Generation and Allocated Capacity</td>
</tr>
<tr>
<td>Table 4.14-4</td>
<td>Estimated Water Demand from Cumulative Projects in the City of Goleta</td>
</tr>
<tr>
<td>Table 6-1</td>
<td>Comparison of Alternative 5 and the Project</td>
</tr>
<tr>
<td>Table 6-2</td>
<td>Comparison of Alternative 5 and the Project Vehicle Trip Generation</td>
</tr>
<tr>
<td>Table 6-3</td>
<td>Comparison of Alternative 5 and the Project Water Demand, Wastewater</td>
</tr>
<tr>
<td>Table 6-4</td>
<td>Impact Comparison of Alternatives</td>
</tr>
</tbody>
</table>
Appendices

Appendix A Notice of Preparation & Responses
Appendix B Air Quality/Greenhouse Gas Emissions Studies & Modeling
Appendix C Health Risk Assessment
Appendix D Biological Resources Assessment
Appendix E Geotechnical Engineering Report
Appendix F Phase I Environmental Assessment
Appendix G Hydraulic Report and Stormwater Control Plan
Appendix H Environmental Noise Study Report and Supplementary Noise Modeling
Appendix I Traffic Study & Construction Trip Analysis
Appendix J Judgement Upon Arbitration Award and Annual Demand Water Report
Appendix K Alternatives Analysis
Appendix L Goleta Water District Preliminary Conditions Letter
EXECUTIVE SUMMARY

This section summarizes the characteristics of the Project and the Project alternatives, the environmental impacts associated with the Project and alternatives, and required and recommended mitigation measures.

PROJECT SYNOPSIS

Lead Agency

City of Goleta
Planning & Environmental Review
130 Cremona Drive, Suite B
Goleta, California 93117

Project Applicant

Michael Towbes
The Towbes Group
21 E. Victoria Street, Suite 200
Santa Barbara, CA 93101

Project Description

A detailed description of the applicant’s proposal is included in Section 2.0, Project Description. The key characteristics of the Project are summarized below.

Project Characteristics

The Heritage Ridge Residential Project (the “Project”) involves proposal to develop 360 housing units and a two-acre neighborhood park on a 17.36 gross acre site within the Inland Area of the City of Goleta (“City”).

The western portion of the Project (Area A) would be senior housing comprised of two residential buildings with a total of 132 units and one recreation building with a pool, spa and gym, plus outdoor recreation and barbecue facilities. The eastern portion of the Project (Area B) would be workforce housing comprised of six residential buildings with a total of 228 units (Buildings 3 through 8) and one recreation building with pool, spa, gym, children’s play equipment and barbecue facilities. The northern portion of Area B (Buildings 3, 4 and 5) would include 80 workforce housing units. Of the 80 units, 56 would have one bedroom and 24 would have three bedrooms. The eastern portion of Area B would be developed with three three-story buildings (Buildings 6, 7, and 8) that would include 148 workforce housing units. Buildings 6, 7, and 8 would include 93 one-bedroom units and 55 two-bedroom units. A total of 228 parking spaces would be provided for Buildings 6, 7, and 8 in Area B. A pool, recreation area, and leasing office would be located to the south of Building 8.

Without a density bonus, the maximum number of units allowed on the site based on General Plan density for this site (up to 25 units per acre) is 356 units. However, as Area A is proposed as a housing development for seniors 55 years and older or 62 years and older, this portion of the site is eligible for
density bonus pursuant to California Civil Code section 51.3(a). These provisions allow for up to a 20% density bonus for senior units or 26 additional senior housing units at this site. The senior housing component would have 132 units, four of which would be senior density bonus units as permitted by Government Code sections 65915(b)(1)(C) and 65915(f)(3). The applicant is proposing a 3% density bonus associated with the senior units. The project site would have a total density of 25.4 units per acre.

Access to the Project site would be provided via three driveway connections providing ingress and egress to Camino Vista.

Grading/Walls

The Project would include mass grading to prepare the site to support the residential development. Grading operations would include the construction of individual building pads for each structure, over-excavation as needed for roadways and driveways, and trenching and backfilling for installation of underground utilities. Preliminary earthwork quantities are estimated at 178,000 cubic yards of cut and 15,500 cubic yards of fill. Approximately 115,000 cubic yards of export required before construction of the Project.

Proposed development within the sensitive portion of the identified on-site archaeological site (CA-SBA-56 site plus a 50-foot buffer) would use protective fill soils to cap the existing cultural resource. To prevent disturbance of the soil at this location, existing vegetation within the boundary of the archaeological site would be removed by hand, remaining root balls and masses would be sprayed with a topical herbicide to ensure no further growth, and the resulting dead masses of vegetation would be left in place. A geotextile tensar fabric (Tensar BX1200 or equivalent) would be placed on top of the existing ground surface to reduce the force of compaction from overlying fill soils and redistribute the compaction load force over a wider area, thereby minimizing the disturbance of friable (brittle) cultural remains such as shellfish and animal bone. No remedial grading, subgrade preparation or scarification would occur prior to placement of the geotextile fabric. Then the archaeological site and a 50-foot buffer would be covered in a minimum of two feet of protective fill soil to prevent direct impacts to archaeological resources. Fill soils would be spread from the outside in no greater than eight-inch lifts with rubber-tired equipment, such that equipment only operates on top of the fill soils.

The Project would include a masonry wall of approximately eight feet in height along the northern and western project boundaries.

Landscaping

The landscape plan is comprised primarily of native or climate appropriate plants with some small turf areas for recreation purposes. Plant species in the plant palette include but are not limited to coast live oak, California sycamore, fruitless olive, dwarf bottle brush, and dwarf coyote bush. Trees, shrubs and other vegetation would be planted throughout the development as well as low-water-use, Mediterranean and wildlife habitat plant species. Landscape treatments would be provided between buildings, curb bump-outs throughout parking areas, along common walkway areas, within the neighborhood park, recreation areas, and around the perimeter of the two development sites. Within the park, a turf area is proposed on the western side adjacent to picnic tables, and a meadow with native plantings is proposed in the center of the Project site. A portion of the park area with sensitive archeological resources would be fenced. Based on the Project site plan, the total landscaped area for the Project is approximately 1.6 acres, excluding the 2.0-acre park area, or about 10% of the 17.36-gross-acre Project site.
Stormwater and Drainage

The Preliminary Grading and Drainage Plans (dated September 2014) for the Project show permeable pavement and bioretention area locations. The Project site includes three primary bioretention basins, as well as other smaller bioretention areas and permeable pavement throughout the Project site. The Project would be required to incorporate best management practices (BMPs) to reduce stormwater runoff from the site, consistent with the County of Santa Barbara’s Storm Water Technical Guide, which the City adopted in March 2014 (County of Santa Barbara, 2014).

Utilities

Water would be provided by the Goleta Water District. Sewer would be provided by the Goleta Sanitary District. Utility easements would be recorded for utility services. A portion of the Goleta West Sanitary Sewer line which is now in an easement at the eastern property boundary would be relocated into the proposed driveway at the west side of the site. All electrical distribution lines, fiber optic lines, cable television lines, phone lines, gas lines, water lines, and sewer lines would be undergrounded. Other components of the site’s utility infrastructure, such as backflow preventers, transformers, water meter assemblies, gas meters, power meters, cable TV pedestals, etc. would be installed above ground. Mechanical equipment would be ground-mounted on concrete pads adjacent to the residential structures.

Water use restrictions and a temporary halt on new water services are currently being instituted by the Goleta Water District; however, a Superior Court judgment [Wright v. Goleta Water Dist. (1985) 174 Cal. App.3d74] has allocated 100.9 acre-feet per year (AFY) of water to serve development on the site (refer to Section 4.14, Utilities and Service Systems, for more detail regarding water supply to the Project site). Therefore, the temporary halt on new services does not apply to the Project.

Construction

Construction activities would include site preparation, export of excess dirt, grading, building construction, paving and architectural coating phases. Construction of the proposed Project is estimated to take approximately 2.5 years. Pre-construction removal of the stockpiled soil on the project site is estimated to take up to 24-27 weeks and require between 5,750 and 12,778 round truck trips (depending on whether 20 CY or 9 CY haul trucks are used). No phasing plan is proposed at this time.

Project Objectives

The objectives of the Project are to:

1. Complete development of residential units in the Central Hollister Residential Development area on Affordable Housing Opportunity Site.
2. Construct 132 senior apartment units and 228 market rate/workforce apartment units.
3. Create an infill development of high density senior and workforce rental housing to be at lower rental rates than the adjacent Willow Springs I and Willow Springs II multifamily housing projects.
4. Fully utilize the existing public infrastructure (Camino Vista and all utilities) provided by Willow Springs and Willow Springs II.
5. Promote City planning goals by developing a high density residential project located conveniently close to a major transportation corridor and to employment and recreational areas.

6. Provide a public neighborhood park in the location shown in General Plan Figure 3-2 (Park and Recreation Plan Map).

7. Protect, and preserve on-site cultural resources.

8. Develop multifamily residential housing while maintaining visual resources.

ALTERNATIVES

As required by CEQA, the EIR examines a range of alternatives to the Project. The alternatives, described and evaluated in Section 6.0, Alternatives, include the following:

- **No Project Alternative.** This alternative assumes that the Project is not implemented and that the Project site remains in its current condition.

- **Alternative 2: Avoid CA-SBA-54.** This alternative would eliminate the portion of the proposed development that lies within the boundary of the CA-SBA-56 archaeological site and the 50-foot buffer surrounding CA-SBA-56, which includes Buildings 3, 4, 5, and 6 and on-site parking. In order to avoid impacting CA-SBA-56 and the 50-foot buffer, some or all of four proposed residential buildings in Area B (Buildings 3, 4, 5, and 6) and approximately 21 uncovered parking spaces and 9 carport parking spaces would be eliminated from the plan.

- **Alternative 3: Increase Railroad/Freeway Buffer and Higher Sound Barrier.** This alternative would reconfigure the development to provide a larger buffer between the railroad and the U.S. 101, and increase the height of the masonry wall to reduce noise impacts. In this alternative, the height of the proposed noise barrier would be increased to 12 feet and would consist of a six-foot tall masonry wall on top of a six-foot tall berm.

- **Alternative 4: Reduced Building Height.** This alternative would involve changing the five three-story buildings to two-story buildings and modifying the bedroom mix of the remaining units in order to meet the minimum density of 20 units/acre. Under this alternative, there would be 75 fewer residential units or 285 units provided (approximately a 21% decrease).

- **Alternative 5: Mixed Use Development.** This alternative would involve a mixed-use business park in place of the proposed residential development. The business park would include approximately 260,400 square feet of building area and would be two stories in height.

Alternative 4 would eliminate two of the six identified Class I impacts of the Project, which relate to scenic resources and solid waste generation. None of the alternatives would eliminate the significant and unavoidable impacts related to the identified burial site within CA-SBA-56, construction noise, or hazardous materials/ risk of upset. All other project impacts would be reduced below identified thresholds of significance through implementation of the mitigation measures described in this EIR. Although some alternatives would reduce impacts in such areas as cultural resources and noise, these reductions would be incremental in nature and adoption of an alternative rather than the Project would not be necessary to avoid significant environmental effects. Therefore, based on the reduction of impacts and ability to meet the
objectives of the Project, Alternative 4 “Reduced Building Height” is identified as the environmentally superior alternative of those described above.

SUMMARY OF IMPACTS AND MITIGATION MEASURES

Table ES-1 summarizes the identified environmental impacts for each issue area studied in the EIR, recommended mitigation measures (if any), and the level of significance after mitigation. Class I impacts are defined as significant, unavoidable adverse impacts which require a statement of overriding considerations to be issued per CEQA Guidelines § 15093 if the Project is approved. Class II impacts are significant adverse impacts that can be feasibly mitigated to less than significant levels and which require findings to be made under Section 15091 of the State CEQA Guidelines. Class III impacts are considered less than significant impacts. Class IV impacts are those for which the Project’s impact would be beneficial.

Table ES-1

Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aesthetics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact AES-1 The Project would convert an open and undeveloped property into a multi-family housing complex with two- and three-story buildings. Due to the three-story height of proposed buildings on the western portion of the Project site, the Project would significantly obstruct views of the foothills and Santa Ynez Mountains from S. Los Carneros Road at Calle Koral looking northward, which is a City-designated view corridor. Therefore, impacts to this scenic view corridor would be Class I, significant and unavoidable.</td>
<td>Given the proposed location of three-story residential buildings in the southwest portion of the Project site, mitigation is not available to reduce the obstruction of scenic views of the foothills and Santa Ynez Mountains from the vantage point on S. Los Carneros Road near Calle Koral. These buildings would unavoidably obstruct scenic views.</td>
<td>Significant and unavoidable.</td>
</tr>
<tr>
<td>Impact AES-2 The Project would not impact scenic resources identified in the City’s Visual and Historic Resources Element, including the Santa Ynez Mountains, coastal mesas, bluffs, and the Pacific Ocean. Impacts to these scenic resources would be Class III, less than significant.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
<tr>
<td>Impact AES-3 Construction of the proposed multi-family housing development would involve removal of native shrub vegetation on most of the site. However, no trees currently exist on-site and Project landscaping would include planting native trees on-site. Therefore, impacts to scenic natural landforms would be Class III, less than significant.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
<tr>
<td>Impact AES-4 The Project would permanently alter the Project site, replacing open and undeveloped land with a residential complex. The massing and architectural style of the proposed buildings would not be compatible with that of adjacent multi-family residential development, although landscaping would incrementally reduce this contrast. Impacts to</td>
<td>AES-4(a) Architectural Review. The applicant must submit revised plans to the City of Goleta Design Review Board for review before applying for building permits. Plans must address compatibility of massing, heights and consistency with neighborhood character.</td>
<td>Less than significant with mitigation.</td>
</tr>
</tbody>
</table>
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>the visual character of the site and surroundings would be Class II, significant but mitigable</td>
<td>Plan Requirements and Timing. Before applying for building permits, the applicant must apply for design approval from the Design Review Board and submit plans wherein the massing, height, and architectural style of apartment buildings are consistent with neighborhood buildings and do not detract from existing neighborhood characteristics. Pursuant to GMC § 2.08.150, the Design Review Board must determine whether the proposed buildings, structures, landscaping, and signs are appropriate and of good design in relation to other buildings, structures, landscaping and signs, on-site or in the immediately affected area. Plans also must specifically be evaluated for consistency with adopted regulations pertaining to the aesthetics of development in the Visual and Historic Resources Element of the Goleta General Plan. Monitoring. The Planning and Environmental Review Director, or designee, must conduct a final review of final plans, before the City issues grading permits. In the event that final plans are not in substantial conformance with the approved plans, the Planning and Environmental Review Director may refer the matter back to the full Design Review Board for a final determination. AES-4(b) Height Limitations. Finished floor elevations of each lot must be consistent with the finished floor elevation shown on the Preliminary Grading and Drainage Plan dated September 2014, based on the U.S. Coast and Geodetic Survey (USC&GS) Datum elevation 8.92’ or equivalent. In addition, maximum building heights must not exceed 35 feet in height, and height must be measured from the established finished floor elevation as described above. The applicant must ensure that the Project complies with the grading limitations and height limitations as established with the approved entitlement plans. Plan Requirements and Timing. At the time of grading plan review, the applicant must submit verification from a licensed surveyor/civil engineer demonstrating that the finished floor heights will be at the elevations shown on the entitlement plans.</td>
<td></td>
</tr>
</tbody>
</table>
Table ES-1

Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact AES-5 The Project would introduce on-site sources of lighting and glare to an open, undeveloped parcel that currently has none. Impacts would be Class II, significant but mitigable.</td>
<td>AES-5 Lighting Specifications. Any exterior lighting installed on the Project site must be of low intensity, low glare design, and must be hooded to direct light downward onto the Project site and prevent spill-over onto adjacent parcels and must otherwise meet dark night sky requirements. Exterior lighting fixtures must be kept to the minimum number and intensity needed to ensure public safety. These lights must be dimmed after 11 p.m. to the maximum extent practical without compromising public safety as determined by the Planning and Environmental Review Director or designee. Upward directed exterior lighting is prohibited. Lighting fixtures must be appropriate for the architectural style of the structure and surrounding area. The final lighting plan must be amended to include identification of all types, sizes, and intensities of wall-mounted building lights and landscape accent lighting, and a photometric map must be provided. “Moonlighting” type fixtures that illuminate entire tree canopies should also be avoided.</td>
<td>Less than significant with mitigation.</td>
</tr>
</tbody>
</table>

Plan Requirements and Timing: The locations of all exterior lighting fixtures, complete cut-sheets of all exterior lighting fixtures, and a photometric plan prepared by a registered professional engineer showing the extent of all light and glare emitted by all exterior lighting fixtures must be reviewed and approved by Design Review Board before the City issues a building permit for construction.

Monitoring: Before the City issues a certificate of occupancy, the Planning and Environmental Review Director, or designee, must inspect exterior lighting features to ensure that they have been installed consistent with approved plans.
Table ES-1
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact AQ-1 The Project would be consistent with the SBCAPCD 2013 Clean Air Plan (CAP) because it would not generate population in excess of that used in the CAP to forecast population-related emissions. This impact would be Class III, less than significant.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
<tr>
<td>Impact AQ-2 The Project would result in operational air pollutant emissions from area sources, natural gas use, and increased vehicular traffic. However, the increase in emissions would not exceed thresholds established by SBCAPCD. This impact would be Class III, less than significant.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
<tr>
<td>Impact AQ-3 Project construction would generate temporary air pollutant emissions. Such emissions may result in temporary adverse impacts to local air quality, but are below SBCAPCD guideline thresholds for construction emissions. Additionally, standard dust and emissions control measures are required by the SBCAPCD. This impact would be Class III, less than significant.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
</tbody>
</table>
| **Impact AQ-4** New sensitive receptors on the Project site would be exposed to hazardous air pollutants at levels that may cause health risks. The proposed residences closest to U.S. 101 and the Union Pacific Railroad would be exposed to hazardous air pollutants that exceed significance thresholds. This impact would be Class II, significant but mitigable. | **AQ-4 Indoor Air Pollution.** The mitigation actions listed below apply to all new residential units on the Project site:
Forced air ventilation with filter screens on outside air intake ducts must be provided for all residential units proposed on the site. The filter screens must have a minimum MERV 13 rating, capable of removing at least 90% of the particulate matter including fine particulate matter (PM<2.5 micron).
For individual residential units with separate HVAC systems, a brochure notifying the future residents of the need for maintaining the filter screens must be prepared and provided at the time of ownership exchange. In addition, a notice of the diesel particulates risk hazard and the need for screen maintenance must be recorded in the property title and included with lease agreements.
Windows and doors must be fully weatherproofed with caulking and weather-stripping that is rated to last at least 20 years. | Less than significant with mitigation. |

City of Goleta
Table ES-1
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>into the Project and shown on the plans submitted to the City for zoning clearance. The brochure and the specifications for the filter screens must also be submitted to the Planning and Environmental Review Director or designee for review before the City provides zoning clearance for the project.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring: The Planning and Environmental Review Director or designee must review the hazard avoidance measures and confirm acceptable wording in the brochure and the suitability of the proposed screens before the City provides zoning clearance. City building inspectors must check for installation of the filter screens and adequate weather-proofing in the appropriate units before the City issues certificates of occupancy.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Biological Resources

Impact BIO-1 Biological surveys of the project site identified a lack of special status plant species or suitable habitat for special status wildlife species. However, the project site contains habitat that could support nesting and/or foraging birds protected under state and federal law. Impacts on sensitive species are Class II, significant but mitigable.

BIO-1 Nesting Birds and Raptors. To avoid construction impacts to nesting birds and raptors, vegetation removal and initial ground disturbance must occur outside the bird and raptor breeding season, which is typically February 1 through September 1 (January 1 through September 1 for some raptors), but can vary based on local and annual climatic conditions. If construction must begin within the breeding season, then not more than two weeks before ground disturbance and/or vegetation removal commences, a bird and raptor pre-construction survey must be conducted by a City-approved biologist within the disturbance footprint plus a 300-foot buffer, as feasible. If the Project is phased, a subsequent pre-construction nesting bird and raptor survey is required before each phase of construction within the Project site. If no raptor or other bird nests are observed no further mitigation is required. Pre-construction nesting bird and raptor surveys must be conducted during the time of day when bird species are active and be of sufficient duration to reliably conclude presence/absence of nesting birds and raptors within the 300-foot buffer. A report of the nesting bird and raptor survey results, if applicable, must be submitted to the Planning and Environmental Review Director, or designee, for review and approval before the City issues grading permits.

Less than significant with mitigation.
Table ES-1
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>If active nest of species protected by CFG Code 3503 or the MBTA Migratory Bird Treaty Act protected bird nests are found within 300 feet of the Project site, their locations must be flagged and then mapped onto an aerial photograph of the Project site at a scale no less than 1”=200’ and/or recorded with the use of a GPS unit. If active raptor nests are detected the map will include topographic lines, parcel boundaries, adjacent roads, known historical nests for protected nesting species, and known roosting or foraging areas, as required by Conservation Element Policy 8.3 of the Goleta Community Plan / Coastal Land Use Plan. If feasible, the buffer must be 300 feet in compliance with Conservation Element Policy CE 8.4 of the Goleta General Plan/Coastal Land Use Plan. If the 300-foot buffer is infeasible, the City approved biologist may reduce the buffer distance as appropriate, dependent upon the species and the proposed work activities. If any active non-raptor bird nests are found, a suitable buffer area (varying from 25-300 feet), depending on the species, must be established by the City approved biologist. No ground disturbance can occur within the buffer until the City-approved biologist confirms that the breeding/nesting is completed and all the young have fledged. Alternately, a City approved biologist must monitor the active nest full-time during construction activities within the buffer to ensure Project activities are not indirectly impacting protected nesting birds and raptors.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plan Requirements and Timing: Before the City issues a grading or building permit(s), the Planning and Environmental Review Director, or designee, must verify that construction and grading is occurring outside the nesting season, or that nesting bird and raptor surveys have been conducted, and buffer requirements specified above are in place (if applicable). This measure, and any buffer requirements, must be incorporated into the grading plans for the Project.

Monitoring: The Planning and Environmental Review Director, or designee, must verify compliance before the City issues any grading or building permit(s) and conduct periodic site inspections to ensure...
Table ES-1
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact BIO-2 No riparian habitat or sensitive community is present on-site; therefore, no direct impact to will occur. Indirect Impacts to off-site sensitive community from the introduction of invasive species would be Class II, significant but mitigable.</td>
<td>BIO-2 Invasive Species Seeding and Landscaping. Nonnative, invasive plant species cannot be included in any erosion control seed mixes and/or landscaping plans associated with the Project. The California Invasive Plant Inventory Database contains a list of nonnative, invasive plants (California Invasive Plant Council [Updated 2011] or its successor). Plan Requirements and Timing: Before the City issues a Building Permit, the applicant must submit a final landscape plan for review and approval by the Planning and Environmental Review Director, or designee. Monitoring: The Planning and Environmental Review Director, or designee, must verify compliance before the City issues any grading or building permit(s). Before the City issues a certificate of occupancy, the Planning and Environmental Review Director, or designee, must inspect landscape plantings features to ensure that they have been installed consistent with approved plans.</td>
<td>Less than significant with mitigation.</td>
</tr>
<tr>
<td>Impact BIO-3 No jurisdictional water or wetlands are present on-site. Therefore, no direct impact to will occur. Indirect Impacts to off-site waters and wetlands would be Class III, less than significant.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
<tr>
<td>Impact BIO-4 The project is located within local wildlife linkage. Indirect impacts to wildlife movement from development of residences would be Class II, less than significant with mitigation.</td>
<td>BIO-4(a) Lighting Plan. In addition to the lighting specifications in Mitigation Measure AES-5, light and glare from new development must be controlled and directed away from the wildlife corridors shown on the conceptual landscape plan, Los Carneros Creek SPA ESHA, Los Carneros Wetland ESHA, and the open space areas adjacent to the development. Exterior night lighting must be minimized, restricted to low intensity fixtures, shielded, and directed away from ESHAs, wildlife corridors, and open space. Plan Requirements and Timing: The locations of all exterior lighting fixtures, complete cut-sheets of all exterior lighting fixtures, and a photometric plan prepared by a registered professional engineer showing the extent of all light and glare emitted by all exterior lighting fixtures must be approved by the Planning and Environmental Review Director,</td>
<td>Less than significant with mitigation.</td>
</tr>
</tbody>
</table>
Table ES-1
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>or designee, before the City issues a Building Permit for construction.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring: Before the City issues a certificate of occupancy, the Planning and Environmental Review Director, or designee, must inspect exterior lighting features to ensure that they have been installed consistent with approved plans.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO-4(b) Landscape Chemical and Pest Management Plan. All pesticides, herbicides, and fertilizers used at the Project site must be those designated for use near aquatic and wetland habitats, and must be applied with techniques that avoid over-spraying and control application to avoid excessive concentrations. Rodenticides are prohibited.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan Requirements and Timing: A Landscape Chemical and Pest Management Plan (Plan) must be developed by the applicant and approved by the Planning and Environmental Review Director, or designee, before a final map is recorded. The requirements must be printed on the final approved landscape plans, each residential unit lease document, the map, and recorded on the property deed. The Plan must provide a prohibition on use of pesticides, herbicides, fertilizers and rodenticides. These prohibitions must be the subject of at least one annual communication by the applicant to the residents in the form of a meeting and/or newsletter or electronic update that is distributed to residents.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring: Evidence of this effort must be provided to the Planning and Environmental Review Director, or designee, each year by January 1st. The management must also provide the Planning and Environmental Review Director with an annual monitoring report by January 1st of each year demonstrating the use of aquatic and wetland habitat appropriate fertilizer, herbicides, and pesticides consistent with the Plan on the property. If determined necessary by the City, the City may require the applicant to retain a City approved qualified biologist to verify the correct use of appropriate herbicides, pesticides, and fertilizers as part of the annual monitoring report.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO-4(b) Landscape Chemical and Pest Management Plan. All pesticides,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table ES-1
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>herbicides, and fertilizers used at the Project site must be those designated for use near aquatic and wetland habitats, and must be applied with techniques that avoid over-spraying and control application to avoid excessive concentrations. Rodenticides are prohibited.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plan Requirements and Timing: A Landscape Chemical and Pest Management Plan (Plan) must be developed by the applicant and approved by the Planning and Environmental Review Director, or designee, before a final map is recorded. The requirements must be printed on the final approved landscape plans, each residential unit lease document, the map, and recorded on the property deed. The Plan must provide a prohibition on use of pesticides, herbicides, fertilizers and rodenticides. These prohibitions must be the subject of at least one annual communication by the applicant to the residents in the form of a meeting and/or newsletter or electronic update that is distributed to residents.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monitoring: Evidence of this effort must be provided to the Planning and Environmental Review Director, or designee, each year by January 1st. The management must also provide the Planning and Environmental Review Director with an annual monitoring report by January 1st of each year demonstrating the use of aquatic and wetland habitat appropriate fertilizer, herbicides, and pesticides consistent with the Plan on the property. If determined necessary by the City, the City may require the applicant to retain a City approved qualified biologist to verify the correct use of appropriate herbicides, pesticides, and fertilizers as part of the annual monitoring report.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIO-4(c) Domestic Pet Predation, Feline Disease, and Wildlife Corridor Education. The applicant must prepare a public education campaign for future residents of the Project site regarding: 1) the effects of domestic animal predation on wildlife (e.g., domestic cats and protected bird species); 2) promoting indoor cats since bobcats are susceptible to the same diseases as domestic cats, and disease can be transmitted between domestic cats and</td>
<td></td>
</tr>
</tbody>
</table>
Table ES-1
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact BIO-5 The Goleta General Plan / Coastal Land Use Plan identifies the presence of coastal sage scrub, an Environmentally Sensitive Habitat Area, on the project site. However, biological assessment surveys for this EIR indicate that no protected habitat ESHAs are present on-site. Impacts to ESHA would be Class III, less than significant.</td>
<td>None required.</td>
<td>Less than significant.</td>
</tr>
</tbody>
</table>
| **Cultural Resources** Impact CR-1 Based on archaeological investigations conducted on the Project site, there is evidence that an intact archaeological deposit (associated with CA-SBA-56) is present. Construction activities for the Project could potentially have a significant impact on CA-SBA-56. This would be a Class II, significant but mitigable impact. | **CR-1(a) Limited Phase 3 Data Recovery.** The applicant must provide a Phase 3 Data Recovery Program Plan developed by a City-approved archaeologist for excavations at the low density artifact scatter at CA-SBA-56. **Plan Requirements:** The Phase 3 plan must be prepared in accordance with the City of Goleta’s Environmental Thresholds and Guidelines Manual, Open Space Element Policy 8.5, the California Office of Historic Preservation’s (1990) Archaeological Resource Management Reports (ARMR): Recommended Contents and Format, and CEQA § 21083.2 and CEQA Guidelines § 15126.4(b). The plan must include:
- Research design;
- Discussion of relevant research questions that can be addressed by the CA-SBA-56 resources;
- Methods used to gather data, including data from previous studies;
- Laboratory methods to analyze the data;
- An assessment of artifacts recovered and any corresponding field notes, graphics, and lab analyses; and
| With implementation of the required mitigation measures, potential impacts to known and as-yet undetected archaeological resources would be reduced to a less than significant level. |
Table ES-1
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Results of investigations.</td>
<td>The plan must provide for a systematic sample of the area to be capped, such that the research value of the deposit is adequately characterized. The Phase 3 must be funded by the applicant and must be prepared by a City-approved archaeologist. The Phase 3 must be documented in a draft and final report and must be reviewed and approved by a City-retained archaeologist. Pursuant to City Cultural Resource Guidelines, the final report, archaeological collections, field notes, and other standard documentation must be permanently curated at the UCSB Repository for Archaeological Collections. The Phase 3 must specify that a Chumash Native American observer must be retained by the applicant to observe all excavation activity associated with the Program. The observer must maintain daily notes and documentation necessary, and provide the observation notes and documentation to all interested Chumash representatives who request to be informed of the Phase 3 excavation progress. Timing: A Phase 3 research design prepared pursuant to City of Goleta’s Environmental Thresholds and Guidelines Manual, and a copy of a contract (including a detailed scope of work) between the applicant and a City-approved archaeologist and Chumash Native American observer for the Phase 3 program, and the subsequent draft and final Phase 3 report, must be reviewed and approved by the City and City-retained archaeologist (funded by the applicant) before recordation of the final map. The applicant must provide a bond subject to City approval to the City for completion of the Phase 3 program that must be released upon completion of the Phase 3 mitigation and all contract requirements as determined by the City in writing. All excavation and curation requirements must be met prior to issuance of any Land Use Permit for grading. The Phase 3 excavation must be undertaken before placement of fill over the low density artifact scatter. Monitoring: The Phase 3 Data Recovery Program must be submitted for approval by</td>
<td></td>
</tr>
</tbody>
</table>
Table ES-1
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>the City and City-approved archaeologist before the applicant records a final map. City staff and the City-retained archaeologist must periodically site inspect to verify completion of the Phase 3 field work. The City-retained archaeologist must review and approve the draft and final Phase 3 reports. The applicant must provide the City with a letter from the UCSB Repository for Archaeological Collections indicating that all required materials have been accepted for curation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR-1(b) Surface Preparation and Fill Soils within CA-SBA-56. Preparation of the ground surface and the placement of fill soils within the CA-SBA-56 boundary must adhere to the following requirements:</td>
<td>• Systematically collect all diagnostic artifacts on the ground surface; • Remove all organic material from the archaeological site surface by hand (including brushing, raking, or use of power blower); • Place a layer of geotextile fabric over all archaeological site areas to receive fill; • Use fill soils within 1 pH of that identified in the low density artifact scatter soils, as evaluated in the field prior to construction; • Use a contrasting color for the lower six inches of fill soils, signaling to any future sub-surface activity (e.g., landscaping activity) that excavation shall not extend deeper; and • Place the fill soils ahead of the loading equipment so that the machine does not have contact with the archaeological site surface. • Moisten fill soils sufficient so that they are cohesive under the weight of the heavy equipment as the material is spread out over the archaeological site and buffer area.</td>
<td></td>
</tr>
</tbody>
</table>

Plan Requirements and Timing: Before the City issues any grading permit, the Planning and Environmental Review Director must approve a Construction Monitoring Plan prepared by the applicant. Plan specifications for the monitoring must be printed on all plans submitted for grading, landscaping, and building permits. The applicant must enter into a contract with a
<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR-1(c) Excavations within Low Density Artifact Scatter.</td>
<td>Excavations for all landscaping and recreational improvements within the low density artifact scatter cannot encroach within six inches of the existing ground surface: Plan Requirements and Timing: This requirement must be printed on all plans submitted for any LUP for grading. The area where excavations would not encroach on the low density artifact scatter as specified herein must be clearly marked on the plans. Monitoring: The Planning and Environmental Review Director, or designee, must conduct periodic field inspections to verify compliance during ground-disturbing activities.</td>
<td></td>
</tr>
</tbody>
</table>
| CR-1(d) Monitoring. | Before initiating any staging areas, vegetation clearing, or grading activity, the applicant and construction crew must meet on-site with a City-approved archaeologist and appropriate local Chumash consultant(s) and present the procedures to be followed in the unlikely event that cultural artifacts are discovered on site. If cultural resources of potential importance are uncovered during construction, the following must occur per the Goleta General Plan Open Space Policy 8.6:
 a. The grading or excavation shall cease and the City shall be notified.
 b. A qualified archeologist shall prepare a report assessing the significance of the | |
Table ES-1
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.</td>
<td>Disposition will be determined by the City in conjunction with the appropriate Chumash representatives.</td>
<td></td>
</tr>
<tr>
<td>A City-approved archaeologist and local Chumash consultant must monitor all ground-disturbing activities on the Project site, including surface vegetation removal and the Phase 3 Data Recovery Program. The monitor(s) must have the following authority:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>The archaeological monitor(s) and Chumash monitor(s) must be on-site on a full-time basis during any earthmoving activities, including preparation of the area for capping, grading, trenching, vegetation removal, or other excavation activities. The monitors will continue their duties until it is determined through consultation with the applicant, City Planning and Environmental Review Director or designee, archaeological consultant, and Chumash consultant that monitoring is no longer warranted;</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>The monitor(s) may halt any activities impacting previously unidentified cultural resources and conduct an initial assessment of the resource(s);</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>If an artifact is identified as an isolated find, the monitor(s) must recover the artifact(s) with the appropriate locational data and include the item in the overall inventory for the site;</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>If a feature or concentration of artifacts is identified, the monitor must halt activities in the vicinity of the find, notify the applicant and the Planning and Environmental Review Director or designee, and prepare a proposal for the assessment and treatment of the find(s). This treatment may range from additional study to avoidance, depending on the nature of the find(s);</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>The monitor must prepare a comprehensive archaeological technical report documenting the results of the monitoring program and include an inventory of recovered artifacts, features, etc.;</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>The monitor must prepare the artifact assemblage for curation with an appropriate curation facility (e.g., UCSB</td>
<td></td>
</tr>
</tbody>
</table>
Table ES-1

Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>or local Chumash facility) and include an inventory with the transfer of the collection; and 7. The monitor must file an updated archaeological site survey record with the UCSB Central Coastal Information Center.</td>
<td></td>
</tr>
</tbody>
</table>

Plan Requirements and Timing: This requirement must be printed on all plans submitted for any land use, building, grading, or demolition permits. The applicant must enter into a contract with a City-approved archaeologist and applicant-selected Chumash consultant and must fund the provision of on-site archaeological/cultural resource monitoring during initial grading and excavation activities before issuance of a land use permit. Plan specifications for the monitoring must be printed on all plans submitted for grading, and building permits.

Monitoring: City Planning and Environmental Review Director or designee must conduct periodic field inspections to verify compliance during ground-disturbing activities.

CR-1(e) Continued Chumash Consultation. Previous Chumash consultation with the City of Goleta and Project applicant resulted in the archaeological site CA-SBA-56 being identified as important to the Chumash community. Continued Chumash consultation must occur throughout the remainder of the Project including any design changes, alternatives analysis, or mitigation measure implementation to ensure that impacts to CA-SBA-56 are mitigated in a manner that would be respectful of the site’s Chumash heritage.

Plan Requirements and Timing: This condition must be printed on all building and grading plans.

Monitoring: The Planning and Environmental Review Director or designee must check plans before the City issues a land use permit and must spot check in the field throughout grading and construction.

CR-1(f) Human Remains. Before initiating any staging areas, vegetation clearing, or grading activity, the applicant and
<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>construction crew must meet on-site with a</td>
<td>City-approved archaeologist and appropriate local Chumash consultant(s) and present the procedures to be followed in the unlikely event that human remains are uncovered. These procedures must include those identified by Public Resources Code § 5097.98. In addition, a satisfactory disposition of the remains must be agreed upon by the City-approved archaeologist and appropriate local Chumash consultant(s) so as to limit future disturbance. If the remains are determined to be of Chumash descent, the County Coroner has 24 hours to notify the Native American Heritage Commission (NAHC). The NAHC will then identify the person(s) thought to be the Most Likely Descendant (MLD) of the deceased Chumash, who will then help determine what course of action should be taken in dealing with the remains.</td>
<td>Significant and unavoidable.</td>
</tr>
<tr>
<td>City of Goleta</td>
<td>Plan Requirements and Timing: Before the City issues grading permits, the applicant must provide the City Planning and Environmental Review Director or designee the contact information of the Chumash consultant and the agreed upon procedures to be followed. In the event that remains are found and if the remains are found to be of Chumash origin, the County Coroner will notify the Native American Heritage Commission and the Commission will name the Most Likely Descendant (MLD). The MLD, consulting archaeologist, applicant, and City Planning and Environmental Review staff will consult as to the disposition of the remains. If the remains are identified as non-Chumash, the County Coroner will take possession of the remains and comply with all state and local requirements in the treatment of the remains. Monitoring: The Planning and Environmental Review Director or designee must confirm that the County Coroner is notified in the event human remains are found, and that the Native American Heritage Commission is contacted if the remains are of Chumash origin.</td>
<td></td>
</tr>
<tr>
<td>Impact CR-2</td>
<td>The Project would result in a permanent reduction in the heritage value associated with a known undisturbed human burial site located at the low density artifact scatter. This would be a Class I, significant and Mitigation Measures CR-1(a) through CR-1(f) would reduce the Project’s impact on the research value of this cultural resource. However, the heritage value of CA-SBA-56 would be unavoidably impacted through</td>
<td></td>
</tr>
<tr>
<td>City of Goleta</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table ES-1
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>unavoidable impact.</td>
<td>alteration of the setting</td>
<td></td>
</tr>
<tr>
<td>Impact CR-3 Excavations in the low-lying areas</td>
<td>Mitigation Measures</td>
<td>Significance After Mitigation</td>
</tr>
<tr>
<td>surrounding the elevated knoll have low potential to contribute to the understanding of CA-SBA-56 occupations. This would be a Class III, less than significant impact.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
</tbody>
</table>

Geology and Soils

Impact GEO-1 Project site soils are prone to liquefaction, which could cause settlement in a seismic event and expose on-site structures to property damage. Impacts would be Class II, significant but mitigable.

GEO-1 Geotechnical Design Considerations. The recommendations in the Geotechnical Engineering Report (Earth Systems Pacific, 2014) related to soil engineering within and outside of the Archaeological Area must be incorporated into the Project’s grading and building plans, as summarized here:

Areas Outside the Archaeological Area:

All existing fill soils should be completely removed and replaced as compacted fill Any existing utilities that will not be serving the site must be removed or properly abandoned.

Voids created by the removal of materials or utilities, and extending below the recommended over excavation depth, must be immediately called to the attention of the geotechnical engineer. No fill may be placed unless the geotechnical engineer has observed the underlying soil.

Following site preparation, soils in the building area should be removed to a level plane at a minimum depth of 3 to 8 feet below the bottom of the deepest footing or 3 to 8 feet below existing grade, whichever is deeper, as recommended by the geotechnical engineer in the field.

Soils in the surface improvement area should be removed to a level plane at a minimum depth of 1-foot below the proposed subgrade elevation or 2 feet below the existing ground surface, whichever is deeper.

Soils in the fill areas beyond the building and surface improvement areas should be removed to a depth of 2 feet below the existing ground surface.

Stabilization of surface soils by vegetation or other means during and following
Table ES-1
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
</table>
| construction must be implemented, particularly those disturbed during construction | **Areas Inside the Archaeological Area, including the 50-foot Archaeological Buffer Zone:**

Existing ground surface in the grading area inside of the archaeological area should be prepared for construction by removing the stockpile soils and all other existing fill soils down to the native soil surface.

All vegetation, debris, and other deleterious material should be removed from the native soil surface by hand (can include brushing, raking, or the use of a power blower) to the degree practicable at the ground surface such that no soil disturbance occurs.

Remnants of the vegetation should then be sprayed with topical herbicide per manufacturer’s specifications approximately 60 days prior to implementing grading operations

Root ball masses must be left in place to die.

Any existing utilities that will not be serving the site must be removed or properly abandoned. The appropriate method of utility abandonment will depend upon the type and depth of the utility.

Surface vegetation removal and herbicide application must be accomplished 60 days prior to the geogrid placement; it is acceptable to place import sand on the native soil surface where uneven areas or undulations exist to create as level a surface as practicable to place the geogrid on as it improves both the constructability and performance of the geogrid system.

The native soil surface must be covered with a tri-axial geogrid such as Tensar TX 7, or an approved equivalent. The geogrid must be anchored and/or overlapped as recommended by the manufacturer prior to placing any fill soil.

The first 6 inches of fill placed on top of the geogrid must be an imported sand material reviewed and approved by the City of Goleta | |
Table ES-1
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>to provide a visual indication to avoid impeding into the native soils.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fill soils must be placed and spread from the outside to the inside of the archeological area with track earthmoving equipment such that the equipment must only be working on top of the fill soils. The fill soils must be placed such that the earthmoving equipment does not come into contact with the archeological area native soils or the geogrid.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grading (General):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>On-site material and approved import materials may be used as general fill and up to 18 inches below the bottom of the slab-on-grade elevation within the building area where conventional foundations will be used.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A minimum of 18 inches of nonexpansive material when measured from the bottom of the conventional foundation slabs-on-grade should be placed in the building area.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proposed imported soils should be evaluated by a geotechnical engineer before being used, and on an intermittent basis during placement on the site.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All materials used as fill should be cleaned of any debris and rocks larger than 6 inches in diameter, and no rocks larger than 3 inches in diameter should be used within the upper 3 feet of finish grade.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fill slopes should be keyed and benched into competent soil.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slopes under normal conditions should be constructed at 2:1(horizontal to vertical) or flatter inclinations. Slopes subject to inundation should be constructed at 3:1 or flatter inclinations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stabilization of surface soils by vegetation or other means during and following construction must be implemented, particularly those disturbed during construction.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the portions of the site cannot be graded to those recommendations, rigid mat</td>
<td></td>
</tr>
</tbody>
</table>
Table ES-1
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>foundations should be used in lieu of conventional foundation systems.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foundations:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foundations must not be constructed within 10 feet of LID drainage improvements. If this is not the case, the geotechnical engineer must review the type of LID drainage improvement planned within 10 feet of a foundation to ascertain if revised and/or supplemental foundation recommendations are needed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conventional and Rigid Mat Foundations systems must be engineered in accordance with the recommendations contained in the Geotechnical Engineering Report (Earth Systems Pacific, 2014).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plan Requirements and Timing. Grading and building plans must be submitted for review and approval by the Planning and Environmental Review Director or designee before the City issues grading and building permits.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monitoring. The Project soils engineer must observe all excavations before placement of compacted soil, gravel backfill, or rebar and concrete and report observations to the City. The City will conduct field inspections as needed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The recommendations in the Geotechnical Engineering Report (Earth Systems Pacific, 2014) related to removal of existing fill, site grading, and foundation design, which are required by Mitigation Measure GEO-1, would reduce impacts related to expansive soils to a less than significant level.</td>
<td>Less than significant with mitigation.</td>
</tr>
<tr>
<td>Impact GEO-2</td>
<td>Expansive soils are present on the project site, which could damage slabs and foundations. Impacts would be Class II, significant but mitigable.</td>
<td></td>
</tr>
<tr>
<td>Greenhouse Gas Emissions</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
<tr>
<td>Impact GHG-1</td>
<td>The Project would generate temporary as well as operational GHG emissions, which would incrementally contribute to climate change. However, combined annual GHG emissions from the Project would not exceed applicable thresholds of significance. Impacts would be Class III, less than significant.</td>
<td>None required.</td>
</tr>
<tr>
<td>Impact GHG-2</td>
<td>The Project is consistent with the City of Goleta Climate Action Plan. Impacts would be Class III, less than significant.</td>
<td>None required.</td>
</tr>
<tr>
<td></td>
<td>Less than significant without mitigation.</td>
<td></td>
</tr>
</tbody>
</table>
Table ES-1

Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous Materials/Risk of Upset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact HAZ-1 Hazardous materials may be present in the soils on the Project site and adjoining properties. However, due to the depth of potentially contaminated soils and required compliance with local and regional regulations, impacts would be Class III, less than significant.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
<tr>
<td>Impact HAZ-2 Implementation of the Project would place residential structures and persons in proximity to existing businesses that use, store, and transport hazardous chemicals, as well as transport of hazardous materials on the existing UPRR railroad tracks and U.S. 101. Onsite residents would therefore be exposed to a potential risk of upset associated with chemical leaks and fire from nearby businesses, derailed trains, and truck accidents. Although the probability of such incidents would be low, this impact would be Class I, significant and unavoidable.</td>
<td>As stated in the General Plan FEIR, mitigation is not available to address the risk of upset associated with train derailment on the UPRR ROW and truck accidents on U.S. 101. The project site is also potentially subject to hazardous material releases from nearby businesses. Beyond existing regulations enforced by the County’s Environmental Health Department, measures are not available to mitigate the risk of upset from these sources.</td>
<td>Significant and unavoidable.</td>
</tr>
<tr>
<td>Hydrology and Water Quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact HWQ-1 During grading and construction of the Project, the soil surface would be subject to erosion and downstream watersheds could be subject to temporary sedimentation and discharges of various pollutants. Compliance with discharge requirements during grading and construction would ensure that hydrologic impacts from construction would be Class III, less than significant.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
<tr>
<td>Impact HWQ-2 The Project would alter on-site drainage patterns and increase impermeable surfaces. Preparation of a maintenance agreement is required to ensure long-term protection and maintenance of drainage facilities. Impacts on site drainage would be Class II, significant but mitigable.</td>
<td>HWQ-2 Maintenance Agreement and Stormwater Control Plan. The applicant must execute a maintenance agreement and Stormwater Control Plan with the City, in a form approved by the City Attorney, that implements maintenance requirements for all improvements associated with all BMPs described in the final approved Hydrology and Hydraulic Analysis and Storm Water Control Plan. The agreement must be executed before the City issues any final certificate of occupancy. Plan Requirements and Timing: At a minimum, the maintenance agreement and Stormwater Control Plan between the applicant and City must include requirements that all inline storm drain filters must be inspected, repaired, and cleaned per manufacture specifications and</td>
<td>Less than significant with mitigation.</td>
</tr>
</tbody>
</table>
Table ES-1
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>at a minimum before September 30th of each year. Additional inspections, repairs, and maintenance must be performed after storm events as needed throughout the rainy season (November 1st to April 15th) and/or per manufacture specifications. Any necessary major repairs must be completed before the next rainy season. Before September 30th of each year, the applicant must submit to Public Works for review and approval a report summarizing all inspections, repairs, and maintenance work done during the prior year. Monitoring: City Planning and Environmental Review staff must verify compliance before approval of any occupancy permit for the Project. City Planning and Environmental Review staff must verify compliance with the provisions of the agreement periodically and respond to instances of non-compliance with the agreement.</td>
<td></td>
</tr>
<tr>
<td>Impact HWQ-3 New sources of pollution associated with operation of the proposed residential development have the potential to affect impaired waterways in Goleta. However, compliance with State and local requirements would ensure that impacts from water pollutants would remain Class III, less than significant.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
<tr>
<td>Impact HWQ-4 The Project site is located outside of a FEMA-mapped flood area. Impacts related to flood hazards would be Class III, less than significant.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
<tr>
<td>Land Use and Planning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact LU-1 The Project would be consistent with most applicable General Plan policies, but would be inconsistent with several policies related to preservation of views. Impacts would be Class I, significant and unavoidable.</td>
<td>As described in Section 4.1, Aesthetics, mitigation is not available to reduce the obstruction of scenic views of the Santa Ynez Mountains from the vantage point of motorist on S. Los Carneros Road near Calle Koral. These buildings would unavoidably obstruct scenic views.</td>
<td>Significant and unavoidable.</td>
</tr>
<tr>
<td>Impact LU-2 The Project would be consistent with the Inland Zoning Ordinance, as adopted by the Goleta Municipal Code, with approval of the requested modification to the required side-yard setback. Impacts would be Class III, less than significant.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
<tr>
<td>Impact LU-3 Temporary construction activities associated with development of the Project would potentially generate short-term compatibility effects on surrounding uses. However, temporary impacts would be Mitigation Measure N-1 in Section 4.10, Noise, would reduce construction noise impacts to levels that would avoid significant land use compatibility impacts during construction.</td>
<td>Less than significant with mitigation.</td>
<td></td>
</tr>
</tbody>
</table>
Table ES-1

Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>less than significant with incorporation of mitigation measures included in Section 4.10, Noise. This would be a Class II, significant but mitigable, impact with mitigation measures for construction noise.</td>
<td>Mitigation measures AES-4(a) and AES-4(b) would be required to reduce potentially significant impacts from the Project's massing and architectural style and to ensure that building heights remain consistent with adjacent development.</td>
<td>Less than significant with mitigation.</td>
</tr>
<tr>
<td>Impact LU-4 Quality of life issues identified in the City's Environmental Thresholds and Guidelines Manual include loss of privacy, neighborhood incompatibility, nuisance noise, not exceeding noise thresholds, increased traffic in quiet neighborhoods, and loss of sunlight/solar access. Impacts related to privacy, incompatibility, noise, sunlight/solar access, and neighborhood traffic would be Class II, significant but mitigable.</td>
<td>Mitigation measures AES-4(a) and AES-4(b) would be required to reduce potentially significant impacts from the Project's massing and architectural style and to ensure that building heights remain consistent with adjacent development.</td>
<td>Less than significant with mitigation.</td>
</tr>
<tr>
<td>Noise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact N-1 Construction activities would be located within 50 feet of sensitive receptors, including existing residential uses approximately 50 feet away along the southern project site border. Therefore, temporary construction-related noise could exceed City of Goleta Municipal Code Chapter 9.09 noise regulations. This impact would be Class I, significant and unavoidable.</td>
<td>N-1(a) Construction Timing. Construction activity and equipment maintenance is limited to the hours between 8 AM and 5 PM, Monday through Friday. No construction can occur on State holidays (e.g., Thanksgiving, Labor Day). Non-noise generating construction activities such as interior painting are not subject to these restrictions. Plan Requirements and Timing: At least one sign near each Project site entrance along Camino Vista stating these restrictions must be posted on the site. Signs must be a minimum size of 24” x 48.” Signs must be in place before the beginning of and throughout grading and construction activities. Violations may result in suspension of permits. Monitoring: The Planning and Environmental Review Director or designee must monitor compliance with restrictions on construction hours and must promptly investigate and respond to all complaints.</td>
<td>Significant and unavoidable.</td>
</tr>
<tr>
<td>N-1(b) Electrical Power. Electrical power must be used to run air compressors and similar power tools. Plan Requirements and Timing: The equipment area with appropriate acoustic shielding must be designated on building and grading plans. Equipment and shielding must remain in the designated location throughout construction activities.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table ES-1
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring: The Planning and Environmental Review Director or designee must periodically inspect the site to ensure compliance with all noise attenuation requirements.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-1(c) Construction Noise Complaint Line. The applicant must provide a non-automated telephone number for local residents and employees to call to submit complaints associated with construction noise.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan Requirements and Timing: The telephone number must be included in the notice required by Measure N-1(a) and posted on the Project site and must be easily viewed from adjacent public areas. Proof of mailing the notices must be provided to the Planning and Environmental Review Director or designee before the City issues a grading permit. At least one sign near each Project site entrance along Camino Vista with the phone number must be posted onsite. The applicant must inform the Planning and Development Review Director or designee of any complaints within one week of receipt of the complaint. Signs must be in place before beginning of and throughout grading and construction activities. Violations may result in suspension of permits.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring: Building Inspectors and Permit Compliance staff may periodically inspect and respond to complaints.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-1(d) Distancing of Vehicles and Equipment. Noise and groundborne vibration construction activities whose specific location on the Project site may be flexible (e.g., operation of compressors and generators, cement mixing, general truck idling) must be conducted as far as possible from the nearest noise- and vibration-sensitive land uses.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan Requirements and Timing. The location of vehicles and equipment must be designated on building and grading plans. Equipment and vehicles must remain in the designated location throughout construction activities.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring: The Planning and Environmental Review Director must</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table ES-1
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>periodically inspect the site to ensure compliance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-1(e) Avoid Operating Equipment Simultaneously. Whenever possible, construction activities must be scheduled so as to avoid operating several pieces of equipment simultaneously, which causes high noise levels.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan Requirements and Timing. The construction schedule and timing of operation of each piece of equipment must be provided by the applicant.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring. Planning and Environmental Review Director or designee must periodically inspect the site to ensure compliance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-1(f) Sound Control Curtains and Acoustical Blankets. Flexible sound control curtains must be placed around all drilling apparatuses, drill rigs, and jackhammers when in use. Acoustical blankets (or similarly effective temporary noise barriers) must be placed along the southern and eastern Project site boundaries to reduce noise transmission to existing land uses to the south and east, including residential units at the existing Willow Spring I and II sites south of the project site across Camino Vista.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan Requirements and Timing. The equipment area with appropriate sound control curtains and the locations of acoustical blankets must be designated on building and grading plans. Equipment and shielding must remain in the designated location throughout construction activities.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring. Planning and Environmental Review Director or designee must monitor compliance with restrictions on construction hours and must promptly investigate and respond to all complaints.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-1(g) Newest Power Construction Equipment. The Project contractor must use the newest available power construction equipment with standard recommended noise shielding and muffling devices.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan Requirements and Timing. The equipment with appropriate noise shielding</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table ES-1
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact N-2 Project construction activities could generate intermittent levels of groundborne vibration affecting surrounding residential development. However, the expected vibration levels during temporary construction activity would not exceed applicable standards for infrequent vibration events. This impact would be Class III, less than significant.</td>
<td>and muffling must be designated on building and grading plans. Monitoring. The Planning and Environmental Review Director or designee must inspect the building and grading plans before the City issues permits and periodically inspect the site to ensure compliance.</td>
<td>Less than significant without mitigation.</td>
</tr>
<tr>
<td>Impact N-3 Project-generated traffic would incrementally increase traffic-related noise on study area roadway segments, which would potentially affect existing sensitive receptors on area roadways. However, the change in noise levels would not exceed significance thresholds. Therefore, the effect of increased traffic noise would be Class III, less than significant.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
<tr>
<td>Impact N-4 Operation of the Project would generate noise typically associated with residential development. However, noise would not affect sensitive receptors and noise levels would not exceed City thresholds. Impacts would be Class III, less than significant.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
<tr>
<td>Impact N-5 Construction of the Project near the Union Pacific Railroad, U.S. 101, and existing business park development could expose future residents on the project site to noise levels exceeding City standards. This impact would be Class II, significant but mitigable.</td>
<td>N-5(a) Outdoor Living Area Noise Attenuation. Residential outdoor living spaces (e.g., patios and balconies) associated with all residential units located in the proposed Buildings 3, 4, 5, 7 and 8, facing U.S. 101 and/or the UPRR line, must be protected from sound intrusion so that they meet the City’s standard of 65 dBA CNEL for outdoor living spaces. Patios and balconies for these residential units must include noise barriers up to seven feet in height to reduce traffic and train noise to meet the City’s 65 dBA CNEL noise level criterion for exterior living areas. The noise barriers may be constructed of a material such as tempered glass, acrylic glass, or any masonry material with a surface density of at least three pounds per square foot. The noise barriers should have no openings or cracks.</td>
<td>Less than significant with mitigation. Additionally, the following condition of approval to notify potential residents of the UPRR and U.S. 101 associated noise is recommended to further reduce impacts: The applicant must provide a rail line real-estate disclosure to potential occupants, providing notice of the site’s proximity to the UPRR and that associated noise and vibration may be perceptible.</td>
</tr>
</tbody>
</table>
Table ES-1
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Once building elevations and exterior design details are finalized, further noise evaluation should be performed in order to prescribe the height of necessary noise barrier per balcony area. Failure to conclusively demonstrate the effectiveness of the proposed noise attenuation measures must result in the denial of a permit to build the affected unit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan Requirements and Timing: These requirements must be incorporated into all construction documents submitted for approval before the issuance of a Land Use Permit for all residential units in Buildings 3, 4, 5, 7 and 8 that are facing U.S. 101 and/or the UPRR line.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring: The Planning and Environmental Review Director, or designee, must verify compliance before the issuance of a Land Use Permit for all residential units in Buildings 3, 4, 5, 7 and 8 that are facing U.S. 101 and/or the UPRR line. City building inspectors must verify compliance in the field before the City issues a certificate of occupancy for an affected unit. No certificate of occupancy can be issued unless compliance is achieved.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As shown in Table 4.10-10, interior living spaces of Buildings 3, 4, 5, 7 and 8 that are facing U.S. 101 and/or the UPRR line may be subject to noise exceeding 45 dBA CNEL. Mitigation Measure N-5(b) would be required to ensure that interior noise levels do not exceed City interior noise standards.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-5(b) Indoor Noise Attenuation. All residential units located in the proposed Buildings 3, 4, 5, 7 and 8 that are facing U.S. 101 and the UPRR rail line to the north and Los Carneros Road to the west must include windows with a minimum Sound Transmission Class (STC) rating of 28 STC, and forced-air mechanical ventilation or air conditioning systems, satisfactory to the local building official, to adequately ventilate the interior space of the units when windows are closed to control noise, and sound rated windows. Incorporation of these design requirements would be expected to achieve an exterior-to-interior noise level reduction of 25 dB or greater.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table ES-1

Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before the City issues building permits, the applicant must submit an interior noise study to be approved by the Planning and Environmental Review Director or designee. This interior noise study must analyze the residential units in the proposed Buildings 3, 4, 5, 7 and 8 that are facing U.S. 101, the rail line, and Los Carneros Road. The interior noise study must ensure compliance with the City’s 45 dBA CNEL noise standard. Failure to conclusively demonstrate the effectiveness of the proposed noise attenuation measures will result in the City denying a building permit for the affected units.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan Requirements and Timing: These requirements must be incorporated into all construction documents submitted for approval before the issuance of a Land Use Permit for the residential units in Buildings 3, 4, 5, 7 and 8 that are facing U.S. 101, the UPRR line, or Los Carneros Road.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring: The Planning and Environmental Review Director, or designee, must verify compliance before the City issues a permit for the residential units in Buildings 3, 4, 5, 7 and 8 that are facing U.S. 101, the UPRR line, or Los Carneros Road. The City building inspectors must verify compliance in the field before the City issues a certificate of occupancy for an affected unit. No certificate of occupancy can be issued unless compliance is achieved.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact N-6 Development of the Project near the UPRR could expose future residents to groundborne vibration generated by passing trains. However, because vibration levels would be below applicable thresholds, impacts would be Class III, less than significant.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
<tr>
<td>Public Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact PS-1 The Project would increase the amount of structural development and the number of residents dependent on fire protection service from the Santa Barbara County Fire Protection District. However, service ratios and response times would remain at acceptable levels. In addition, Fire Protection District requirements would be incorporated into the Project to ensure adequate access to the Project site. Therefore, impacts related to the provision</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
</tbody>
</table>

City of Goleta

32
Table ES-1

Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>of fire protection services would be Class III, less than significant.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact PS-2 The Project would increase the amount of structural development and the number of residents dependent on police protection service from the Santa Barbara County Sheriff's Office. However, the Project would not result in a need for new or expanded police facilities. Therefore, impacts on police protection services would be Class III, less than significant.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
<tr>
<td>Impact PS-3 The Project would increase the number of residents served by GUSD and SBUSD public schools. However, additional residents would not increase school enrollment beyond capacity, and the Project developer would be required to pay school impact fees in accordance with State law. Therefore, impacts to public schools would be Class III, less than significant.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
<tr>
<td>Recreation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact REC-1 The Project would accommodate an estimated 776 residents, resulting in an increase in parkland demand of 4.6 acres. The Project would provide two private recreational facilities (clubhouse and pool for each development area) and a two-acre public park, which would partially address the increase in demand for park and recreation facilities. As part of Project approval, City-required mitigation fees would be paid to offset the increased demand for parkland. Impacts related to recreation would be Class III, less than significant.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
<tr>
<td>Transportation/Circulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact T-1 Project-generated traffic would increase existing traffic volumes on area roadways. Roadway volumes would remain within the City's Acceptable Capacity ratings. Impacts related to roadway segment volume increases would be Class III, less than significant.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
<tr>
<td>Impact T-2 Project-generated traffic would increase existing turning volumes at intersections in the study area. However, Existing + Project traffic levels at intersections would operate at LOS C or better. Impacts would be Class III, less than significant.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
<tr>
<td>Impact T-3 Three intersections and a highway segment in the CMP network are located in the vicinity of the Project site.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
</tbody>
</table>
Table ES-1
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>With the addition of Project-generated traffic to existing traffic volumes, CMP intersections are forecast to operate at LOS C or better. Therefore, impacts to the CMP network would be Class III, less than significant.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact T-4 The Project would generate additional demand for public transit services and alternative transportation infrastructure. The Project would not substantially increase transit ridership or impact the operations of bicycle facilities in the Project site vicinity. Impacts to alternative transportation would be Class III, less than significant.</td>
<td>None required.</td>
<td>Less than significant without mitigation.</td>
</tr>
<tr>
<td>Impact T-5 Pre-Construction soil export activity would add temporary employee and heavy truck trips to intersections in the Project vicinity. Affected intersections would continue to operate at LOS C or better under the Existing + Project and Cumulative scenarios. However, haul trucks using Aero Camino east of the Project site may result in traffic impacts. Therefore, traffic impacts due to pre-construction soil hauling would be Class II, significant but mitigable.</td>
<td>T-5 Pre-Construction Traffic Management Control Plan. The Project applicant must submit a Pre-Construction Traffic Management Control Plan that describes the hours during which hauling may occur (presumed to be 8:30 AM to 3:30 PM), haul route, and size of trucks to be used for the pre-construction hauling activity. Construction contractors must notify truck operators that all haul trucks associated with the pre-construction soil removal phase are restricted from using Aero Camino for access to the Project site.</td>
<td>Implementation of Mitigation Measure T-5 would ensure that haul trucks during the pre-construction soil removal phase would not use Aero Camino east of the Project site, which would ensure that temporary traffic impacts would remain less than significant.</td>
</tr>
</tbody>
</table>

Utilities and Service Systems

| Impact UTL-1 The Project would generate water demand of approximately 44.812 AFY. This level of demand is within the GWD’s current 1,376 AFY surplus. Therefore, impacts to water supply would be Class III, less than significant. | None required. | Less than significant without mitigation. |
| Impact UTL-2 Wastewater generated by future residents on the Project site would flow through GWSD’s conveyance system and into GSD’s wastewater treatment plant. Existing | None required. | Less than significant without mitigation. |
Table ES-1
Summary of Environmental Impacts, Mitigation Measures, and Residual Impacts

<table>
<thead>
<tr>
<th>Impact Description</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>wastewater conveyance and treatment facilities have sufficient capacity to</td>
<td>None required.</td>
<td>Less than significant without</td>
</tr>
<tr>
<td>accommodate Project-related flows. Therefore, impacts would be Class III, less than</td>
<td></td>
<td>mitigation.</td>
</tr>
<tr>
<td>significant.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact UTL-3 Construction of the proposed structures is anticipated to take</td>
<td>UTL-4 Solid Waste Management Plan. The Project applicant must develop and implement a Solid Waste Management Plan (SWMP) to be reviewed and approved by Public Works Director, or designee, and include one or more of the following measures: Provision of space and/or bins for storage of recyclable materials within the Project site. Establishment of a recyclable material pickup area for commercial/industrial projects (i.e., loading docks, etc.). Implementation of a curbside recycling program to serve the new development. Development of a plan for accessible collection of materials on a regular basis (may require establishment of private pick-up depending on availability of County-sponsored programs). Implementation of a monitoring program (quarterly, bi-annually) to ensure a 33 percent to 50 percent minimum participation in recycling efforts. Development of Source Reduction measures, indicating method and amount of expected reduction. Implementation of a program to purchase recycled materials used in association with the Project (paper, newsprint, etc.). This should include requesting suppliers to show recycled material content. Implementation of a backyard composting yard waste reduction program.</td>
<td>Significant and unavoidable.</td>
</tr>
<tr>
<td>30 months and result in approximately 724 tons of construction waste or 101 tons per</td>
<td></td>
<td></td>
</tr>
<tr>
<td>year. Construction waste would not exceed the City’s threshold of 196 tons per year.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therefore, impacts would be Class III, less than significant.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact UTL-4 The Project would generate an estimated 199 tons of non-recyclable solid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>waste per year during operation. This amount exceeds the City’s Project-specific</td>
<td></td>
<td></td>
</tr>
<tr>
<td>threshold of 196 tons per year. Implementation of a Solid Waste Management Plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>would be required to implement waste diversion in order to reduce the amount of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>solid waste generated. However, impacts would remain Class I, significant and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unavoidable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact</td>
<td>Mitigation Measures</td>
<td>Significance After Mitigation</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Plan Requirements and Timing: The applicant must coordinate with the Planning and Environmental Review Director, or designee, and prepare SWMP as specified in the measure.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring: The Planning and Environmental Review Director, or designee, must inspect the Project site periodically for the first five (5) years after completion of Project occupancy to verify compliance with the SWMP.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

This document is a Draft Environmental Impact Report (EIR) for the proposed Heritage Ridge Residential Project. The proposed project involves the development of 360 residential units in eight buildings, as well as two additional recreational buildings and a public park within the City of Goleta.

This section discusses: (1) the EIR background; (2) the legal basis for preparing an EIR; (3) the scope and content of the EIR; (4) lead, responsible, and trustee agencies; and (5) the environmental review process required under the California Environmental Quality Act (CEQA) (California Public Resources Code §§ 21000, et seq.) The proposed project is described in greater detail in Section 2.0, Project Description.

1.1 ENVIRONMENTAL IMPACT REPORT BACKGROUND

A Notice of Preparation (NOP) of an EIR was distributed for a 30-day agency- and public-review period on April 6, 2015. The City received nine letters in response to the NOP. The NOP and NOP comment letters are presented in Appendix A to this EIR. An EIR Scoping Meeting was also held on April 29, 2015 in the Council Chambers of the Goleta City Hall. Note that Appendix A also includes four letters received by the City in response to plan review for the project.

The comments related to CEQA or environmental issues received during the comment period are summarized in Table 1-1.

<table>
<thead>
<tr>
<th>Table 1-1</th>
<th>Scoping Issues Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td>Subject</td>
</tr>
<tr>
<td>Air Quality</td>
<td>- Clean Air Plan consistency</td>
</tr>
<tr>
<td></td>
<td>- Transportation measures to reduce air quality impacts</td>
</tr>
<tr>
<td></td>
<td>- Construction dust and emissions</td>
</tr>
<tr>
<td></td>
<td>- Operational emissions</td>
</tr>
<tr>
<td>Greenhouse Gas Emissions</td>
<td>- Climate change/greenhouse gas emissions</td>
</tr>
<tr>
<td>Hazards and Hazardous Materials</td>
<td>- Asbestos reporting requirements</td>
</tr>
<tr>
<td>Hydrology and Water Quality</td>
<td>- Army Corps permit</td>
</tr>
<tr>
<td></td>
<td>- Stormwater BMPs</td>
</tr>
<tr>
<td>Land Use and Planning</td>
<td>- General Plan consistency</td>
</tr>
<tr>
<td></td>
<td>- New housing/density</td>
</tr>
<tr>
<td>Public Facilities</td>
<td>- Fire safety</td>
</tr>
<tr>
<td>Transportation/Circulation</td>
<td>- Transit demand/bus stops</td>
</tr>
<tr>
<td></td>
<td>- Traffic and rail crossings/safety</td>
</tr>
<tr>
<td></td>
<td>- Traffic congestion</td>
</tr>
<tr>
<td>Utilities</td>
<td>- Application for water service</td>
</tr>
<tr>
<td></td>
<td>- Water demand</td>
</tr>
<tr>
<td></td>
<td>- Sewer service connection</td>
</tr>
</tbody>
</table>
1.2 PURPOSE AND LEGAL AUTHORITY

The proposed project requires the discretionary approval of the City of Goleta Planning Commission and City Council. Therefore, it is subject to the environmental review requirements of CEQA. In accordance with CEQA Guidelines § 15121, the purpose of this EIR is to serve as an informational document that:

...will inform public agency decision-makers and the public generally of the significant environmental effects of a project, identify possible ways to minimize the significant effects, and describe reasonable alternatives to the project.

This EIR has been prepared as a Project EIR pursuant to CEQA Guidelines § 15161. A Project EIR is appropriate for a specific development project. As stated in the CEQA Guidelines § 15161:

This type of EIR should focus primarily on the changes in the environment that would result from the development project. The EIR shall examine all phases of the project, including planning, construction, and operation.

This EIR is to serve as an informational document for the public and City of Goleta decision-makers. The process will culminate with Planning Commission and City Council hearings to consider certification of a Final EIR and approval of the proposed project.

1.3 EIR SCOPE AND CONTENT

This EIR addresses environmental impacts identified by the EIR scoping to be potentially significant in the following issue areas:

- Aesthetics and Visual Resources
- Air Quality
- Biological Resources
- Cultural Resources
- Geology and Soils
- Greenhouse Gas Emissions
- Hazardous Materials/Risk of Upset
- Hydrology and Water Quality
- Land Use
- Noise
- Public Facilities
- Recreation
- Transportation/Circulation
- Utilities and Service Systems

All other issues are addressed in Appendix A and in Section 4.15, Impacts Found Not to Be Significant.

In preparing the EIR, use was made of pertinent City policies and guidelines, certified EIRs and adopted CEQA documents, and background documents prepared by the City. A full reference list is contained in Section 7.0, References and EIR Preparers.

The Alternatives section of the EIR (Section 6.0) was prepared in accordance with CEQA Guidelines § 15126.6, which requires that an EIR examine a reasonable range of alternatives that are capable of avoiding or minimizing a project’s significant effects while achieving most of the basic project objectives. The Alternatives discussion evaluates the CEQA-required “no project” alternative and four alternative development scenarios for the site, as well as project development on an alternative site. It also identifies the environmentally superior alternative among the alternatives assessed.
The level of detail contained throughout this EIR is consistent with the requirements of CEQA and applicable court decisions. The CEQA Guidelines [14 CCR §§ 15000, et seq.] provide the standard of adequacy on which this document is based. The Guidelines state:

An EIR should be prepared with a sufficient degree of analysis to provide decision-makers with information which enables them to make a decision which intelligently takes account of environmental consequences. An evaluation of the environmental effects of the proposed project need not be exhaustive, but the sufficiency of an EIR is to be reviewed in light of what is reasonably feasible. Disagreement among experts does not make an EIR inadequate, but the EIR should summarize the main points of disagreement among the experts. The courts have looked not for perfection, but for adequacy, completeness, and a good faith effort at full disclosure. (CEQA Guidelines § 15151)

1.4 LEAD, RESPONSIBLE, AND TRUSTEE AGENCIES

The CEQA Guidelines define lead, responsible and trustee agencies (CEQA Guidelines § 15367). The City of Goleta is the lead agency for the project because it holds principal responsibility for approving the project.

A responsible agency refers to a public agency other than the lead agency that has discretionary approval over the project (CEQA Guidelines § 15381). A trustee agency refers to a state agency having jurisdiction by law over natural resources affected by a project (CEQA Guidelines § 15386). Other public agencies whose approval may be required and are, therefore, responsible agencies, include the Regional Water Quality Control Board, the U.S. Army Corps of Engineers, and the Santa Barbara County Fire Department. There are no trustee agencies with jurisdiction over the project.

1.5 ENVIRONMENTAL REVIEW PROCESS

The major steps in the environmental review process, as required under CEQA, are outlined below. The steps are presented in sequential order.

1. Notice of Preparation (NOP). After deciding that an EIR is required, the lead agency (City of Goleta) must file an NOP of a Draft EIR soliciting input on the EIR scope to the State Clearinghouse, other concerned agencies, and parties previously requesting notice in writing (CEQA Guidelines § 15082; Public Resources Code § 21092.2). The NOP must be posted in the County Clerk’s office for 30 days. The NOP may be accompanied by an Initial Study or scoping document that identifies the issue areas for which the proposed project could create significant environmental impacts.

2. Draft Environmental Impact Report Prepared. The Draft EIR must contain: a) table of contents or index; b) summary; c) project description and statement of project objectives; d) environmental setting; e) discussion of significant impacts (direct, indirect, cumulative, growth-inducing and unavoidable impacts); f) a discussion of alternatives; g) mitigation measures; and h) for plan amendments, a discussion of irreversible changes.

3. Notice of Completion. The lead agency must file a Notice of Completion with the State Clearinghouse when it completes a Draft EIR (DEIR) and prepare a Public Notice of Availability of a Draft EIR. The lead agency must place the Notice in the County Clerk’s office for 30 days (Public
Resources Code § 21092) and send a copy of the Notice to anyone requesting it (CEQA Guidelines § 15087). Additionally, public notice of DEIR availability must be given through at least one of the following procedures: a) publication in a newspaper of general circulation; b) posting on and off the project site; and c) direct mailing to owners and occupants of contiguous properties. The lead agency must solicit input from other agencies and the public, and respond in writing to all comments received (Public Resources Code §§ 21104 and 21253). The minimum public review period for a DEIR is 30 days. When a DEIR is sent to the State Clearinghouse for review, the public review period must be 45 days unless the Clearinghouse (Public Resources Code § 21091) approves a shorter review period.

4. **Final EIR.** A Final EIR must include: a) the DEIR; b) copies of comments received during public review; c) list of persons and entities commenting; and d) responses to comments.

5. **Certification of Final EIR.** Prior to making a decision on a proposed project, the lead agency must certify that: a) the Final EIR has been completed in compliance with CEQA and reflects the independent judgment of the City; b) the Final EIR was presented to the decision-making body of the lead agency; and c) the decision-making body reviewed and considered the information in the Final EIR prior to approving a project (CEQA Guidelines §15090).

6. **Lead Agency Project Decision.** The lead agency may: a) disapprove a project because of its significant environmental effects; b) require changes to a project to reduce or avoid significant environmental effects; or c) approve a project despite its significant environmental effects, if the proper findings and statement of overriding considerations are adopted CEQA Guidelines § 15042-15043).

7. **Findings/Statement of Overriding Considerations.** For each significant impact of the project identified in the EIR, the lead agency must find, based on substantial evidence, that either: a) the project has been changed to avoid or substantially lessen the magnitude of the impact; b) changes to the project are within another agency’s jurisdiction and such changes have or should be adopted; or c) specific economic, social, or other considerations make the mitigation measures or project alternatives infeasible (CEQA Guidelines § 15091). If an agency approves a project with unavoidable significant environmental effects, it must prepare a written Statement of Overriding Considerations that sets forth the specific social, economic, or other reasons supporting the agency's decision.

8. **Mitigation Monitoring Reporting Program.** When the lead agency makes findings on significant effects identified in the EIR, it must adopt a reporting or monitoring program for mitigation measures that were adopted or made conditions of project approval to mitigate significant effects.

9. **Notice of Determination.** The lead agency must file a Notice of Determination after deciding to approve a project for which an EIR is prepared (CEQA Guidelines §15094). A local agency must file the Notice with the County Clerk within 5 working days of approval of the project by the lead agency. The Notice must be posted for 30 days. Posting of the Notice starts a 30-day statute of limitations on CEQA legal challenges (Public Resources Code § 21167[c]).
2.0 PROJECT DESCRIPTION

The Heritage Ridge Residential Project (the “Project”) involves a proposal to develop 360 housing units and a two-acre neighborhood park on a 17.36 gross acre site within the Inland Area of the City of Goleta (“City”). This section describes the project location, characteristics of the site and the Project, Project objectives, and the approvals needed to implement the Project.

2.1 PROJECT APPLICANT

Project Applicant:
Michael Towbes
The Towbes Group
21 E. Victoria Street, Suite 200
Santa Barbara, CA 93101

Applicant’s Representatives:
Craig Minus & Linda Blackbern
The Towbes Group
21 E. Victoria Street, Suite 200
Santa Barbara, CA 93101

2.2 PROJECT SITE

2.2.1 Project Location and Surrounding Land Uses

The Project site is a currently vacant site north of Camino Vista and east of S. Los Carneros Road within the City of Goleta, in Santa Barbara County. The site encompasses 17.36 gross acres (16.2 net acres). The net developable area is 14.24 acres which excludes the 3.12 acres within the archaeological constraint area. The site is currently comprised of lots 1 through 13 of Tract No. 13646 in the City of Goleta, California, as per map recorded in book 150, pages 92 through 98 in the Office of the County Recorder of Santa Barbara County. These lots are also identified with assessor’s parcel numbers (APN) 073-060-031 through -043. Additional site information is provided in Table 2-1. Figure 2-1 shows the site’s location within the region, while Figure 2-2 illustrates the location of the site within the City of Goleta.

To the north of the Project site, the Union Pacific Railroad tracks are located approximately 50 feet from the site’s northern property line. The U.S. Highway 101 (U.S. 101) southbound freeway on-ramp from S. Los Carneros Road is immediately north of the railroad tracks, which is approximately 160 feet from the sites’ northern property line. Highway U.S. 101 is located north of the on-ramp, approximately 250 feet from the northern property line. Calle Koral and S. Los Carneros Road are located west of the Project site. A residential development with 465 residential units is currently under construction on a formerly vacant site west of S. Los Carneros Road. To the east of the Project site, industrial businesses are located along Aero Camino. Across Camino Vista to the south of the Project site are 335 multi-family residential units (Willow Springs I and II) previously constructed and currently managed by the Project applicant. Surrounding land uses are labeled on the aerial view of the Project site shown on Figures 2-3 and 2-4.

2.2.2 Land Use Designation and Zoning

The Project site has a Goleta General Plan/Coastal Land Use Plan (“General Plan”) land use designation of Medium-Density Residential (R-MD) and is located in the “Central Hollister Residential Development Area” with a corresponding designation as an Affordable Housing Opportunity Site. This designation requires a minimum residential density of 20 units per acre and a maximum density of 25 units per acre. The Inland Zoning Ordinance as adopted by the Goleta Municipal Code (“GMC”) designation of Design Residential (DR-20) permits up to a maximum of 20 units per acre. Figure 2-3 identifies the General Plan...
Regional Location

Figure 2-1

Heritage Ridge Residential Project EIR
Section 2.0 Project Description

Imagery provided by ESRI and its licensors © 2015.
Existing General Plan Land Use Designation in Project Vicinity
land use designations for the Project site and surrounding properties. Figure 2-4 provides the zoning designations for the Project site and the surrounding properties. Table 2-1 provides site and surrounding land use information.

<table>
<thead>
<tr>
<th>Existing General Plan Land Use Designation</th>
<th>Medium Density (R-MD), Central Hollister Residential Development Area, Affordable Housing Opportunity Site, maximum 25 units/acre; minimum 20 units/acre; Planned 2 acre Neighborhood Park Site (Open Space Element Figure 3-2).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoning Regulations, Zone District</td>
<td>Article III, Chapter 35 of the Goleta Municipal Code (Inland Zoning Ordinance) zoned Design Residential, 20 units/acre (DR-20)</td>
</tr>
<tr>
<td>Site Size</td>
<td>17.36 gross acres</td>
</tr>
<tr>
<td>Developable Area (minus archeological site)</td>
<td>14.2 net developable acres</td>
</tr>
<tr>
<td>Present Use and Development</td>
<td>Undeveloped</td>
</tr>
<tr>
<td>Surrounding Uses/Zoning</td>
<td>North: UPRR tracks, U.S. 101 southbound on-ramp, U.S. 101 South: Camino Vista and multifamily residential development (Willow Springs I and II) zoned PRD East: Commercial and Industrial Businesses zoned M-1 West: Los Carneros and Calle Koral with vacant land beyond which has an approved residential development (Villages at Los Carneros) zoned PRD under construction</td>
</tr>
<tr>
<td>Access</td>
<td>Primary: Camino Vista Secondary: Calle Koral/South Los Carneros and Aero Camino</td>
</tr>
<tr>
<td>Public Services</td>
<td>Police: Santa Barbara County Sheriff's Department Fire: Santa Barbara County Fire Department; Station 14 School Districts: Santa Barbara High School District/Goleta Union School District</td>
</tr>
</tbody>
</table>

2.3 SITE CHARACTERISTICS AND USES

The current characteristics of the Project site are summarized in the discussion that follows. Additional details of the current site setting can be found in Section 3.0, Environmental Setting, and in the individual issue area discussions in Section 4.0, Environmental Impact Analysis.

2.3.1 Historic and Current Uses

Historically, the Project site and vicinity were in agricultural production. Before 1928, the project area was used for agriculture and grazing. An archaeologically sensitive site was identified on, and directly south of the Project site. This prehistoric archaeological site was originally recorded by David Banks Rogers (1929). Based on the excavation of 46 trenches, Rogers characterized the very dense archaeological deposits associated with a village site dating to the Early Period (“Oak Grove,” 8,000 to 3,350 years before present [B.P.]), and Late Period (“Canalino,” 800 to 150 B.P.). Excavations conducted in 1982 (Gerstle and Serena, 1982) resulted in a determination that the on-site archaeological deposits were eligible for listing on the National Register of Historic Places. The boundary of the archaeological area and a 50-foot buffer have been fenced to ensure that no disturbance to the resource occurred during placement of stockpile soils outside of this area.

In 1986, a mass grading plan for the Project site was submitted, approved, and initiated (Mac Design Associates, 1997). Initial grading on-site consisted of clearing and grubbing of orchard trees and root
structures. Surface material was scraped and placed in windrows. Investigations of prehistoric cultural resources were undertaken and grading resumed outside of fenced sensitive archaeological areas (Mac Design Associates, 1997). The northwest corner of the Project site was used as a staging area for fill during the Los Carneros Road/U.S. 101 interchange construction (Mac Design Associates, 1997). Ongoing activity associated with two stockpile permits first issued in 2002 avoided the fenced archaeological area and 50-foot buffer.

Currently, the Project site consists of 13 undeveloped lots. There is no structural development on site; however, there are pieces of construction equipment and containers stored on site, as well as approximately 293,000 cubic yards of stockpiled soil.

2.3.2 Existing Topography, Drainage, and Vegetation

The Project site is relatively flat to gently sloping with the exception of the moderately steep slopes that define the boundary of the stockpile soils along the perimeter of the archaeological area and the eastern, western, northern, and southwestern property lines. Topography within the archaeological area is characterized by a modest ridge that trends generally northwest to southeast between 25 and 36 feet above sea level (ASL). Low-lying level soils drain generally to the south. Soil stockpiling has resulted in elevating surrounding topography to approximately 43 ASL. As a result, the central portion of the site has the highest elevations on the property and forms a ridge that divides the site drainage, with approximately half of the site draining in a westerly direction and half of the site draining in an easterly direction from the higher, center portion of the site. Ultimately, all runoff from the site drains through existing storm drains and into a 7.25-acre treatment wetland located south of the Willow Springs property. Runoff entering the treatment wetland drains across 500 feet and 950 feet of wetland vegetation before leaving the Willow Springs property at Hollister Avenue.

Soils in the project area are mapped as Goleta fine sandy loam, 0% to 2% slopes, Milpitas-Positas fine sandy loam, 2% to 9% slopes, and Xerorthents cut and fill areas (United States Geological Survey 1982). A sparse to moderate growth of weeds and brush covers the site. Vegetative cover on the property is variable and dependent upon the activity of the stockpile (Mac Design Associates 2014).

2.3.3 On-Site Stockpiled Soil

Based on information provided in the Project grading plan, the amount of stockpiled dirt on the Project site totals 293,100 cubic yards. Of these 293,100 cubic yards, 115,000 cubic yards of soil would be exported off-site before construction of the Project. The removal of this soil is expected to follow one of two pre-construction export scenarios (City of Goleta, 2015):

1. Pre-Construction Export Scenario 1: Total of 25,556 one-way haul truck trips (12,778 round truck trips) assuming a truck capacity of 9 CY over a 27-week export phase.
2. Pre-Construction Export Scenario 2: Total of 11,500 one-way haul truck trips (5,750 round truck trips) assuming a truck capacity of 20 CY over a 24-week export phase.

Soil hauling activities would also require three workers on site to load material and two trucks driven to the site daily.
2.4 PROJECT OBJECTIVES

The applicant’s objectives for the Project are to:

1. Complete development of residential units in the Central Hollister Residential Development area on Affordable Housing Opportunity Site.
2. Construct 132 senior apartment units and 228 market rate/workforce apartment units.
3. Create an infill development of high density senior and workforce rental housing to be at lower rental rates than the adjacent Willow Springs I and Willow Springs II multifamily housing projects.
4. Fully utilize the existing public infrastructure (Camino Vista and all utilities) provided by Willow Springs and Willow Springs II.
5. Promote City planning goals by developing a high density residential project located conveniently close to a major transportation corridor and to employment and recreational areas.
6. Provide a public neighborhood park in the location shown in General Plan Figure 3-2 (Park and Recreation Plan Map).
7. Protect, and preserve on-site cultural resources.
8. Develop multifamily residential housing while maintaining visual resources.

2.5 PROJECT

The Heritage Ridge Residential Project involves a Vesting Tentative Map to merge 13 existing lots into two-lots for residential use and one lot for a two-acre public park. This includes abandonment of the associated undeveloped road parcels for Via Maya and Via Luisa. The project also includes a request for the City to vacate the easement for Los Carneros Road which crosses the northwestern corner of the site and the slope easement along Los Carneros Road and Calle Koral.

A Development Plan is proposed for 360 residential apartment units in eight buildings, as well as two recreational buildings. The western portion of the Project (Area A) would be senior housing comprised of two residential buildings with a total of 132 units and one recreation building with a pool, spa and gym, plus outdoor recreation and barbecue facilities. The two buildings that face Camino Vista are three-stories in height. The corners on each building would be two-stories in height and provide an outdoor deck for use by the residents. These buildings would have elevators and central corridors. Of the 132 units, 108 would have one bedroom and 24 would have two bedrooms.

The eastern portion of the Project (Area B) would be workforce housing comprised of six residential buildings with a total of 228 units (Buildings 3 through 8) and one recreation building with pool, spa, gym, children’s play equipment and barbecue facilities. Building 6 which is closest to Camino Vista would have no third floor corner units facing Camino Vista. Similar to the senior housing development, the corners on this building would be two-stories in height and provide an outdoor deck for use by the residents. The three-story buildings would have elevators and central corridors.

The northern portion of Area B (Buildings 3, 4 and 5) would include 80 workforce housing units. Of the 80 units, 56 would have one bedroom and 24 would have three bedrooms. The eastern portion of Area B would be developed with three three-story buildings (Buildings 6, 7, and 8) that would include 148
workforce housing units. Buildings 6, 7, and 8 would include 93 one-bedroom units and 55 two-bedroom units. A total of 228 parking spaces would be provided for Buildings 6, 7, and 8 in Area B. A pool, recreation area, and leasing office would be located to the south of Building 8. All units will be rental apartments.

Without a density bonus, the maximum number of units allowed on the site based on General Plan density for this site (up to 25 units per acre) is 356 units. However, as Area A is proposed as a housing development for seniors 55 years and older or 62 years and older, this portion of the site is eligible for density bonus pursuant to California Civil Code section 51.3(a). These provisions allow for up to a 20% density bonus for senior units or 26 additional senior housing units at this site. The senior housing component would have 132 units, four of which would be senior density bonus units as permitted by Government Code sections 65915(b)(1)(C) and 65915(f)(3). The applicant is proposing a 3% density bonus associated with the senior units. The project site would have a total density of 25.4 units per acre.

Proposed on-site parking for the total Project site includes 292 carports, 205 uncovered parking spaces, two van accessible spots, and 13 uncovered parking spaces for the public park, for a total of 512 parking spaces. A Modification for Parking Standards is proposed to allow the senior component to provide 152 parking spaces rather than the required 183 spaces and the workforce housing component to provide 345 spaces rather than the required 367 spaces. Table 2-2 summarizes the Project’s residential buildings and unit counts. The Project site plan is illustrated on Figure 2-5.

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Housing Type</th>
<th>Number of Buildings</th>
<th>Total Units</th>
</tr>
</thead>
</table>
| 3 Story Senior Housing | Multi-family Dwelling | 2 | 108 One-Bedroom Units
 | | | 24 Two-Bedroom Units |
| 2-Story Workforce Housing | Multi-family Dwelling | 3 | 56 One-Bedroom Units
 | | | 24 Three-Bedroom Units |
| 3-Story Workforce Housing | Multi-family Dwelling | 3 | 93 One-Bedroom Units
 | | | 55 Two-Bedroom Units |
| Total | | 8 | 360 units |

Based on an average household size of 2.76 persons for workforce housing (228 units proposed) and 1.11 persons for senior housing (132 units proposed), the Project’s estimated population would be approximately 776 persons (Department of Finance, 2015; The Towbes Group, Inc., 2014).

As described in Section 2.3.3, a total of 115,000 cubic yards of soil is expected to be exported off-site before construction of the Project.

The project also includes an amendment to the General Plan that would revise Figure 3-5 of the Open Space Element and Figure 4-1 of the Conservation Element to remove an Environmentally Sensitive Habitat Area (ESHA) designation of Coastal Sage Scrub that does not occur on the property.

2.5.1 Site Layout/Coverage

The Project is divided into two areas on the site: Area A on the western portion of the Project site and Area B on the eastern portion of the Project site. Area A would be developed with two three-story
This page intentionally left blank.
buildings (Buildings 1 and 2) that would house 132 senior apartment units and recreation buildings on a 213,826 gross square foot lot, fronting on Camino Vista. Area B on a 404,310 gross square-foot lot would be developed with three two-story buildings (Buildings 3, 4, and 5) and three three-story buildings (Buildings 6, 7 and 8) for the workforce apartment units and a recreation building. Total building coverage is 19% of net lot area. Common open space (excluding the park) is 32% of net lot area including the two-acre public park, the common open space is 45.15% of the net lot area. The two-acre public neighborhood park with 13 parking spaces is located in Area B. A conceptual plan of the recreation improvements includes an activity trail, benches, barbecue area, picnic tables, bicycle parking, level turf play area, and native landscaping. Table 2-3 provides a summary of the Project and its amenities.

<table>
<thead>
<tr>
<th>Site Coverage:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Coverage</td>
<td>3.6 acres (22% of net site area)</td>
</tr>
<tr>
<td>Parking</td>
<td>3.9 acres* (approx.)</td>
</tr>
<tr>
<td>Bioretention Basin</td>
<td>0.8 acres (approx.)</td>
</tr>
<tr>
<td>Public Park</td>
<td>2.0 acres</td>
</tr>
<tr>
<td>Common Open Space</td>
<td>5.9 acres (42% of net site area)</td>
</tr>
<tr>
<td>Net Site Area</td>
<td>16.2 acres</td>
</tr>
<tr>
<td>Residential Units</td>
<td>360 total units (322,903 GSF)</td>
</tr>
<tr>
<td></td>
<td>• 132 senior housing units</td>
</tr>
<tr>
<td></td>
<td>• 228 workforce homes</td>
</tr>
<tr>
<td>Density</td>
<td>25.4 dwelling units/acre, including four density bonus units</td>
</tr>
<tr>
<td>Maximum Building Height</td>
<td>35 feet</td>
</tr>
<tr>
<td>Parking</td>
<td>292 spaces - Carport</td>
</tr>
<tr>
<td></td>
<td>205 spaces – Open</td>
</tr>
<tr>
<td></td>
<td>2 spaces – Van Accessible</td>
</tr>
<tr>
<td></td>
<td>13 spaces – Public Park Open</td>
</tr>
<tr>
<td></td>
<td>512 spaces</td>
</tr>
<tr>
<td>Community Amenities</td>
<td>• Senior Recreation Area (2,828 GSF)</td>
</tr>
<tr>
<td></td>
<td>• Apartment Housing Outdoor Recreation Area (4,065 GSF)</td>
</tr>
<tr>
<td></td>
<td>• Two Recreation Buildings</td>
</tr>
<tr>
<td></td>
<td>• Public Park (2 totaling 2 acres)</td>
</tr>
<tr>
<td></td>
<td>• Two Pools</td>
</tr>
</tbody>
</table>

*Carport assumes 250 square feet per parking space

2.5.2 Site Access and Parking

The existing Camino Vista that fronts on the south side of the Project site will be widened to 43-feet curb to curb allowing on-street parking on the north side of the road. Access to the Project site would be provided via three driveway connections providing ingress and egress to Camino Vista. As shown on Figure 2-5, the eastern driveway would be aligned opposite the driveway that serves the existing Willow Springs II site and the western driveway would be aligned opposite the driveway that serves the Willow Springs I site. The middle driveway connection would provide access to the site as well as the proposed public park. The eastern and middle driveways serve the workforce housing development on Area B. The western driveway serves the senior housing development on Area A.
The Project includes 152 parking spaces (112 covered carport spaces and 40 uncovered surface spaces) for the senior housing units, 345 spaces for the workforce housing units (180 covered carport spaces and 165 uncovered surface spaces), and 13 uncovered parking spaces for the park (all public park parking spaces would be signed). The parking supplies for the individual components of the Project would not be shared. The proposed number of parking spaces for each development does not meet the City’s parking requirements as required by the City’s zoning regulations. Based on the current zoning regulations, the 132 senior housing units component is required to provide 183 spaces and the 228 workforce housing component is required to provide 367 parking space Therefore, the Project includes a request for a parking modification (a reduction of 38 parking spaces or 7%) to the zoning regulation requirement for both the senior housing and workforce housing developments.

2.5.3 Grading/Walls

The Project would include mass grading to prepare the site to support the residential development. Grading operations would include the construction of individual building pads for each structure, over-excavation as needed for roadways and driveways, and trenching and backfilling for installation of underground utilities. Preliminary earthwork quantities are estimated at 178,000 cubic yards of cut and 15,500 cubic yards of fill. Approximately 115,000 cubic yards of export required before construction of the Project, as described in detail in Section 2.3.3, On-Site Stockpiled Soil.

Proposed development within the sensitive portion of the identified on-site archaeological site (CA-SBA-56 site plus a 50-foot buffer) would use protective fill soils to cap the existing cultural resource. To prevent disturbance of the soil at this location, existing vegetation within the boundary of the archaeological site would be removed by hand, remaining root balls and masses would be sprayed with a topical herbicide to ensure no further growth, and the resulting dead masses of vegetation would be left in place. A geotextile tensar fabric (Tensar BX1200 or equivalent) would be placed on top of the existing ground surface to reduce the force of compaction from overlying fill soils and redistribute the compaction load force over a wider area, thereby minimizing the disturbance of friable (brittle) cultural remains such as shellfish and animal bone. No remedial grading, subgrade preparation or scarification would occur prior to placement of the geotextile fabric. Then the archaeological site and a 50-foot buffer would be covered in a minimum of two feet of protective fill soil to prevent direct impacts to archaeological resources. Fill soils would be spread from the outside in no greater than eight-inch lifts with rubber-tired equipment, such that equipment only operates on top of the fill soils.

The Project would include a masonry wall of approximately eight feet in height along the northern and western project boundaries.

2.5.4 Stormwater and Drainage

The Preliminary Grading and Drainage Plans (dated September 2014) for the Project show permeable pavement and bioretention area locations, as shown on Figure 2-6. The Project site includes three primary bioretention basins, as well as other smaller bioretention areas and permeable pavement throughout the Project site. The three primary bioretention basins include a 7,600 square foot basin south of Building 5, a 4,700 square foot basin south of Building 6 along the southeast border of the Project site, and a 15,000 square foot basin east of Building 6. The Project would be required to incorporate best management practices (BMPs) to reduce stormwater runoff from the site, consistent
Grading and Drainage Plan

Figure 2-6

City of Goleta
with the County of Santa Barbara’s Storm Water Technical Guide, which the City adopted in March 2014 (County of Santa Barbara, 2014).

An existing bioretention basin is located southwest of the Willow Springs I development to the south of the Project site. Drainage from the Project site is tributary to the previously constructed Willow Springs I & II developments. Therefore, storm drains that would be constructed as a part of the Project would tie to the existing storm drains within Willow Springs I & II, which ultimately drain to the existing retention basin located along the southwest boundary of Willow Springs I. The hydrological plan for the Willow Springs I & II projects accounted for the future phased development of the Project site in the design of their storm drains and the bio-retention basin. This bio-retention area is maintained in perpetuity as a wetland in accordance with the Army Corps of Engineers (ACOE) 404 permit (associated with Willow Springs I development. This wetland anticipates stormwater flow associated with Willow Springs I, Willow Springs II and Heritage Ridge (Willow Springs North). The development of the Project site will not significantly change the amount of stormwater run-off planned to sustain the wetland (Table 4.8-1, Section 4.8 Hydrology and Water Quality).

2.5.5 Landscaping

Figure 2-7 shows the Preliminary Landscape Plan for the Project, which provides a suggested plant palette and layout for the Project site. The landscape plan is comprised primarily of native or climate appropriate plants with some small turf areas for recreation purposes. Plant species in the plant palette include but are not limited to coast live oak, California sycamore, fruitless olive, dwarf bottle brush, and dwarf coyote bush. Trees, shrubs and other vegetation would be planted throughout the development as well as low-water-use, Mediterranean and wildlife habitat plant species. Landscape treatments would be provided between buildings, curb bump-outs throughout parking areas, along common walkway areas, within the neighborhood park, recreation areas, and around the perimeter of the two development sites. Within the park, a turf area is proposed on the western side adjacent to picnic tables, and a meadow with native plantings is proposed in the center of the Project site. A portion of the park area with sensitive archeological resources would be fenced. Based on the Project site plan, the total landscaped area for the Project is approximately 1.6 acres, excluding the 2.0-acre park area, or about 10% of the 17.36-gross-acre Project site.

2.5.6 Lighting

The Exterior Lighting Report, prepared by Alan Noelle Engineering on May 20, 2015, describes the proposed exterior lighting concepts and fixtures for the project. LED lighting will be the primary source of exterior lighting unless a necessary fixture is not available. LED lighting possess very efficient production of light, allows for directed light to only areas where it is needed and uses less electricity than other lighting sources. Elimination of decorative fixtures allows for the primary use of LED lighting.

Pole Lighting. Due to the relatively large size (17.36 acres) of the project site, it is necessary to utilize poles for lighting. However, the architectural design of the site limits the number of poles needed. Pole lighting will be largely limited to the proposed parking areas and the proposed neighborhood park area. The proposed poles would be slim and dark with a shallow (thin) type wedge or box type fixture at around 12’-14’ in height, eliminating them from sight.

Pedestrian Level Lighting. For walkways, pathways, and other areas of pedestrian traffic, lower level type bollard lighting is proposed. This type of lighting would possess simple shapes (round housing)
with fixtures at about 42 inches tall. The light from these fixtures would be aimed downwards and outwards and would be colored to match surrounding features (i.e. benches, railing).

Site Structure Lighting. Structures on the project site would include downlighting for security and usability. These structures include carports, trash enclosures, mailbox kiosks, and directory signs.

Visible Building Lighting. A small number of decorative lights are included in the conceptual plans for the proposed project. These lights are to serve as visual elements, assist in determining one's location, as well as help with safety. These fixtures are proposed primarily for aesthetics and would be simple vertical shapes that would not generate significant lighting.

Hidden Building Lighting. Each proposed building would possess structurally hidden light fixtures. Downlighting or full cut-off style wall mounted fixtures would be included at every building entrance.

Park Area Lighting. The proposed lighting for the park area of the project would include LED lighting and design features that merge the new building styles with those of the existing surrounding uses.

2.5.7 Utilities

Table 2-4 summarizes the utility service providers for the Project. Water would be provided by the Goleta Water District. Sewer would be provided by the Goleta Sanitary District. Utility easements would be recorded for utility services. A portion of the Goleta West Sanitary Sewer line which is now in an easement at the eastern property boundary would be relocated into the proposed driveway at the west side of the site. All electrical distribution lines, fiber optic lines, cable television lines, phone lines, gas lines, water lines, and sewer lines would be undergrounded. Other components of the site’s utility infrastructure, such as backflow preventers, transformers, water meter assemblies, gas meters, power meters, cable TV pedestals, etc. would be installed above ground. Mechanical equipment would be ground-mounted on concrete pads adjacent to the residential structures.

<table>
<thead>
<tr>
<th>Utility Service Providers</th>
<th>Utility Service Provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Service</td>
<td>Goleta Water District</td>
</tr>
<tr>
<td>Sewer</td>
<td>Goleta West Sanitary District</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>Southern California Gas Company</td>
</tr>
<tr>
<td>Electricity</td>
<td>Southern California Edison</td>
</tr>
<tr>
<td>Cable Television</td>
<td>Cox Communications</td>
</tr>
<tr>
<td>Telephone</td>
<td>Verizon, Qwest, AT&T, Level 3</td>
</tr>
<tr>
<td>Solid Waste Pick-up</td>
<td>Marborg Industries</td>
</tr>
</tbody>
</table>

Water use restrictions and a temporary halt on new water services are currently being instituted by the Goleta Water District; however, a Superior Court judgment [Wright v. Goleta Water Dist. (1985) 174 Cal. App.3d74] has allocated 100.9 acre-feet per year (AFY) of water to serve development on the site (refer
to Section 4.14, *Utilities and Service Systems*, for more detail regarding water supply to the Project site). Therefore, the temporary halt on new services does not apply to the Project.

2.6 CONSTRUCTION

Construction activities would include site preparation, export of excess dirt, grading, building construction, paving and architectural coating phases. Construction of the proposed Project is estimated to take approximately 2.5 years. Pre-construction removal of the stockpiled soil on the project site, described in detail in Section 2.3.3, is estimated to take up to 24-27 weeks and require between 5,750 and 12,778 round truck trips (depending on whether 20 CY or 9 CY haul trucks are used). No phasing plan is proposed at this time. Public infrastructure improvements would include fire hydrants, sidewalks, curb and gutter.

2.7 REQUIRED APPROVALS

The Project requires City approval of the following applications:

- **Vesting Tentative Map** (14-049-STM): A vesting tentative map is proposed to combine 13 existing lots plus the existing two street parcels into three parcels comprising of Areas A and B (senior housing and workforce housing respectively) and the neighborhood public park. The tentative parcel map also includes the vacation of a road easement for Los Carneros Road and an easement for landscape purposes along Los Carneros Road and Calle Koral.

- **Development Plan** (14-049-DP): A Development Plan would provide project-specific development standards for the Project components including site layout, building architecture, parking and landscaping.

- **General Plan Amendment** (14-049-GPA): Amendments to General Plan Figures 3-5 and 4-1 (Open Space and Conservation Elements) to remove an Environmentally Sensitive Habitat Area (ESHA) designation of Coastal Sage Scrub that does not occur on the property.

- **Parking Modification**: A parking modification from the parking standards of the City’s Zoning Ordinance is requested to reduce the parking requirement from 550 spaces to 510 spaces.

Other public agencies whose approval may be required include:

- **Regional Water Quality Control Board – National Pollutant Discharge Elimination System (NPDES) Storm Water Permit**
- **U.S. Army Corps of Engineers – 404 Permit**
- **Santa Barbara County Fire Department – Access and storage of hazardous materials, which can include cleaning products, pesticides, chlorine and other swimming pool chemicals, and other materials**
3.0 RELATED PROJECTS

Cumulative impacts are defined as two or more individual events that, when evaluated together, are significant or would compound other environmental impacts. Cumulative impacts are the changes in the environment that result from the incremental impact of the development of a proposed project and other nearby projects. For example, traffic impacts of two nearby projects may be inconsequential when analyzed separately, but could have a substantial impact when analyzed together.

CEQA Guidelines § 15130 requires a discussion of cumulative impacts. The discussion of related or cumulative projects may be drawn from either a “list of past, present, and probable future projects producing related or cumulative impacts” or a “summary of projections contained in an adopted general plan or related planning document or in a prior environmental document which has been adopted or certified, which described or evaluated regional or area wide conditions contributing to the cumulative impact.”

The cumulative analysis in this EIR considers a list of recently approved, under construction, currently planned, and pending projects in the area, shown in Table 3-1. This list dated February 23, 2015, and was the most up-to-date list available at the time of the release of the Notice of Preparation for this EIR (April 15, 2015). The City of Goleta has updated their list of projects since this date, including removing projects listed as “under construction that have been completed, updating the status of projects on the list, and adding three new projects:

- The Fairview Commercial Center project (16,216 sf of mixed use);
- The Fuel Depot project (reconstruction of a 2,396 sf convenience store/auto-service building); and
- The Westar Final Phase project (33 studio apartments).

None of these projects are located adjacent to or near the Heritage Ridge Residential Project site, and would not be reasonably expected to result in any cumulative impacts not already considered in this EIR, or other changes to any of the cumulative impact conclusions in this EIR. Therefore this list was determined to be appropriate for use at the time the technical analysis for this EIR was conducted. The location of these projects is shown in Figure 3-1. These related projects are considered in the cumulative analyses in Section 4.0, Environmental Impact Analysis.

Table 3-1
Cumulative Projects in the Goleta Area

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Description</th>
<th>Location</th>
<th>Project Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Goleta Projects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haskell’s Landing</td>
<td>42 single family residential (SFR) units, 59 multi-family residential (MFR) units</td>
<td>Hollister Avenue & Las Armas Road</td>
<td>Under construction</td>
</tr>
<tr>
<td>Goleta Valley Cottage Hospital</td>
<td>Hospital: 93,090 square feet (SF) Existing; 152,658 SF Approved; 59,568 SF net new</td>
<td>351 S. Patterson at Hollister Avenue</td>
<td>Under construction</td>
</tr>
<tr>
<td>Cabrillo Business Park</td>
<td>Business Park - new structures total 693,100 SF (R&D, self-storage, service uses; 241,682 SF existing; 934,782 SF total)</td>
<td>6767 Hollister Avenue</td>
<td>Under construction</td>
</tr>
</tbody>
</table>
Table 3-1
Cumulative Projects in the Goleta Area

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Description</th>
<th>Location</th>
<th>Project Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Westar</td>
<td>266 apartment units; Approx. 86,000 SF of commercial retail</td>
<td>7000 Hollister Avenue (N/E corner of Glen Annie Road and Hollister)</td>
<td>Under construction</td>
</tr>
<tr>
<td>GVCH Medical Office Building Reconstruction</td>
<td>Medical Office Building: Demo Existing 41,224 SF; 52,000 SF Approved; 10,776 SF Net New</td>
<td>5333 Hollister Avenue</td>
<td>Under construction</td>
</tr>
<tr>
<td>Camino Real Marketplace Ice in Paradise</td>
<td>46,479 SF ice skating rink</td>
<td>Santa Felicia Drive</td>
<td>Under construction</td>
</tr>
<tr>
<td>Villages at Los Carneros</td>
<td>465 units on 43.14 Acres (56 SFR, 409 MFR)</td>
<td>Adjacent to 71 S. Los Carneros Road</td>
<td>Under construction</td>
</tr>
<tr>
<td>Discovery Self-Storage Facility at CBP</td>
<td>111,100 SF self-storage facility (note: square footage is already included within the overall Cabrillo Business Park Scope)</td>
<td>350 Coromar Drive and 6640 Discovery Drive</td>
<td>Under construction</td>
</tr>
<tr>
<td>Robinson LLA-related lots</td>
<td>13 SFR units</td>
<td>Baker, Violet, and Daffodil Lanes</td>
<td>Approved; 9 of 13 units completed</td>
</tr>
<tr>
<td>Islamic Society of SB</td>
<td>6,183 SF building with prayer room, meeting area and 1 SFR caretaker unit</td>
<td>N/E Corner of Los Carneros and Calle Real</td>
<td>Approved</td>
</tr>
<tr>
<td>Citrus Village</td>
<td>10 MFR units</td>
<td>7388 Calle Real</td>
<td>Approved</td>
</tr>
<tr>
<td>Renco Encoders</td>
<td>Existing M-RP building (33,600 SF); add 8,800 SF manuf. space; add 10,400 SF office</td>
<td>26 Coromar Drive</td>
<td>Approved</td>
</tr>
<tr>
<td>Mariposa at Ellwood Shores</td>
<td>62,481 SF assisted living (90 residents)</td>
<td>7760 Hollister Avenue</td>
<td>Approved</td>
</tr>
<tr>
<td>Schwann Self Storage</td>
<td>111,730 SF self-storage facility</td>
<td>10 S. Kellogg Avenue</td>
<td>Approved</td>
</tr>
<tr>
<td>Marriott Residence Inn</td>
<td>80,989 SF hotel (118 rooms)</td>
<td>6300 Hollister Avenue</td>
<td>Approved</td>
</tr>
<tr>
<td>Cortona Apartments</td>
<td>176 MFR units</td>
<td>6830 Cortona Drive</td>
<td>Approved</td>
</tr>
<tr>
<td>Rincon Palms Hotel</td>
<td>95,678 SF hotel; 138 rooms with meeting space</td>
<td>6868/6878 Hollister Avenue</td>
<td>Approved</td>
</tr>
<tr>
<td>Harvest Hill Ranch</td>
<td>7 lot subdivision with a net of 6 homes (SFR)</td>
<td>880 Cambridge Road</td>
<td>Approved</td>
</tr>
<tr>
<td>Somera Medical Office Building</td>
<td>20,000 SF net new medical/ dental office building</td>
<td>454 S. Patterson Avenue</td>
<td>Approved</td>
</tr>
<tr>
<td>Pacific Beverage at CBP</td>
<td>Includes a Lot Line Adjustment among 4 lots. On newly adjusted Lot 19, 2 new buildings will be constructed: a 93,780 SF office/warehouse building and a 3,200 SF truck maintenance/storage building</td>
<td>S/W Corner of Coromar Drive and Discovery Drive</td>
<td>Approved</td>
</tr>
</tbody>
</table>
Table 3-1
Cumulative Projects in the Goleta Area

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Description</th>
<th>Location</th>
<th>Project Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Town Industrial Center</td>
<td>186,770 SF new Light Industrial with outdoor storage and 5,100 SF office building</td>
<td>891 S. Kellogg Avenue</td>
<td>Approved</td>
</tr>
<tr>
<td>Taylor Parcel Map</td>
<td>3 SFR units</td>
<td>590 N. Kellogg Avenue</td>
<td>Pending (on hold)</td>
</tr>
<tr>
<td>Shelby Trust</td>
<td>60 SFR units</td>
<td>7400 Cathedral Oaks Road</td>
<td>Pending</td>
</tr>
<tr>
<td>Sturgeon Building</td>
<td>6,046 SF retail/medical office</td>
<td>SE Corner of Los Carneros and Calle Real</td>
<td>Pending (on hold)</td>
</tr>
<tr>
<td>Kenwood Village</td>
<td>60 residential units (13 SFR, 47 MFR)</td>
<td>Calle Real w/o Calaveras Avenue</td>
<td>Pending</td>
</tr>
<tr>
<td>Target Store</td>
<td>120,690 SF net new grocery market (demo 44,110 SF; new building is 164,800 SF)</td>
<td>6466 & 6470 Hollister Avenue & 170 Los Carneros Way</td>
<td>Pending</td>
</tr>
<tr>
<td>St. George Mixed Use Project</td>
<td>New 3-story mixed-use residential building; 4 new residential buildings with 2 units each (MFR).</td>
<td>5392 & 5400 Hollister Avenue</td>
<td>Pending</td>
</tr>
<tr>
<td>Fairview Gardens</td>
<td>Farm Labor Camp Revision; Special Events Permit; and Sale of Ag related products grown offsite</td>
<td>598 North Fairview Avenue</td>
<td>Pending</td>
</tr>
<tr>
<td>Taco Bell</td>
<td>1,686 SF fast food restaurant with a drive-through facility</td>
<td>7127 Hollister Avenue</td>
<td>Pending</td>
</tr>
<tr>
<td>Fuel Depot with Car Washes</td>
<td>1,667 SF new drive-in carwash, self-serve car wash, gas fueling dispensers and manager’s residence; Zizzo’s Coffee building to remain</td>
<td>370 Storke Road</td>
<td>Pending</td>
</tr>
<tr>
<td>Old Town Village</td>
<td>Mixed use of 175 townhomes with shopkeeper and livework units (MFR)</td>
<td>South Kellogg Avenue</td>
<td>Pending</td>
</tr>
</tbody>
</table>

City of Goleta Subtotal
- 1,344 residential units
- 1,822,767 SF non-residential

Non-City of Goleta Projects in the Goleta Vicinity (Hwy 154 to Gaviota)

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Description</th>
<th>Location</th>
<th>Project Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavaletto / Noel Housing</td>
<td>106 MFR units, 26 SFR units</td>
<td>560 Merida Drive</td>
<td>Approved</td>
</tr>
<tr>
<td>Knoll Subdivision</td>
<td>12 SFR</td>
<td>533 N. Patterson Avenue</td>
<td>Approved</td>
</tr>
<tr>
<td>La Franella Cove Lot Split</td>
<td>4 SFR</td>
<td>780 N. Patterson Avenue</td>
<td>Approved</td>
</tr>
<tr>
<td>The Nest Isla Vista Mixed Use</td>
<td>14 hotel rooms, 19 studio units and retail space</td>
<td>910 Embarcadero Del Norte</td>
<td>In Process</td>
</tr>
</tbody>
</table>

Non-City of Goleta Subtotal
- 167 residential units
- 20,913 SF non-residential

Source: City of Goleta Planning Staff, February 2015, used for technical studies.
Table 3-2 summarizes the total amount of development currently planned and pending within the Goleta area as listed in Table 3-1.

<table>
<thead>
<tr>
<th>Type of Development</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>1,511 units</td>
</tr>
<tr>
<td>Commercial/Retail</td>
<td>1,842,960 SF</td>
</tr>
</tbody>
</table>
Cumulative Projects in the Goleta Area

Figure 3-1

Heritage Ridge Residential Project Boundary
This page intentionally left blank.
4.0 ENVIRONMENTAL IMPACT ANALYSIS

This section discusses the possible environmental effects of the proposed project for the specific issue areas that were identified through the Initial Study and NOP process as having the potential to experience significant impacts. “Significant effect” is defined by CEQA Guidelines § 15382 as:

“a substantial, or potentially substantial, adverse change in any of the physical conditions within the area affected by the project including land, air, water, minerals, flora, fauna, ambient noise, and objects of historic or aesthetic significance. An economic or social change by itself shall not be considered a significant effect on the environment, but may be considered in determining whether the physical change is significant.”

The assessment of each issue area begins with a discussion of the setting relevant to that issue area. Following the setting is a discussion of the project’s impacts relative to the issue area. Within the impact analysis, the first subsection identifies the methodologies used and the “significance thresholds.” The criteria used to establish thresholds of significance are based primarily on Appendix G of the CEQA Guidelines and thresholds included in the City’s Environmental Thresholds and Guidelines Manual. The next subsection describes each impact of the proposed project, mitigation measures for significant impacts, and the level of significance after mitigation. Each impact under consideration for an issue area is separately listed in bold text, with the discussion of the impact and its significance following. Each bolded impact listing also contains a statement of the significance determination for the environmental impact as follows:

Class I, Significant and Unavoidable: An impact that cannot be reduced to below the threshold level given reasonably available and feasible mitigation measures. Such an impact requires a Statement of Overriding Considerations to be issued if the project is approved.

Class II, Significant but Mitigable: An impact that can be reduced to below the threshold level given reasonably available and feasible mitigation measures. Such an impact requires findings to be made.

Class III, Not Significant: An impact that may be adverse, but does not exceed the threshold levels and does not require mitigation measures. However, mitigation measures that could further lessen the environmental effect may be suggested if readily available and easily achievable.

Class IV, Beneficial: An impact that would reduce existing environmental problems or hazards.

Following each environmental impact discussion is a listing of required and/or recommended mitigation measures and the residual effects or level of significance remaining after the implementation of the measures. In those cases where implementation of the mitigation measure for an impact could have a significant environmental impact in another issue area, this impact is discussed as a residual effect.

The impact analysis concludes with a discussion of cumulative effects, which evaluates the impacts associated with the proposed project in conjunction with other recently approved, planned and pending development in the area.
This page intentionally left blank.
4.1 AESTHETICS/VISUAL RESOURCES

This section evaluates the Project's potential impacts to aesthetic and visual resources within and adjacent to the Project site. Figure 4.1-1 shows the locations from and directions in which all subsequent photos shown in this section were taken.

4.1.1 Setting

a. Visual Character and Scenic Resources. The Project site is a 17.36 gross acre area of undeveloped land surrounded by a mixture of vacant lots, multi-family residences, and industrial buildings in the City of Goleta. This site is bounded to the north by the Union Pacific Railroad (UPRR) tracks and the southbound U.S. 101 on-ramp from S. Los Carneros Road; to the east by one- and two-story white industrial buildings with surface parking lots; to the south by vacant lots across Calle Koral and by two-story residences painted in earth tones at the Willow Springs Apartments south of Camino Vista; and to the west, beyond S. Los Carneros Road, by vacant land currently under construction for 460 residential units.

Figure 4.1-1 shows the locations of representative photos of the Project site, and Figures 4.1-2a and 4.1-2b present these photos, which show the primary visual features on the Project site and in its surroundings. Native shrubs and ruderal vegetation predominate on-site. Providing a visual contrast with this landscape are temporary storage containers for construction debris and a staging area for construction and site maintenance located at the northwestern part of the Project site. The interior of the Project site is partially enclosed by a chain-link fence. A stand of eucalyptus trees is visible adjacent to the Project site to the north, between the UPRR tracks and U.S. 101. Looking northward from the site, the S. Los Carneros Road overpass of the UPRR right-of-way (ROW) and U.S. 101 are visible adjacent to the northwest corner of the site. Approximately 0.45 miles to the southeast, the air traffic control tower at Santa Barbara Airport is partially visible from the Project site. In addition, the landmark 170-foot-tall Storke Tower is visible 1.5 miles to the south on the University of California at Santa Barbara (UCSB) campus (UC Santa Barbara, 2010).

The topography of the Project site is relatively flat to gently sloping with the exception of the moderately steep slopes that define the boundary of stockpile soils along the perimeter of the archaeological area and the eastern, western, northern, and southwestern property lines. Topography within the archaeological area is characterized by a modest ridge that trends generally northwest to southeast between 25 and 36 feet above sea level (ASL). Soil stockpiling has resulted in elevating surrounding topography to over 43 ASL. As a result, the central portion of the site forms a ridge that has the highest elevations on the property. Another defining topographic feature is the grade differential between S. Los Carneros Road and the Project site. This roadway is level with the southwest corner of the Project site but rises to approximately 30 feet above the Project site on an earthen berm to the north, as it approaches an overpass of the UPRR ROW and the U.S. 101.

The Project site is mainly covered by low-growing ruderal vegetation and offers views of open space. Consequently, it offers largely unobstructed views to the north of agricultural lands and foothills along Cathedral Oaks Road and the Santa Ynez Mountains in the background. Pursuant to Policy VH 1.1 in the Visual and Historic Resources Element of the Goleta General Plan, the City has designated the foothills and the Santa Ynez Mountains as scenic resources. From S. Los Carneros Road the only view obstruction of these scenic resources across the Project site to the north and northeast is a cluster of eucalyptus trees along the UPRR ROW beyond the northern boundary of the site, as shown in Photo 1 in Figure 4.1-
2a. From Camino Vista, the S. Los Carneros Road overpass is visible looking across the Project site. In addition, the mainline of UPRR and U.S. 101 are visible across the Project site from S. Los Carneros Road. Southward views from the Project site are completely obstructed by buildings and landscaped grounds on the Willow Springs Apartments site across Camino Vista, and by trees and shrubs to the southwest. Consequently, the Project site does not offer views to the south of the Goleta coastline and Pacific Ocean, both of which are designated scenic resources. The Project site is not designated as a scenic resource. However, it does provide views of open space from surrounding areas.

b. Scenic Corridors. The California Department of Transportation (Caltrans) designates highways throughout California as scenic highways. For a highway to be declared as scenic, the government with jurisdiction over the abutting land must adopt a “scenic corridor protection program” that limits development, outdoor advertising, and earthmoving around the highway. U.S. 101 is eligible for state designation as a scenic highway in the City and throughout Santa Barbara County. Additionally, the City’s Visual and Historic Resources Element lists the following roadways near the Project site as local scenic corridors, which pass through, or provide visual access to, areas of high scenic value:

- **U.S. 101**
- **Los Carneros Road (between Cathedral Oaks and U.S. 101), including the Los Carneros U.S. 101 overpass**
- **Hollister Avenue**

Although the Project site itself does not contain any designated scenic corridors, it is located in the vicinity of the U.S. 101, Los Carneros Road, and Hollister Avenue scenic corridors. The centerline of U.S. 101 is approximately 300 feet north of the Project site, while Los Carneros Road is adjacent to the western boundary of the site. Hollister Avenue is located approximately 1,000 feet to the south of the Project site.

Views from Los Carneros Road Overpass of U.S. 101. As shown in Figure 4.1-3, scenic views in all directions from the Los Carneros Road overpass of U.S. 101 and scenic views in the northern direction from the Los Carneros/ Calle Koral intersection are protected pursuant to Policy VH 2.2 and Figure 6-1 in the Goleta General Plan as scenic view corridors. The Los Carneros Road overpass also is identified in the Goleta General Plan as an important “gateway” to the community, and is the highest-elevated public street location in the vicinity of the Project site. Northward views from the overpass, facing away from the Project site, include the foothills and Santa Ynez Mountains, which are designated scenic resources. Eastward views of the Project site are available to drivers traveling northbound on S. Los Carneros Road as they approach and turn onto the southbound on-ramp to U.S. 101; these views are partially screened by eucalyptus trees and other vegetation along the UPRR ROW to the south of the on-ramp.

In addition, as shown in Figure 4.1-2b, on the southward descent from the crest of the overpass, the Project site is briefly visible to drivers and pedestrians above the guard-rail on the eastern side of Los Carneros Road. Southward views from the overpass over the Project site also include the UCSB campus on a mesa above the Goleta Slough, including Storke Tower, and a strip of the Pacific Ocean beyond Goleta Beach. From the north side of the crest of the Los Carneros overpass, the Project site is not visible.

Views from the U.S. 101 Mainline. The Goleta General Plan lists U.S. 101 as a local scenic corridor throughout Goleta. In the vicinity of the Project site, the elevated southbound on/off-ramps at
Figure 4.1-1

Locations and Directions of Aesthetics Photos

Heritage Ridge Residential Project EIR
Section 4.1 Aesthetics/Visual Resources
Heritage Ridge Residential Project EIR
Section 4.1 Aesthetics/Visual Resources

Photo 1: Northward view from Camino Vista across center of project site.

Photo 2: Northwest view from Camino Vista toward S. Los Carneros Road overpass of Union Pacific Railroad tracks.

Existing Site Conditions Figure 4.1-2a
Section 4.1 Aesthetics/Visual Resources

Photo 3: Eastward view from S. Los Carneros Road of storage containers on project site and Willow Springs Apartments across Camino Vista.

Photo 4: Southward view from S. Los Carneros Road of coyote brush/saltbush scrub vegetation on western portion of project site and Storke Tower on UCSB campus in background.

Existing Site Conditions

Figure 4.1-2b

City of Goleta
Scenic and Visual Resources in the City of Goleta

Figure 4.1-3

Source: City of Goleta General Plan, 2009.

Heritage Ridge Residential Project EIR

Section 4.1 Aesthetics/Visual Resources

Legend
- Public Lands with View Opportunities
- Scenic Corridor
- Local Scenic Corridor
- Scenic Views to be Protected
 - Views to one Direction
 - Views to all Directions
- Other Features
 - Goleta City Boundary
 - Coastal Zone
 - Schools
 - Creeks

Amended by Reso. 09-59, 11/17/09

Source: City of Goleta General Plan, 2009.
the freeway’s interchange with Los Carneros Road and trees lining the UPRR ROW completely obstruct southward views of the Project site. For drivers entering the U.S. 101 mainline via the southbound on-ramp from Los Carneros Road, the Project site is briefly visible to the south.

Views from Union Pacific Railroad (UPRR) Right-of-Way (ROW). Although not a designated scenic corridor in the General Plan, the 100-foot wide UPRR ROW abuts the Project site’s northern property line. The Project site is part of the view available to train passengers traveling through Goleta. The engineered track sits atop a rock bed ballast, which is set back approximately 50 feet from the northern property line. The UPRR track currently ranges from approximately four to ten feet higher than the ground surface at the northern edge of the Project site. As shown in Figure 4.1-2a, the Project site is generally open to view from the UPRR ROW, although shrub vegetation partially obstructs views of the ground surface. Because the upper tier of passenger train car windows is approximately 8 feet higher than the ballast and approximately 10 to 11 feet above the adjacent ground surface elevation of the ROW, passengers currently have brief, unobstructed views of the Project site. Further views of the coastal plain beyond the Project site are obstructed by the Willow Springs Apartments to the south.

Views from S. Los Carneros Road. As discussed above, the Goleta General Plan designates northward views from the Los Carneros/Calle Koral intersection as scenic. Over the western edge of the Project site, this intersection provides scenic views of the foothills and Santa Ynez Mountains, which are only partially obstructed by scrub vegetation and trees in the UPRR ROW and on the west side of S. Los Carneros Road. These views are brief from the perspective of moving vehicles on S. Los Carneros Road.

Views from Other Public Roads. The Project site is fully visible from several other nearby public roads that are not designated scenic corridors. Calle Koral and Camino Vista provide direct views of the Project site, as does Aero Camino at its intersection with Camino Vista. Hollister Avenue, located approximately 1,000 feet south of the Project site, is designated in the Goleta General Plan as a “local scenic corridor” and provides a scenic northward view of the Santa Ynez Mountains. The Project site is minimally visible from Hollister Avenue, a scenic view corridor, due to intervening vegetation and residential, commercial, and business park development.

Private Views. The Project site is visible to varying degrees from adjacent commercial and industrial developments along Aero Camino and from residential developments along Camino Vista. Because of the open, undeveloped character of the Project site, views of the Santa Ynez Mountains and foothills from these areas are not obstructed across the site.

c. Existing Light and Glare Conditions. Although the Project site is undeveloped and lacks on-site sources of illumination, it receives indirect lighting from off-site sources at neighboring commercial and industrial buildings, residential development, and adjacent roadways. Sources of illumination at the commercial and industrial areas, and residential development include light fixtures on the exterior of buildings and lighting emanating from windows. In addition, the Project site receives lighting from nearby street lamps along the adjacent roadways. Other sources of light and glare include headlights from passing vehicles on S. Los Carneros Road, Calle Koral, Camino Vista, and the southbound on-ramp to U.S. 101, and from cars entering and exiting parking lots at neighboring commercial and industrial businesses.

d. Regulatory Setting. The City of Goleta adopted numerous regulations pertaining to the aesthetics of development and the preservation of scenic resources in the Visual and Historic Resources Element of the Goleta General Plan. Policies that are relevant to the Project include:
4.1.2 Impact Analysis

a. Methodology and Significance Thresholds. Assessing aesthetic impacts of the Project is inherently subjective. Viewers react to viewsheds and aesthetic conditions differently based on personal and cultural perspectives. This section evaluates the existing visual resources against the proposed development, analyzing the nature of the anticipated change and its compatibility with the visual character of the area.

The City’s Environmental Thresholds Guidelines Manual refers to CEQA Guidelines Appendix G. Pursuant to Appendix G, potentially significant impacts would occur if development of the Project site would:

1. Have a substantial adverse effect on a scenic vista;
2. Substantially damages scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway;
3. Substantially degrades the existing visual character or quality of the site and its surroundings; and/or
4. Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area.

b. Project Impacts and Mitigation Measures.

Impact AES-1 The Project would convert an open and undeveloped property into a multi-family housing complex with two- and three-story buildings. Due to the three-story height of proposed buildings on the western portion of the Project site, the Project would significantly obstruct views of the foothills and Santa Ynez Mountains from S. Los Carneros Road at Calle Koral looking northward, which is a City-designated view corridor. Therefore, impacts to this scenic view corridor would be Class I, significant and unavoidable [Threshold 1].
The Project would convert a vacant 17.36 gross acre site into a multi-family housing complex. Three two-story apartment buildings with a peak height of 27 feet would be located in the northern portion of the site. Five three-story apartment buildings with a peak height of 35 feet would be located in the southwest and eastern portions of the site. As discussed in Section 4.9, *Land Use and Planning*, the latter height is consistent with height limits as measured pursuant to the City’s Inland Zoning Ordinance.

Construction on the Project site would affect two designated Los Carneros Road scenic view corridors. Figure 4.1-4 maps the locations of photo simulations from Los Carneros Road, with respect to the Project site. Figures 4.1-5, 4.1-6, and 4.1-7 present photo simulations for the Project, respectively, at the scenic northward view from S. Los Carneros Road near Calle Koral, the scenic southward view from the S. Los Carneros Road overpass of U.S. 101, and a similar scenic southward view from S. Los Carneros Road just south of the overpass. These figures compare three scenarios at each viewpoint: existing conditions, proposed conditions without landscaping, and proposed conditions with five years of growth in landscaping. As shown in Figure 4.1-5, S. Los Carneros Road near Calle Koral currently affords a view of the foothills and Santa Ynez Mountains, scenic resources that are partially obstructed by scrub vegetation and trees in the UPRR ROW and on the west side of S. Los Carneros Road. The two-story buildings in the northern portion of the site would barely rise above the existing horizon from this perspective, minimally obstructing northward scenic views of the foothills and mountains. However, the three-story buildings in the southwest portion of the site would rise to a level just below the ridgeline of the Santa Ynez Mountains, obstructing public scenic views of the bulk of mountains to the northeast from the perspective of northbound motorists, pedestrians, and bicyclists on S. Los Carneros Road approaching Calle Koral Road. Therefore, the Project would have a significant impact on the scenic view corridor from S. Los Carneros Road at Calle Koral looking northward to the foothills and Santa Ynez Mountains.

Views from the Los Carneros Road overpass to the south and southeast are designated view corridors. The open waters of the Pacific Ocean and Goleta’s shoreline/beaches are designated scenic resources. As shown in Figures 4.1-6 and 4.1-7, the southerly descent from the crest of the S. Los Carneros Road overpass currently provides scenic views over the Project site toward the Pacific Ocean beyond Goleta Beach. Although the ocean is not visible in these figures’ photographs of current conditions, a slice of the Pacific Ocean is visible in the distance on relatively clear days. The proposed conditions on Figure 4.1-6 show the view with the completed roadway project on S. Los Carneros Road, showing the 10-foot fence on the road’s eastern edge. Both Figures 4.1-6 and 4.1-7 demonstrate that the proposed buildings on-site would rise nearly to the level of the horizon, but would not obstruct scenic views of the Pacific Ocean. Therefore, the Project would have a less than significant impact on views from the vantage point of the Los Carneros Road overpass view corridor.

As discussed in Section 4.1.1, Setting, the Project site is not visible from the U.S. 101 mainline, which the Visual and Historic Resources Element of the Goleta General Plan lists as a scenic view corridor. The site is briefly visible from the southbound on-ramp from Los Carneros Road to U.S. 101. However, the site is almost 90 degrees out of the line of sight of drivers on the freeway ramp and partially obscured by trees along the UPRR ROW. Furthermore, the Project would not alter scenic views of the dramatic topography of the Santa Ynez Mountains to the northeast of the on-ramp, which are the primary scenic resource viewable from U.S. 101 in the vicinity of the Project site. Thus, any changes to views from this perspective would not be substantially evident and impacts to scenic views from the U.S. 101 would be less than significant.
Locations and Directions of Photo Simulations

Figures 4.1-4, 4.1-5, 4.1-6, 4.1-7

Photosim Locations

Project Boundary

#1 - Figure 4.1-5
#2 - Figure 4.1-6
#3 - Figure 4.1-7

Imagery provided by Google and its licensors © 2016.
Proposed Conditions with 5-year Growth of Landscaping

Proposed Conditions Without Landscaping

Proposed Conditions with 5-year Growth of Landscaping

Existing and Simulated Views
from S. Los Carneros Road
Looking North Toward Project Site

Source: interacta inc., 2014

Figure 4.1-5
Heritage Ridge Residential Project EIR

Section 4.1 Aesthetics/Visual Resources

Current Conditions Without Simulated Road Construction

Proposed Conditions Without Landscaping

Proposed Conditions with 5-year Growth of Landscaping

Existing and Simulated Views
from S. Los Carneros Road
Looking Southeast Toward Project Site

Source: interacta inc., 2014

Figure 4.1-6

City of Goleta
Existing and Simulated Views from S. Los Carneros Road
Looking Southeast Toward Project Site

Figure 4.1-7
Currently, Hollister Avenue offers a designated view corridor of the Santa Ynez Mountains to the north. From the perspective of motorists driving on Hollister Avenue, the Project site is barely visible due to intervening buildings and landscaping at residential, commercial, and business park properties. With a maximum height of 35 feet, the proposed buildings would not obstruct or otherwise affect existing views of the Santa Ynez Mountains and foothills from Hollister Avenue. Therefore, the Project would have a less than significant impact on scenic views from Hollister Avenue.

The Project would also alter public views of the site from Camino Vista, Calle Koral, and Aero Camino. Currently, the Project site affords partial northward views of the Santa Ynez Mountains, atop existing hills on-site, from the perspectives of Calle Koral and Camino Vista. The photo simulations in Figure 4.1-4 show that the proposed buildings would largely obstruct these northward views of the mountains. Because Aero Camino only offers limited mountainous views to the north and not across the Project site, the Project would not affect views from the local roadway. Although the Project would obstruct views from Camino Vista and Calle Koral, the Visual and Historic Resources Element of the Goleta General Plan does not recognize these roadways as scenic view corridors. Therefore, changes to views from these local roadways would be less than significant impacts.

While the UPRR ROW is not a City-designated view corridor, it provides brief, unobstructed views across the Project site to the south. A total of nine passenger trains pass the Project site daily on Amtrak’s Pacific Surfliner route (Amtrak, 2015). Because the Willow Springs Apartments to the south of the Project site currently obstruct further views of the coastal plain, the Project would not block any existing scenic vistas from the UPRR ROW. Therefore, the Project would not impair any existing scenic views from the railroad tracks.

The Project could potentially affect private views of the Santa Ynez Mountains, from the Willow Springs II multi-family residences to the south of the site. Currently, north-facing windows on the Willow Springs Apartments site south of Camino Vista offer expansive views of the mountains through the Project site. The proposed two- and three-story buildings and landscaping would almost entirely block these northward views. Policy VH 1.8 of the Visual and Historic Resources Element of the Goleta General Plan requires development to be considerate of private views. Nevertheless, the City has not designated the view of the mountains from a private property as scenic, and the obstruction of private views from one private property does not constitute a significant impact pursuant to CEQA, which is primarily concerned with public views.

Because the Project would substantially obstruct scenic views of the Santa Ynez Mountains from S. Los Carneros Road, overall impacts to scenic corridors would be significant.

Mitigation Measures. Given the proposed location of three-story residential buildings in the southwest portion of the Project site, mitigation is not available to reduce the obstruction of scenic views of the foothills and Santa Ynez Mountains from the vantage point on S. Los Carneros Road near Calle Koral. These buildings would unavoidably obstruct scenic views. Project Alternative 4, as described in Section 6.0, Alternatives, would reduce the significant and unavoidable impacts associated with obstructing scenic views of the foothills and Santa Ynez Mountains.

Residual Impact. Impacts would be significant and unavoidable because no feasible mitigation measures are available to reduce the obstruction of scenic views from S. Los Carneros Road.
Impact AES-2 The Project would not impact scenic resources identified in the City’s Visual and Historic Resources Element, including the Santa Ynez Mountains, coastal mesas, bluffs, and the Pacific Ocean. Impacts to these scenic resources would be Class III, less than significant [Threshold 2].

The Project would be located on a vacant property in Goleta’s coastal plain near U.S. 101, between the foothills of the Santa Ynez Mountains to the north and the coastline to the south. The Project site does not include scenic resources identified in Policy VH 1.1 of the Visual and Historic Resources Element of the Goleta General Plan, including the open waters of the Pacific Ocean, the shoreline, Goleta and Devereux Sloughs, creeks and riparian vegetation, agricultural areas, Lake Los Carneros and surrounding woodlands, and prominent landforms. Impacts to designated views corridors that contain these scenic resources are discussed above under Impact AES-1. Impacts to natural landforms, such as mature trees and rock outcroppings, are discussed below in Impact AES-3. Because implementation of the Project would not impact scenic resources identified in the Goleta General Plan, impacts to scenic resources would be less than significant.

Mitigation Measures. Mitigation is not required because impacts would be less than significant.

Residual Impact. Impacts would be less than significant without mitigation.

Impact AES-3 Construction of the proposed multi-family housing development would involve removal of native shrub vegetation on most of the site. However, no trees currently exist on-site and Project landscaping would include planting native trees on-site. Therefore, impacts to scenic natural landforms would be Class III, less than significant [Threshold 2].

The Project would not substantially affect scenic natural landforms, as identified in Policy VH 1.6 in the Goleta General Plan. No mature trees occur on-site, and the stand of eucalyptus trees that overlooks the Project site from the north side of the UPRR tracks would remain in place. No drainage courses, prominent slopes, or bluffs occur on-site. Native shrubs and ruderal vegetation predominate on-site, as shown in the site photographs in Figure 4.1-2b, and have low to moderate scenic value from public viewpoints on surrounding roadways. The clearing of existing vegetation to make way for the proposed apartments and park would represent a minor loss of natural landforms. However, the loss of native shrub vegetation would be offset by the planting of several tree species native to California: Cercis occidentalis (western redbud), Cupressus macrocarpa (Monterey cypress), Lyonothamnus floribundus ssp. asplenifolius (fernleaf Catalina ironwood), Platanus racemosa (California sycamore), Quercus agrifolia (coast live oak), and Quercus tomentella (island live oak). As specimens of taller tree species such as Monterey cypress, California sycamore, and the oaks mature after construction of the Project, they would become scenic resources on-site. Therefore, the Project would have a less than significant impact on scenic natural landforms.

Mitigation Measures. Mitigation is not required as impacts would be less than significant.

Residual Impact. Impacts would be less than significant without mitigation.
Impact AES-4 The Project would permanently alter the Project site, replacing open and undeveloped land with a residential complex. The massing and architectural style of the proposed buildings would not be compatible with that of adjacent multi-family residential development, although landscaping would incrementally reduce this contrast. Impacts to the visual character of the site and surroundings would be Class II, significant but mitigable [Threshold 3].

The Project would alter the site’s visual character from open and undeveloped to high-density residential. The proposed development would have a building footprint of 3.1 acres, occupying approximately 17 percent of the 17.36-gross acre parcel. The five proposed three-story buildings would have a peak height of 35 feet and would be clustered in the southwest and eastern portions of the site. The three two-story buildings would be located in the north-central portion of the site, with a peak height of 27 feet. These proposed buildings would reduce the openness of the site and the depth of views across the site from surrounding roadways. A 2.0-acre park would retain open space in the south-central portion of the site, with an activity trail, benches, barbecue area, picnic tables, bicycle parking, level turf play area, and native landscaping. In total, the 7.2 acres of common open space would represent 42 percent of the site.

Although the Project would alter the site’s existing visual character by introducing a complex of two- and three-story apartment buildings with associated on-site parking, the proposed development intensity and height of buildings would be compatible with adjacent residential development at the Willow Springs Apartments. The combined Willow Springs I and II developments, which together comprise the Willow Springs Apartments, have a building footprint of 181,533 square feet, or 17.9 percent of their collective lot area (Goleta, Willow Springs II Final EIR, 2012). Common open space at these developments also totals 40.6 percent of their lot area. Similarly, the Project would have a building footprint of approximately 17 percent of the entire Heritage Ridge site and common open space covering 42 percent of the site. While the Willow Springs II development has a density of 18.22 dwelling units per acre, the Project would have a higher density of 25.2 units per acre. The proposed two- and three-story buildings, with peak heights of 27 feet and 35 feet, also would be comparable to the two-story buildings at Willow Springs Apartments that have a peak height of 28 feet, 3 inches. In addition, the proposed layout of apartment buildings surrounding a central open space area would mirror the arrangement of the neighboring apartment complex at Willow Springs II around a central open space.

Nevertheless, the massing and architectural style of the proposed apartment buildings would substantially differ from adjacent development. As shown in the simulations of the Project in Figures 4.1-5 through 4.1-7, the buildings would have a somewhat severe, rectangular appearance unlike the appearance of the units at the Willow Springs Apartments to the south. Relative to the individual buildings at the Willow Springs Apartments, the proposed buildings would have a larger size and a simpler rectangular form. Furthermore, the proposed flat roofs would contrast in shape and form with the pitched asphalt shingle roofs of the Willow Springs Apartments to the south. The Willow Springs I and II developments have a more residential appearance, while the design of Heritage Ridge units would have a visual character closer to that of an office or institutional building. However, the exterior materials and finish of the proposed apartment buildings would match those of the neighboring apartments. The proposed buildings would have stucco exteriors painted in two earth tones, wood rails, metal awnings, vinyl windows, and flat roofs. Similarly, the Willow Springs Apartments have plaster walls painted in earth tones, wood trim, and vinyl clad windows.
As demonstrated by the photo simulations (Figures 4.1-5, 4.1-6, and 4.1-7), the maturation of proposed landscaping over five years of growth would incrementally reduce the Project’s visual incompatibility with surrounding urban development. Although the Project would introduce approximately 6.0 acres of impervious surface to the 17.36-gross acre Project site (34.6 percent of the site), the maturing landscaping would gradually soften the lines of the proposed buildings and obscure surface parking areas from offsite viewpoints. The proposed landscape design is intended to blend with the existing Willow Springs Apartments by using a similar plant palette and two-rail fence along Camino Vista.

Grading activities would reduce the grade differential from existing stockpile soils on the Project site. As described in Section 4.1.1, Setting, moderately steep slopes from stockpile soils occur along the perimeter of the archaeological area and the eastern, western, northern, and southwestern property lines. Existing elevations range from about 25 to 43 feet ASL. The Project would level out existing slopes outside the archaeological area for the construction of individual building pads, driveways. Finished grades would range from approximately 18 to 38 feet ASL. Although grading activities would change the existing grade differential, this topography is artificial and results from stockpiling of soils from previous construction activity in the area. Therefore, the proposed topographic changes would not adversely affect the site’s visual quality.

Utility infrastructure including electrical distribution lines, fiber optic lines, cable television lines, phone lines, gas lines, water lines, and sewer lines would be installed underground and would not affect the visual character of the site. However, components such as backflow preventers, transformers, water meter assemblies, gas meters, power meters, and cable TV pedestals would be installed aboveground. Mechanical equipment would be ground-mounted on concrete pads adjacent to the residential structures and would be screened with landscaping.

Based on the above analysis, the massing and architectural style of the proposed apartments would not be compatible in terms of visual character with surrounding development. Therefore, impacts to visual character and compatibility with existing land uses would be potentially significant.

Mitigation Measures. Mitigation measures AES-4(a) and AES-4(b) would be required to reduce potentially significant impacts from the Project’s massing, height, and architectural style to ensure a visually integrated development consistent with adjacent development.

AES-4(a) Architectural Review. The applicant must submit revised plans to the City of Goleta Design Review Board for review before applying for building permits. Plans must address compatibility of massing, heights and consistency with neighborhood character.

Plan Requirements and Timing. Before applying for building permits, the applicant must apply for design approval from the Design Review Board and submit plans wherein the massing, height, and architectural style of apartment buildings are consistent with neighborhood buildings and do not detract from existing neighborhood characteristics.

Pursuant to GMC § 2.08.150, the Design Review Board must determine whether the proposed buildings, structures, landscaping, and signs are appropriate and of good design in relation to other buildings, structures, landscaping and signs, on-site or in the immediately affected area. Plans
also must specifically be evaluated for consistency with adopted regulations pertaining to the aesthetics of development in the Visual and Historic Resources Element of the Goleta General Plan.

Monitoring. The Planning and Environmental Review Director, or designee, must conduct a final review of final plans, before the City issues grading permits. In the event that final plans are not in substantial conformance with the approved plans, the Planning and Environmental Review Director may refer the matter back to the full Design Review Board for a final determination.

AES-4(b) Height Limitations. Finished floor elevations of each lot must be consistent with the finished floor elevation shown on the Preliminary Grading and Drainage Plan dated September 2014, based on the U.S. Coast and Geodetic Survey (USC&GS) Datum elevation 8.92’ or equivalent. In addition, maximum building heights must not exceed 35 feet in height, and height must be measured from the established finished floor elevation as described above. The applicant must ensure that the Project complies with the grading limitations and height limitations as established with the approved entitlement plans.

Plan Requirements and Timing. At the time of grading plan review, the applicant must submit verification from a licensed surveyor/civil engineer demonstrating that the finished floor heights will be at the elevations shown on the entitlement plans. If a different datum is used, then the applicant must submit documentation demonstrating that the finished floor elevations are at equivalent heights.

Monitoring. The Planning and Environmental Review Director, or designee, must verify compliance before the City issues grading permits.

Residual Impact. Impacts would be less than significant with mitigation incorporated to ensure that the proposed buildings have compatible massing, architectural style, and height with adjacent development. In addition, the following Conditions of Approval are recommended regarding visual character related to utility infrastructure, trash/recycling enclosures, landscaping, graffiti, and trash generated by construction activities. With implementation of these conditions, the proposed structures and landscaping on the Project site would be more visually integrated and compatible with surrounding business park development.

- **Composite Utility Plan.** The applicant must submit a composite utility plan to be approved by the Director of Planning and Environmental Review, or designee. All external/roof mounted mechanical equipment (including HVAC condensers, switch boxes, etc.) must be included on all building plans and designing this equipment to be integrated into the structure and/or screened in its entirety from public view.

- **Screening of Utility Connections.** All new utility service connections and above-ground mounted equipment such as backflow devices, etc. must be screened from public view and/or painting in a soft earth-tone color(s) (red is prohibited) so as to blend in with the Project. Screening may include a combination of landscaping.
and/or fencing/walls. Utility transformers must be placed in underground vaults where they are completely screened from view, unless otherwise approved by the Planning and Environmental Review Director, or designee. All gas and electrical meters and/or painting meters must be concealed to match the building. All gas, electrical, backflow prevention devices and communications equipment must be concealed in an enclosed portion of the building, on top of the building, or within a screened utility area. All transformers and vaults must be installed within the right-of-way below grade unless otherwise approved by the Planning and Environmental Review Director, or designee, and then completely screening them from view.

- **Design of Trash/Recycling Enclosure.** The applicant must provide trash/recycling enclosures that are compatible with the architectural design of the Project, of adequate size for trash and recycling containers (at least 50 square feet), and accessible by residents and for removal. The trash/recycling areas must be enclosed with a solid wall of sufficient height to screen the area, with a solid gate and a roof, to be maintained in good repair in perpetuity and must be included on final Project plans and before the City issues a Land Use Permit for construction.

- **Landscaping.** Approximately 75 percent of landscaping on the Project site must consist of drought-tolerant native and/or Mediterranean type plants which adequately complement the Project design and integrate the site with surrounding land uses. Landscaping must be used to partially screen on-site parking areas and structures. Plant materials must be compatible with the Goleta climate pursuant to Sunset Western Garden Book’s Zone 24 published by Sunset Books, Inc., Revised and Updated 2012 edition.

- **Landscape Installation and Maintenance Agreement.** The applicant must enter into a maintenance agreement, in a form approved by the City Attorney, with the applicant to maintain required landscaping and water-conserving irrigation systems on private property for an appropriate time period set by the City.

- **Graffiti Removal.** The applicant must promptly remove any graffiti at the Project site. The applicant must execute a maintenance agreement approved as to form by the City Attorney, including at least a 5-year maintenance period.

- **Trash Control.** The applicant must prevent construction and/or employee trash from blowing offsite by providing covered receptacles on-site before commencement of any grading or construction activities; picking up waste weekly or more frequently as directed by the Planning and Environmental Review Director, or designee; and designating and providing the Planning and Environmental Review Director, or designee, the name and phone number of a contact person(s) to monitor construction trash/waste and organize a clean-up crew. Additional covered receptacles must be provided as determined necessary by the Planning and Environmental Review Director, or designee.

Impact AES-5 The Project would introduce on-site sources of lighting and glare to an open, undeveloped parcel that currently has none. Impacts would be Class II, significant but mitigable [Threshold 4].

The proposed multi-family housing complex would introduce various sources of lighting and glare to the site. As stated in the Exterior Lighting Concepts for Heritage Ridge all lighting would consist of light-
emitting diodes (LEDs), unless LEDs are not available for any proposed applications. Pole-mounted light fixtures would be installed in proposed parking areas and the on-site neighborhood park; it is anticipated that these fixtures would be 12 to 14 feet in height. Bollard lighting fixtures about 42 inches in height would be installed on walkways, pathways, and other areas of pedestrian traffic. The light in bollards would be aimed downward and outward and colored to match surrounding benches and railings. On carports, trash enclosures, mailbox kiosks, and directory signs, downlighting would be added for security and usability. These lights would be hidden to the extent possible by the structures themselves. On the proposed buildings, a small number of decorative lights would be installed primarily for aesthetic purposes and would not cast substantial light; in addition, every building entrance would have structurally hidden light fixtures (either downlighting or full cut-off-style wall mounted fixtures) for security. Headlights on cars entering and leaving the Project site and parking on-site would produce glare. The Santa Barbara Airport is 0.5 miles from the project site and would not be affected by the proposed low intensity residential lighting.

Although a proposed masonry wall of approximately eight feet in height along the northern and western site boundaries would reduce the perception of light and glare effects on motorists traveling on U.S. 101 and S. Los Carneros Road, the new sources of illumination could have adverse effects on the City’s night sky unless properly shielded. Therefore, lighting impacts would be significant but mitigable.

Mitigation Measures. The following measure is required to address potential light and glare impacts.

AES-5 Lighting Specifications. Any exterior lighting installed on the Project site must be of low intensity, low glare design, and must be hooded to direct light downward onto the Project site and prevent spill-over onto adjacent parcels and must otherwise meet dark night sky requirements. Exterior lighting fixtures must be kept to the minimum number and intensity needed to ensure public safety. These lights must be dimmed after 11 p.m. to the maximum extent practical without compromising public safety as determined by the Planning and Environmental Review Director or designee. Upward directed exterior lighting is prohibited. Lighting fixtures must be appropriate for the architectural style of the structure and surrounding area. The final lighting plan must be amended to include identification of all types, sizes, and intensities of wall-mounted building lights and landscape accent lighting, and a photometric map must be provided. “Moonlighting” type fixtures that illuminate entire tree canopies should also be avoided.

Plan Requirements and Timing: The locations of all exterior lighting fixtures, complete cut-sheets of all exterior lighting fixtures, and a photometric plan prepared by a registered professional engineer showing the extent of all light and glare emitted by all exterior lighting fixtures must be reviewed and approved by Design Review Board before the City issues a building permit for construction.

Monitoring: Before the City issues a certificate of occupancy, the Planning and Environmental Review Director, or designee, must inspect exterior
lighting features to ensure that they have been installed consistent with approved plans.

Residual Impact. By minimizing the number of lighting fixtures and intensity of lighting on the Project site, shielding lights to reduce glare, dimming during nighttime hours, and ensuring the compatibility of lighting with on-site and surrounding architecture, the implementation of Mitigation Measure AES-5 would reduce impacts to less than significant and there would be no residual impacts.

c. **Cumulative Impacts.** Cumulative development in the City of Goleta and the Goleta vicinity (Highway 154 to Gaviota) would add 1,511 residential units and more than 1.8 million square feet of commercial/retail space (refer to Tables 3-1 and 3-2 in Section 3.0, *Related Projects*) in and around Goleta. Additional development would be located on infill sites throughout the community, as well as large tracts of undeveloped open spaces along the area’s urban perimeters. Although much of the new development would generally be of a type and intensity similar to existing urban uses, a perceptible transformation of the community through increased urbanization would be apparent. In particular, the intensity of land use would increase in the vicinity of the Project site. Projects in the vicinity of the site that are either under construction or recently completed include the 118-room Marriott Residence Inn at 6300 Hollister Avenue, the various developments under construction at the Cabrillo Business Park, the 138-room Hilton Garden Inn at 6878 Hollister Avenue, the 465 unit Villages at Los Carneros, and the recently completed Hollister Village Project at the northwest corner of Hollister and S. Glen Annie Road.

However, the cumulative aesthetic impact from the project would be less than significant given the existing built-up environment around the site. The Project would result in a visual extension of existing residential neighborhoods and commercial areas. The areas in which cumulative development would occur have been predominantly identified in the General Plan as appropriate areas for growth. Therefore, cumulative development would not pose a significant change to the overall visual character of the City. Although the Project would have a significant but mitigable project-level impact on visual character, it would not have a considerable contribution to significant cumulative impacts.

Cumulative development on vacant and underutilized land in the Goleta area also could obstruct scenic views from U.S. 101, State Route 217, and public viewing areas within the City. However, implementation of policies to protect scenic views in the City’s Visual and Historic Resources Element would reduce cumulative impacts to scenic corridors and key viewpoints to a less-than-significant level. Therefore, even though the Project would have a significant and unavoidable project-level impact on scenic northward views of the foothills and Santa Ynez Mountains, it would not have a significant contribution to cumulative impacts.

Furthermore, the Project’s contribution to cumulative impacts related to the visual character of the site and the introduction of new sources of light and glare would not be cumulatively significant, as the infill Project’s design and height would be compatible with surrounding development. Offsite spillover of lighting would be minimized with implementation of the lighting specifications in Mitigation Measure AES-5. Cumulative aesthetic impacts would be less than significant.
This page intentionally left blank.
4.2 AIR QUALITY

This section discusses the Project’s potential impacts to regional and local air quality. Both temporary impacts related to construction and long-term impacts associated with the Project are discussed. Traffic projections used in emissions estimates are based on the Traffic, Circulation, and Parking Study prepared by Associated Transportation Engineers (ATE) dated August 25, 2014. The traffic study is included as Appendix I to this EIR. Air quality model results and calculations are based on the assessment completed as part of the Air Quality and Greenhouse Gas Emissions Analysis Technical Report prepared by Dudek, dated September 2014 and Heritage Ridge Project Pre-Construction Export Scenarios Air Quality and Greenhouse Gas Emissions Assessment Memorandum prepared by Dudek, dated June 2015, and are included as Appendix B. The Heritage Ridge Residential Project Health Risk Assessment (HRA) prepared by Rincon Consultants dated January 2016, is included as Appendix C.

4.2.1 Setting

a. Climate and Topography. The City of Goleta is located within the South Central Coast Air Basin (SCCAB) which includes all of San Luis Obispo, Santa Barbara, and Ventura counties. The climate of the SCCAB is strongly influenced by its proximity to the Pacific Ocean and the location of the semi-permanent high-pressure cell in the northeastern Pacific. With a Mediterranean-type climate, the Project area is characterized by warm, dry summers and cool winters with occasional rainy periods. Annual precipitation averages 16 inches, with most rainfall between November and March. Average monthly temperatures range from a high of 79 degrees Fahrenheit (°F) in August to a low of 40°F in December.

Cool, humid marine air causes frequent fog and low clouds along the coast, generally during the night and morning hours in the late spring and early summer months. The region is subject to a diurnal cycle in which daily onshore winds from the west and northwest are replaced by mild offshore breezes flowing from warm inland valleys during night and early morning hours. This alternating cycle can create a situation where suspended pollutants are swept offshore at night, and then carried back onshore the following day. Dispersion of pollutants is further degraded when the wind velocity for both day and nighttime breezes is low.

The region is also subject to seasonal Santa Ana winds, which are strong northerly to northeasterly winds that originate from high-pressure areas centered over the desert of the Great Basin. These winds are usually warm, dry, and often full of dust. They are particularly strong in the mountain passes and at the mouths of canyons.

Two types of temperature inversions (warmer air on top of cooler air) are created in the area: subsidence and radiational. The subsidence inversion is a regional effect created by the Pacific high in which air is heated as it is compressed when it flows from the high-pressure area to the low-pressure areas inland. This type of inversion generally forms at about 1,000 to 2,000 feet and can occur throughout the year, but it is most evident during the summer months. Surface inversions are formed by the more rapid cooling of air near the ground at night, especially during winter. This type of inversion is typically lower (0 to 500 feet at Vandenberg AFB, for example) and is generally accompanied by stable air. Both types of inversions limit the dispersal of air pollutants within the regional airshed, with the more stable the air (low wind speeds, uniform temperatures), the lower the amount of pollutant dispersion.
b. Local Regulatory Framework. The federal and state governments have been empowered by the federal and state Clean Air Acts (42 United States Code § 7401 et seq. and California Health and Safety Code § 40910, et seq.) to regulate emissions of airborne pollutants and have established ambient air quality standards for the protection of public health. The U.S. Environmental protection Agency (EPA) is the federal agency designated to administer federal air quality regulation, while the California Air Resources Board (ARB) is the state equivalent and operates under the auspices of the California Environmental Protection Agency (CalEPA). Local control in air quality management is provided by the ARB through county-level or regional (multi-county) air pollution control districts (APCDs). The ARB establishes statewide air quality standards and is responsible for control of mobile emission sources, while the local APCDs are responsible for enforcing standards and regulating stationary sources. The ARB has established 15 air basins statewide. Goleta is located in the SCCAB, in the portion that is within the jurisdiction of the Santa Barbara County Air Pollution Control District (SBCAPCD).

Federal and state standards have been established for six criteria pollutants, including ozone (O₃), carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), particulates less than 10 and 2.5 microns in diameter (PM₁₀ and PM₂.₅), and lead (Pb) (refer to Table 4.2-1). California air quality standards are identical to or stricter than federal standards for all criteria pollutants. Table 4.2-1 illustrates the current Federal and State Ambient Air Quality Standards.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Federal Standard</th>
<th>California Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone</td>
<td>0.07 ppm (8-hr avg)</td>
<td>0.07 ppm (8-hr avg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.09 ppm (1-hr avg)</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>9.0 ppm (8-hr avg)</td>
<td>9.0 ppm (8-hr avg)</td>
</tr>
<tr>
<td></td>
<td>35.0 ppm (1-hr avg)</td>
<td>20.0 ppm (1-hr avg)</td>
</tr>
<tr>
<td>Nitrogen Dioxide</td>
<td>0.100 ppm (1-hr avg)</td>
<td>0.18 ppm (1-hr avg)</td>
</tr>
<tr>
<td></td>
<td>0.053 ppm (annual avg)</td>
<td>0.030 ppm (annual avg)</td>
</tr>
<tr>
<td>Sulfur Dioxide</td>
<td>0.075 ppm (1-hr avg)</td>
<td>0.25 ppm (1-hr avg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.04 ppm (24-hr avg)</td>
</tr>
<tr>
<td>Lead</td>
<td>1.5 μg/m³ (calendar quarter)</td>
<td>0.15 μg/m³ (3-month avg)</td>
</tr>
<tr>
<td>Particulate Matter (PM₁₀)</td>
<td>150 μg/m³ (24-hr avg)</td>
<td>20 μg/m³ (annual avg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 μg/m³ (24-hr avg)</td>
</tr>
<tr>
<td>Particulate Matter (PM₂.₅)</td>
<td>12 μg/m³ (annual avg)</td>
<td>12 μg/m³ (annual avg)</td>
</tr>
<tr>
<td></td>
<td>35 μg/m³ (24-hr avg)</td>
<td></td>
</tr>
</tbody>
</table>

ppm= parts per million
μg/m³ = micrograms per cubic meter
Sources: California Air Resources Board, October 1, 2015. http://www.arb.ca.gov/research/oaqs/oaqs2.pdf; EPA Particulate Matter (PM) Regulatory Actions, October 26, 2015. http://www.epa.gov/pm/actions.html.

c. Current Ambient Air Quality. The SBCAPCD monitors air pollutant levels and develops strategies to ensure that air quality standards are met. Depending on whether or not the standards are met or exceeded, Santa Barbara County is classified as being in “attainment” or as “non-attainment.” Santa Barbara County is in non-attainment for the state eight-hour ozone standard and the state standard for PM₁₀. The County is unclassified (meaning there is insufficient data to designate the area or designations have yet to be made) for the state PM₂.₅ standard and the federal PM₁₀ standard. The County is in attainment for all other standards.
Non-attainment status within Santa Barbara County is a result of several factors, primarily the natural meteorological conditions that limit the dispersion and diffusion of pollutants (surface and subsidence inversions), the limited capacity of the local airshed to eliminate pollutants from the air, and the number, type, and density of emission sources within the air basin. The potential health effects of pollutants for which the County is in nonattainment are described below.

Ozone. Ozone is produced by a photochemical reaction (triggered by sunlight) between nitrogen oxides (NO\textsubscript{x}) and reactive organic compounds (ROC). Nitrogen oxides are formed during the combustion of fuels, while reactive organic gases are formed during combustion and evaporation of organic solvents. Because ozone requires sunlight to form, it occurs in serious concentrations primarily between the months of May and October. Ozone is a pungent, colorless toxic gas with direct health effects on humans, including respiratory and eye irritation and possible changes in lung functions. Groups most sensitive to ozone include children, the elderly, persons with respiratory disorders, and people who exercise strenuously outdoors.

Suspended Particulates. PM\textsubscript{10} is small particulate matter measuring no more than 10 microns in diameter, while PM\textsubscript{2.5} is fine particulate matter measuring no more than 2.5 microns in diameter. Both PM\textsubscript{10} and PM\textsubscript{2.5} are comprised mostly of dust particles, nitrates, and sulfates. The characteristics, sources, and potential health effects associated with the small particulates (those between 2.5 and 10 microns in diameter) and fine particulates (PM\textsubscript{2.5}) can be very different. The small particulates generally come from windblown dust and dust kicked up from mobile sources. The fine particulates are generally associated with combustion processes as well as being formed in the atmosphere as a secondary pollutant through chemical reactions. PM\textsubscript{10} is a by-product of fuel combustion and wind erosion of soil and unpaved roads, and is directly emitted into the atmosphere through these processes. PM\textsubscript{10} is also created in the atmosphere through chemical reactions. Fine particulate matter poses a serious health threat to all groups, but particularly to the elderly, children, and those with respiratory problems. More than half of the fine particulate matter that is inhaled into the lungs remains there, which can cause permanent lung damage. These materials can damage health by interfering with the body’s mechanisms for clearing the respiratory tract or by acting as carriers of an absorbed toxic substance.

An important fraction of the particulate matter emission inventory is that formed by diesel engine fuel combustion. Particulates in diesel emissions are very small and readily respirable. The particles have hundreds of chemicals adsorbed onto their surfaces, including many known or suspected mutagens or carcinogens. Diesel PM emissions are estimated to be responsible for about 70 percent of the total ambient air toxics risk. In addition to these general risks, diesel PM can also be responsible for elevated localized or near-source exposures (“hot spots”). Depending on the activity and proximity to receptors, these potential risks can be as high as 1,500 excess cancer cases per million (ARB, October 2000). Risk characterization scenarios have been conducted by the ARB staff to determine the potential excess cancer risks involved due to the location of individuals near to various sources of diesel engine emissions, ranging from school buses to high volume freeways.

Table 4.2-2 summarizes the annual air quality data for Goleta’s local airshed, collected at the Goleta-Fairview station, located at 380 N. Fairview Avenue in Goleta. The data collected at this station is considered to be representative of the baseline air quality experienced in the City.

1 Reactive organic compounds (ROC) are sometimes referred to as reactive organic gases (ROG)
Table 4.2-2
Ambient Air Quality Data

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone, ppm - Worst Hour</td>
<td>0.065</td>
<td>0.075</td>
<td>0.096</td>
</tr>
<tr>
<td>Number of days of State exceedances (>0.09 ppm)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Ozone, ppm – Worst 8 Hours</td>
<td>0.056</td>
<td>0.065</td>
<td>0.081</td>
</tr>
<tr>
<td>Number of days of State exceedances (>0.07 ppm)</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Number of days of Federal exceedances (>0.075 ppm)</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Carbon Monoxide, ppm - Worst 8 Hours</td>
<td>0.65</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Number of days of State/Federal exceedances (>9.0 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nitrogen Dioxide, ppb - Worst Hour</td>
<td>41.0</td>
<td>132.0</td>
<td>38.0</td>
</tr>
<tr>
<td>Number of days of State exceedances (>0.18 ppm)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Particulate Matter <10 microns, µg/m³ Worst 24 Hours</td>
<td>48.0</td>
<td>44.0</td>
<td>45.3</td>
</tr>
<tr>
<td>Number of samples of State exceedances (>50 µg/m³)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Number of samples of Federal exceedances (>150 µg/m³)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Particulate Matter <2.5 microns, µg/m³ Worst 24 Hours</td>
<td>29.0</td>
<td>20.5</td>
<td>24.3</td>
</tr>
<tr>
<td>Number of days Federal exceedances</td>
<td>*</td>
<td>*</td>
<td>0</td>
</tr>
</tbody>
</table>

* There was insufficient (or no) data available to determine the value.
Ppm = parts per million; ppb = parts per billion
Goleta-Fairview Station
http://www.arb.ca.gov/adam/topfour/topfour1.php

As shown in Table 4.2-2, between 2012 and 2014 the ozone worst hour air quality standard was exceeded one time in 2014. Also in 2014, the state ozone 8 hour standard was exceeded three times and the federal ozone 8 hour standard was exceeded two times. The standards for CO, NO₂, and particulate matter have not been exceeded in the last three years.

d. Air Quality Planning. Under the California Clean Air Act, the SBCAPCD is required to prepare an overall plan for air quality improvement for the SCCAB, known as the Clean Air Plan (CAP). The CAP was updated in 2013 from its previous update in 2010, and is the sixth triennial update to the initial CAP adopted in 1991. The 2013 CAP incorporates new scientific data and notable regulatory actions that have occurred since adoption of the 2010 CAP. The 2013 CAP was adopted by the SBCAPCD Board of Directors on March 19, 2015.

The 2013 CAP was prepared to address both federal and state requirements. The federal requirements pertain to provisions of the federal Clean Air Act that apply to the City’s current designation as an attainment area for the federal 8-hour ozone standard (SBAPCD, 2015). Areas that are designated as attainment for the federal 8-hour ozone standard and attainment for the previous federal 1-hour ozone standard with an approved maintenance plan must submit an 8-hour maintenance plan under section 110(a)(1) of the federal Clean Air Act. The California Clean Air Act, under Health and Safety Code sections 40924 and 40925, requires areas to update their clean air plans every three years with the goal of attaining the state 1-hour ozone standard. The 2013 CAP provides a three-year update to the SBCAPCD’s 2010 CAP. More information on carbon dioxide emissions and climate change can be found in Section 4.6, Greenhouse Gas Emissions.

e. Sensitive Receptors. Ambient air quality standards have been established to represent the levels of air quality considered sufficient, with an adequate margin of safety, to protect public health
and welfare. They are designed to protect that segment of the public most susceptible to respiratory distress, such as children under 14; the elderly over 65; persons engaged in strenuous work or exercise; and people with cardiovascular and chronic respiratory diseases. The majority of sensitive receptor locations are therefore residences, schools and hospitals.

The Project site vicinity is primarily occupied by residential and light industrial development. Sensitive receptors near the Project site include residential uses (Willow Springs I and II) to the south of the project site across Camino Vista. Also, beyond S. Los Carneros Road to the west is an approved residential development. When developed, this future use would also be a sensitive receptor.

4.2.2 Impact Analysis

a. Methodology and Significance Thresholds. The air quality analysis is based on the Air Quality and Greenhouse Gas Emissions Technical Report and Memorandum (Dudek 2014; Dudek 2015) included in Appendix I. The City relies on the significance thresholds established by Santa Barbara County Air Pollution Control District and codified in the Environmental Review Guidelines for the Santa Barbara County Air Pollution Control District (County of Santa Barbara Planning and Development, July 2015) for the analysis of air quality impacts. According to the Environmental Thresholds and Guidelines Manual, a significant adverse air quality impact may occur when a project, individually or cumulatively:

- **Interferes with progress toward the attainment of the ozone standard by releasing emissions which equal or exceed the established long-term quantitative thresholds for NOx and ROC; or**
- **Equals or exceeds the state or federal ambient air quality standards for any criteria pollutant (as determined by modeling).**

Cumulative air quality impacts and consistency with the CAP should be determined for all projects (i.e., whether Project-generated emissions exceed the CAP emission projections or growth assumptions).

Significance Thresholds. Based on Appendix G of the CEQA Guidelines, a significant impact related to air quality could occur if the Project would:

1. **Conflict with or obstruct implementation of the applicable air quality plan.**
2. **Violate any air quality standard or contribute substantially to an existing or projected air quality violation.**
3. **Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative guidelines for ozone precursors).**
4. **Expose sensitive receptors to substantial pollutant concentrations.**
5. **Create objectionable odors affecting a substantial number of people.**

Impacts associated with objectionable odors are discussed in Section 4.15, Effects Found Not to be Significant.

2013 Clean Air Plan Consistency. Analysis of consistency with land use and population forecasts in local and regional plans, including the CAP, is required in the County’s Environmental Thresholds Manual for all projects. In order to be consistent with the CAP, all projects involving earthmoving
activities must implement SBCAPCD’s standard dust control measures (SBCAPCD, April 2015b). By definition, consistency with the CAP means that direct and indirect emissions associated with the Project are accounted for in the CAP’s emissions growth assumptions and the Project is consistent with policies adopted in the CAP (SBCAPCD, April 2015a). The CAP relies primarily on the land use and population projections provided by the Santa Barbara County Association of Governments (SBCAG) and the ARB on-road emissions forecast as a basis for vehicle emission forecasting. The 2013 Clean Air Plan utilized SBCAG’s Regional Growth Forecast 2010-2040, adopted December 2012, to project population growth and associated air pollutant emissions for all of the Santa Barbara County incorporated and unincorporated areas.

Residential projects that involve population growth in an individual jurisdiction or sub-region of Santa Barbara County that would exceed the amount forecasted for that jurisdiction or sub-region would be considered inconsistent with the CAP (SBCAPCD, April 2015a).

Construction Emissions Thresholds. The SBCAPCD has not adopted quantitative thresholds of significance for construction emissions since such emissions are temporary. However, according to the SBCAPCD’s *Scope and Content of Air Quality Sections in Environmental Documents* (SBCAPCD, April 2015b), construction-related NOX, ROC, PM10, and PM2.5 emissions from diesel and gasoline powered equipment, paving, and other activities, should be quantified. SBCAPCD uses 25 tons per year for all pollutants except CO as a guideline for determining the significance of construction impacts. In addition, standard dust control measures must be implemented for any discretionary project involving earth-moving activities, regardless of size or duration. According to the SBCAPCD, proper implementation of these required measures reduces fugitive dust emissions to a level that is less than significant (SBCAPCD, April 2015b). Therefore, all construction activity would be required to incorporate the SBCAPCD requirements pertaining to minimizing construction-related emissions and demolition of existing structures.

Operational Emissions Thresholds. Appendix G of the CEQA Guidelines indicates that where available, the significance criteria established by the applicable air quality management district or APCD may be relied upon to determine whether the Project would have a significant impact on air quality. As described in the SBCAPCD *Scope and Content of Air Quality Sections in Environmental Documents* (SBCAPCD, April 2015b), a project will have a significant air quality effect on the environment if operation of it would:

- Emit (from all sources, both stationary and mobile) more than 240 lbs/day for ROC and NOX or more than 80 lbs/day for PM10. [Threshold 2].
- Emit more than 25 lbs/day of NOX or ROC from motor vehicle trips only [Threshold 2].
- Cause or contribute to a violation of any California or National Ambient Air Quality Standard (except ozone) [Threshold 2].
- Exceed the APCD health risk public notification thresholds adopted by the APCD Board (10 excess cancer cases in a million for cancer risk and a Hazard Index of more than 1.0 for non-cancer risk) [Threshold 4].
- Be inconsistent with the latest adopted federal and state air quality plans for Santa Barbara County [Threshold 1].

The SBCAPCD does not have a daily operational threshold for CO as it is an attainment pollutant. However, the City has established criteria for triggering modeling for CO based on the County’s adopted
guidance. According to the *Environmental Thresholds and Guidelines Manual*, “a project will have a significant air quality impact if it causes, by adding to the existing background CO levels, a CO ‘hot spot’ where the California one-hour standard of 20 parts per million carbon monoxide is exceeded” (County of Santa Barbara Planning and Development, 2015). Typically, high CO concentrations are associated with roadways or intersections operating at an unacceptable level of service (LOS) and projects contributing to adverse traffic impacts may result in the formation of CO hotspots (Dudek, 2014). Project screening for CO impacts is as follows:

- **If a project contributes less than 800 peak hour trips, then CO modeling is not required [Threshold 2], and**
- **Projects contributing more than 800 trips to an existing congested intersection at LOS D or below, or will cause an intersection to reach LOS D or below, may be required to model for CO impacts. However, projects that will incorporate intersection modifications to ease traffic congestion are not required to perform modeling to determine potential CO impacts [Threshold 2].**

The City does not specify quantitative thresholds of significance for short-term construction emissions because such emissions have already been accounted for in the 2013 Clean Air Plan. However, because the region does not meet the state standards for ozone and PM_{10}, the City of Goleta requires implementation of standard emission and dust control techniques for all construction, as outlined in the General Plan/Community Land Use Planning Policy (GP/CLUP) Policy CE 12.3 and listed as mitigation measures in the GP/CLUP FEIR (Air Quality), to ensure that these emissions remain less than significant (Dudek, 2014).

Construction Emissions Methodology. The California Emissions Estimator Model (CalEEMod version 2013.2.2) was used to estimate air pollutant emissions associated with Project construction. Construction activities associated with this development would result in temporary air quality impacts that may vary substantially from day to day, depending on the level of activity, the specific type of operation, and, for dust, the prevailing weather conditions. Exhaust from internal combustion engines used by construction equipment and hauling trucks (dump trucks), vendor trucks (delivery trucks), and worker vehicles would result in emissions of NO_x, ROC, CO, SO_x, PM_{10}, and PM_{2.5}. The application of architectural coatings, such as exterior/interior paint and other finishes, would also produce ROC emissions; however, the contractor is required to procure architectural coatings from a supplier in compliance with the requirements of SBCAPCD’s Rule 323 (Architectural Coatings). Paving of the parking lot and other surfaces would similarly produce ROC emissions, but would be required to comply with Rule 329 (Cutback and Emulsified Asphalt Paving Materials), which restricts the percent by volume of ROCs in asphalt material (Dudek, 2014).

The Project includes developing 360 residential units in eight buildings, parking areas, and recreational facilities, including a community park. Construction of the Project is expected to occur over 30 months. Estimated preliminary Project grading would include approximately 178,000-cubic yards of cut and 15,500-cubic yards of fill with approximately 115,000-cubic yards of export material, as described in Section 2.3.3 of Section 2.0, *Project Description*.

Two scenarios were modeled to estimate the pre-construction emissions that would result from exporting 115,000 cubic yards of soil from the site. Scenario 1 assumes that the existing stockpiled material would be removed using 9-cubic yard (CY) trucks, which would require a total of 12,778 round-
tri) haul truck trips; under Scenario 2, it is assumed that 20-CY trucks would be used to haul the material, resulting in approximately 5,750 round-trip haul truck trips.

Operational Emissions Methodology. CalEEMod was used to estimate air pollutant emissions from mobile sources associated with the Project. CalEEMod default data, including temperature, trip characteristics, variable start information, emission factors, and trip distances, were used for the model inputs. The estimate of vehicle trips associated with the Project is from the Traffic, Circulation, and Parking Study prepared by Associated Transportation Engineers (Appendix I; also refer to Section 4.13, Transportation and Circulation). Emission factors representing the vehicle mix and emissions for the year 2018, when the Project would be in its first year of operation, were used to estimate emissions.

CalEEMod was also used to estimate emissions from the Project area sources, which include space and water heating, gasoline-powered landscape maintenance equipment, consumer products, and architectural coatings for building maintenance. Emissions for the 132-unit senior housing development (119,710 gross square feet) and the 228-unit workforce housing development (218,019 gross square feet) were based on CalEEMod defaults for low-rise apartments, and emissions for a two-acre public neighborhood park were estimated using model default values for a city park (Dudek, 2014).

Health Risk Assessment Methodology. The ARB has identified diesel particulate matter as the primary airborne carcinogen in the state (ARB, n.d.). The main sources of diesel particulate matter are exhaust from heavy-duty trucks on the interstate freeway system and diesel-powered locomotives. Due to the potential for exposure of sensitive receptors to diesel particulate matter and other toxic air contaminants, ARB’s Air Quality and Land Use Handbook: A Community Health Perspective (June 2005) recommends avoiding siting new sensitive land uses, such as residences, schools, daycare centers, playgrounds, or medical facilities, within 500 feet of a freeway, urban roads with 100,000 vehicles/day, or rural roads with 50,000 vehicles/day. Based on ARB’s findings, the Santa Barbara County APCD also recommends that land use policies should prohibit the construction of new residences, schools, day care centers, playgrounds, and medical facilities within 500 feet of U.S. 101 (SBCAPCD, Public Health and High Traffic Roadways, accessed online September 2014). The highway segment adjacent to the Project site has 65,800 vehicles per day (Caltrans, 2014).

The ARB Handbook found that, based on traffic-related studies, additional non-cancer health risks attributable to proximity to freeways occurs within 1,000 feet and is strongest within 300 feet. California freeway studies show about a 70 percent drop-off in particulate pollution levels at 500 feet (ARB, 2005).

The Project site is located along the south side of U.S. 101 and the Union Pacific Railroad (UPRR). Residences on-site would be located as close as approximately 50 feet from the UPRR railroad tracks and 250 feet south of the closest U.S 101 lane. In addition, nearby businesses may emit additional hazardous air pollutants. These emissions are not expected to individually cause a risk; however, these emissions could add to the cumulative risk to on-site residents in the proposed residential units when considered in combination with the TACs associated with the freeway and railroad operations.

To input different trip generation values for the senior housing and workforce housing, those land uses were inputted separately in CalEEMod as low-rise apartments and mid-rise apartments, respectively. For consistency, the mid-rise apartment values were replaced with the low-rise apartment values, where necessary. Low-rise apartments are characterized as one or two levels, and mid-rise apartments are characterized as more than two levels and less than nine levels. Although the Project would include buildings that are three levels, the low-rise apartment default values were utilized because they are more conservative; however, the majority of the default values were the same for the low-rise and mid-rise apartments (Dudek, 2014).
Heritage Ridge Residential Project EIR

Section 4.2 Air Quality

Rincon Consultants, Inc. prepared an HRA for the Project in January 2016. The HRA used the U.S. Environmental Protection Agency’s (USEPA) AERMOD dispersion model and the ARB Hotspots Analysis and Reporting Program (HARP) risk analysis tool. It is based on the Project site plans that had been prepared at that time. A copy of this report is included in Appendix C.

Cancer risk is expressed as the maximum number of new cases of cancer projected to occur in a population of one million people due to exposure to the cancer-causing substance, typically over a specific exposure duration, such as the average residency (50-percentile) of 9 years or the high-end residency (95-percentile) of 30 years. For example, a cancer risk of one in one million means that in a population of one million people, not more than one additional person would be expected to develop cancer as a result of exposure to the substance causing that risk.

b. Project Impacts and Mitigation Measures.

Impact AQ-1 The Project would be consistent with the SBCAPCD 2013 Clean Air Plan (CAP) because it would not generate population in excess of that used in the CAP to forecast population-related emissions. This impact would be Class III, less than significant [Threshold 1].

Consistency with land use and population forecasts in local and regional plans, including the Clean Air Plan (CAP), is required under CEQA for all projects. In order for a project to be found consistent with the CAP, the Project’s direct and indirect emissions must be accounted for in the growth assumptions of the CAP (SBCAPCD, April 2015a). In addition, all projects involving earthmoving activities must implement SBCAPCD’s standard dust control measures.

The 2013 CAP is based on growth projections contained in the 2007 Santa Barbara County Association of Governments (SBCAG) Regional Growth Forecast 2005-2040, in which assumptions about future land development patterns were used to generate future housing forecasts for unincorporated areas of Santa Barbara County (SBCAG, August 2007). SBCAG updated the Regional Growth Forecast in December 2012 for the period 2010 through 2040. These updated housing projections are shown in Table 4.2-3.

<table>
<thead>
<tr>
<th>Year</th>
<th>Population Forecast</th>
<th>Households^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>29,824</td>
<td>10,880</td>
</tr>
<tr>
<td>2020</td>
<td>29,954</td>
<td>10,924</td>
</tr>
<tr>
<td>2035</td>
<td>33,912</td>
<td>12,307</td>
</tr>
<tr>
<td>2040</td>
<td>34,588</td>
<td>12,546</td>
</tr>
</tbody>
</table>

^1 Sub-regional Household forecast is calculated by dividing population growth by census 2010 household size.

The Project involves developing 360 residential rental units, which would include 132 senior apartment units and 228 workforce apartment units. The current population of Goleta is 30,765 (DOF, 2015). The population for the workforce housing was determined based on the latest persons-per-household figure from the Department of Finance (2.76 persons per dwelling unit), and the population for the senior
housing was determined based on the Heritage Ridge Occupant/Unit Ratio Analysis study conducted by The Towbes Group, Inc. (2014) (1.11 persons per senior dwelling unit). The population for the workforce housing was estimated to be 629 persons, and the service population for the senior housing was assumed to be 147 persons. Development of the Project would add an estimated 776 residents (132 dwelling units x 1.11 people/dwelling unit + 228 dwelling units x 2.76), thus increasing the City’s population to 31,541. SBCAG’s 2010-2040 growth forecast projects Goleta’s population to be approximately 30,000 in 2015, 33,900 in 2035, and 34,600 in 2040 (SBCAG, 2015). The Project is not expected to be operational until after 2017. Consequently, the Project was compared to the 2035 and 2040 forecasts. Population generated by the Project would not cause an exceedance of SBCAG’s 2035 growth forecast of 33,900 and would not exceed the 2040 growth forecast of 34,588 for the City of Goleta (SBCAG, 2012). Development of the Project would therefore be consistent with the population forecasts contained in the 2013 CAP.

The Project would be consistent with the growth assumptions within the 2013 CAP. As discussed in Impact AQ-3, the Project would be required to implement SBCAPCD’s standard dust control measures. Therefore, and impacts from the Project related to CAP consistency would not be significant (Class III).

Mitigation Measures. Mitigation not required because this impact would be less than significant.

Residual Impact. Impacts would be less than significant without mitigation.

Impact AQ-2 The Project would result in operational air pollutant emissions from area sources, natural gas use, and increased vehicular traffic. However, the increase in emissions would not exceed thresholds established by SBCAPCD. This impact would be Class III, less than significant [Threshold 2].

Long-term regional emissions are generated by area, energy, and mobile sources. Area emissions include the use of aerosols, consumer products, and landscaping maintenance equipment. Energy emissions include emissions from the use of natural gas. Specifically, the Project would impact air quality through vehicular traffic generated by residences of the senior housing and workforce housing. Emissions associated with Project-generated daily traffic were estimated based on the trip generation rates provided by Associated Transportation Engineers (refer to Section 4.13, Transportation and Circulation and Appendix I).

Table 4.2-4 summarizes the maximum daily operational emissions resulting from the Project. All details of the emission calculations are provided in Appendix B.
Table 4.2-4
Estimated Operational Emissions of the Project

<table>
<thead>
<tr>
<th>Source</th>
<th>Maximum Emissions (lbs/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROC</td>
</tr>
<tr>
<td>Area Emissions</td>
<td>15.4</td>
</tr>
<tr>
<td>Vehicular Emissions</td>
<td>7.0</td>
</tr>
<tr>
<td>Combined Total Emissions</td>
<td>22.4</td>
</tr>
<tr>
<td>Vehicle Emissions Threshold</td>
<td>25</td>
</tr>
<tr>
<td>Threshold Exceeded?</td>
<td>No</td>
</tr>
<tr>
<td>Area + Vehicle Emissions Threshold</td>
<td>240</td>
</tr>
<tr>
<td>Threshold Exceeded?</td>
<td>No</td>
</tr>
</tbody>
</table>

Source: Dudek, 2014, Appendix B.

Emissions are based on incorporation of the proposed sustainable project design features.

Note: Emission totals shown may not sum exactly as a result of rounding.

As shown in Tables 4.2-5, the Project would not generate vehicular emissions that would exceed the SBCAPCD mobile significance thresholds for ROC or NO\textsubscript{X} of 25 pounds per day. Additionally, the Project’s combined area and vehicle emissions would not exceed the SBCAPCD significance thresholds of 240 pounds per day for ROC and NO\textsubscript{X} or the SBCAPCD significance threshold of 80 pounds per day for PM\textsubscript{10}. This impact would be less than significant.

Table 4.2-5
Estimated Pre-Construction Air Pollutant Emissions
Scenario 1: 9-Cubic Yard Trucks

<table>
<thead>
<tr>
<th></th>
<th>ROC (tons/year)</th>
<th>NO\textsubscript{X} (tons/year)</th>
<th>CO (tons/year)</th>
<th>PM\textsubscript{10} (tons/year)</th>
<th>PM\textsubscript{2.5} (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1: 9-Cubic Yard Trucks</td>
<td>0.3</td>
<td>3.7</td>
<td>2.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Scenario 2: 20-Cubic Yard Trucks</td>
<td>0.2</td>
<td>2.9</td>
<td>2.4</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Source: Heritage Ridge Project Pre-Construction Export Scenarios Air Quality and Greenhouse Gas Emissions Assessment, July 2015 (see Appendix B for Technical Reports and CalEEMod outputs)

Based on the Project’s Traffic, Circulation, and Parking Study, the senior and workforce housing is forecast to generate 174 AM peak hour trips, and 183 PM peak hour trips (Associated Transportation Engineers, 2014). Because the Project would not contribute more than 800 trips to an existing congested intersection at LOS D or below and would not cause an intersection to reach LOS D or below, a quantitative CO hot spot impact analysis is not warranted, and impacts related to microscale CO concentrations would be less than significant. Because of continued improvement in vehicular emissions at a rate faster than the rate of vehicle growth and/or congestion and very low background concentrations relative to the CAAQS and NAAQS, the potential for CO hot spots in the South Central Coast Air Basin is steadily decreasing. According to the SBCAPCD, localized CO impacts associated with congested intersections are not expected to exceed the CO health-related air quality standards due to the relatively low background ambient CO levels in the County (SBCAPCD 2014; Dudek, 2014). This impact would be less than significant.
Mitigation Measures. Mitigation would not be required because Project emissions would not exceed applicable SBCAPCD thresholds.

Residual Impact. Impacts would be less than significant without mitigation.

Impact AQ-3 Project construction would generate temporary air pollutant emissions. Such emissions may result in temporary adverse impacts to local air quality, but are below SBCAPCD guideline thresholds for construction emissions. Additionally, standard dust and emissions control measures are required by the SBCAPCD. This impact would be Class III, less than significant [Threshold 3].

The Project involves the development of 360 residential units, parking areas, two recreational buildings, and a two-acre public park on the 17.36-acre Project site. Construction of the Project is expected to occur over approximately 30 months. Ozone precursors NO\textsubscript{x} and ROC, as well as CO and diesel exhaust PM, would be emitted by the operation of construction equipment such as graders, backhoes, and generators, while fugitive dust (PM\textsubscript{10}) would be emitted by activities that disturb the soil, such as grading and excavation, road construction and building construction. As discussed above, the Project would include pre-construction export of stockpiled soil currently on the site (stockpiled in two locations) prior to building construction. The pre-construction soil export would proceed according to one of two potential scenarios – one based on smaller (9 CY) haul trucks and another based on larger (20 CY) haul trucks. Table 4.2-5 summarizes estimated annual construction emissions associated with Scenario 1, which includes 25,556 one-way haul truck trips, worker trips, and operation of on-site equipment as well as estimated pre-construction air pollutant emissions associated with Scenario 2, which includes 11,500 one-way haul truck trips, worker trips, and operation of on-site equipment.

As shown in Table 4.2-5, Scenario 1 would result in higher emissions of ozone precursors ROC and NO\textsubscript{x}, whereas Scenario 2 would result in higher emissions of CO. To provide a conservative estimate of the potential emissions associated with the pre-construction soil export, the highest potential annual emissions of each pollutant from both scenarios are included in the combined Project construction emissions (refer to Table 4.2-7, below).

In addition to emissions generated by pre-construction export of stockpiled soil, annual emissions associated with the Project construction was assumed to occur over approximately 2.5 years. The building construction phase, which would occur over approximately two years, would be the phase with the highest emissions of NO\textsubscript{x}, CO, PM\textsubscript{10}, and PM\textsubscript{2.5}. The architectural coating phase, which is assumed to occur over the last 18 months of building construction, would result in the highest emissions of ROC.

Table 4.2-6 presents estimated annual construction emissions over the 2.5-year construction period.
Maximum potential annual construction emissions, which assume that the pre-construction export activity would overlap with the highest year of activity during the Project construction phase (as shown in Table 4.2-6, above), are presented in Table 4.2-7.

As shown in Table 4.2-7, the maximum potential annual construction emissions associated with the Project would not exceed the SBCAPCD’s general rule of 25 tons per year of ROC or NO\textsubscript{x} used for determining significance of construction exhaust emissions (Dudek, 2014). Therefore, impacts to air quality during pre-construction export and construction activities would not violate any air quality standards or contribute substantially to existing or projected air quality violations.

The Project site is located in Santa Barbara County and the Santa Barbara County portion of the SCCAB is a nonattainment area for the state PM\textsubscript{10} standard. Therefore, the SBCAPCD requires construction emissions and dust control measures for all projects involving earthmoving activities regardless of size or duration. In accordance with standard practices, such construction emissions control measures would
be shown on grading and building plans and as a note on a separate information sheet to be recorded with map. According to the SBCAPCD’s *Scope and Content of Air Quality Sections in Environmental Documents* (December 2011), implementation of required dust control measures results in fugitive dust emissions that are less than significant. The specific measures that would apply to the project in accordance with standard SBCAPCD requirements include the following:

- **During construction,** use water trucks or sprinkler systems to keep all areas of vehicle movement damp enough to prevent dust from leaving the site. At a minimum, this should include wetting down such areas in the late morning and after work is completed for the day. Increased watering frequency should be required whenever the wind speed exceeds 15 mph. Reclaimed water should be used whenever possible. However, reclaimed water should not be used in or around crops for human consumption.
- **Minimize amount of disturbed area and reduce on site vehicle speeds to 15 miles per hour or less.**
- **If importation, exportation and stockpiling of fill material is involved,** soil stockpiled for more than two days shall be covered, kept moist, or treated with soil binders to prevent dust generation. Trucks transporting fill material to and from the site shall be tarped from the point of origin.
- **Gravel pads shall be installed at all access points to prevent tracking of mud onto public roads.**
- **After clearing, grading, earth moving or excavation is completed,** treat the disturbed area by watering, or revegetating, or by spreading soil binders until the area is paved or otherwise developed so that dust generation will not occur.
- **The contractor or builder shall designate a person or persons to monitor the dust control program and to order increased watering, as necessary,** to prevent transport of dust offsite. Their duties shall include holiday and weekend periods when work may not be in progress. The name and telephone number of such persons shall be provided to the Air Pollution Control District prior to land use clearance for map recordation and land use clearance for finish grading of the structure.
- **Prior to land use clearance,** the applicant shall include, as a note on a separate informational sheet to be recorded with map, these dust control requirements. All requirements shall be shown on grading and building plans.

With implementation of SBCAPCD construction and dust control measures, this impact would be less than significant.

Mitigation Measures. Mitigation would not be required because this impact would be less than significant.

Residual Impact. Impacts would be less than significant without mitigation.

Impact AQ-4 New sensitive receptors on the Project site would be exposed to hazardous air pollutants at levels that may cause health risks. The proposed residences closest to U.S. 101 and the Union Pacific Railroad would be exposed to hazardous air pollutants that exceed significance thresholds. This impact would be Class II, *significant but mitigable [Threshold 4]*.
The conclusions of the 2016 HRA are summarized in Table 4.2-8. The HRA determined that the proposed residential units on the Project site would be exposed to a high end (95-percentile) 30-year excess cancer risk of between 42 and 59 in one million, which exceeds the SBCAPCD recommended health risk criteria of ten excess cases of cancer in one million individuals (1.0E-05) (SBCAPCD, August 2015). Thirty years is the exposure duration scenario recommended by the SBCAPCD in the *Modeling Guidelines for Health Risk Assessments* (August 2015). The health effects risk level for the average (50-percentile) residency of 9 years for an adult would be between 12 and 18 in one million, and for that of a child (9-years) would be between 18 and 26 in one million. Both of which also exceed the SBCAPCD health risk criteria. To provide context for this level of additional risk, the American Cancer Society (2007) reports that in the U.S., men have a one in two chance (0.5 probability) and women about one in three chance (0.3) probability of developing cancer during a lifetime, with nearly one in four deaths (0.23) in the U.S. attributed to cancer.

Table 4.2-8

<table>
<thead>
<tr>
<th>Potential Health Risks at the MEIR Receptors</th>
<th>Excess Cancer Risk</th>
<th>Exceed Criterion?</th>
<th>OEHHA Chronic Hazard Quotient(^1)</th>
<th>Exceed Criterion?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-year Resident Adult</td>
<td>1.54E-05</td>
<td>YES</td>
<td>6.41E-02</td>
<td>NO</td>
</tr>
<tr>
<td>9-year Resident Child</td>
<td>2.27E-05</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-year Adult</td>
<td>5.12E-05</td>
<td>YES</td>
<td>6.41E-02</td>
<td>NO</td>
</tr>
<tr>
<td>Residential 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-year Resident Adult</td>
<td>1.47E-05</td>
<td>YES</td>
<td>6.10E-02</td>
<td>NO</td>
</tr>
<tr>
<td>9-year Resident Child</td>
<td>2.17E-05</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-year Adult</td>
<td>4.90E-05</td>
<td>YES</td>
<td>6.10E-02</td>
<td>NO</td>
</tr>
<tr>
<td>Residential 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-year Resident Adult</td>
<td>1.77E-05</td>
<td>YES</td>
<td>7.06E-02</td>
<td>NO</td>
</tr>
<tr>
<td>9-year Resident Child</td>
<td>2.61E-05</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-year Adult</td>
<td>5.89E-05</td>
<td>YES</td>
<td>7.06E-02</td>
<td>NO</td>
</tr>
<tr>
<td>Residential 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-year Resident Adult</td>
<td>1.25E-05</td>
<td>YES</td>
<td>5.00E-02</td>
<td>NO</td>
</tr>
<tr>
<td>9-year Resident Child</td>
<td>1.85E-05</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-year Adult</td>
<td>4.17E-05</td>
<td>YES</td>
<td>5.00E-02</td>
<td>NO</td>
</tr>
</tbody>
</table>

See appendix for complete model results.

1: Note that chronic risk does not change with increase in years as calculation terms cancel out.

Diesel exhaust particulates were found to be responsible for about 98% of the calculated cancer risk on-site. The HRA concluded that, because the carcinogenic health risk for lifetime residency exceeds the SBCAPCD-recommended health risk criteria for a high-end (95-percentile) 30-year residency and average (50-percentile) nine-year residency of ten excess cases of cancer in one million individuals (1.0E-05), the potential effect of exposure to freeway air pollutants for the Project would be potentially significant.

The HRA also showed that residences on-site would be exposed to chemicals such as 1,3 butadiene and formaldehyde from the exhaust of vehicles on U.S. 101. However, acute and chronic health hazards associated with inhalation of these chemicals would be below the SBCAPCD threshold (a hazard index of
1.0) for proposed residences. A hazard index is the summation of the hazard quotients for all chemicals to which an individual would be exposed. Based on this finding, future residents on-site would experience a less than significant acute and chronic health risk from freeway, railroad, and permitted sources.

The HRA analysis is based on outdoor air concentrations and conservatively assumes that interior concentrations would be the same as outdoor concentrations. EPA activity factors show that people in a residential environment spend only approximately 2.3 hours per day on an average basis outdoors. Therefore, the HRA recommends a mitigation measure that includes forced air ventilation with filter screens on outside air intake ducts to be provided for all residential units on the Project site. The identified mitigation measure would reduce the future residents’ exposure to toxic air contaminants associated with U.S. 101 and the UPRR to below the recommended 10 in one million threshold for a 9-year and 30-year residency.

Although the analysis of health risks assumes outdoor exposure, the finding of a potentially significant impact related to cancer risk does not mean that using exterior portions of the site would create acute, or short-term, health risks for site residents or visitors. The excess cancer risk identified in the HRA is based on a 30-year exposure, which is the high-end (95-percentile) residency, the exposure duration scenario recommended by the SBCAPCD in the Modeling Guidelines for Health Risk Assessments (August 2015); and is greater than the length of time that the majority of residents of the Project would be expected to live on-site.

Mitigation Measures. In accordance with the HRA for the Project, the following mitigation measure is required to reduce impacts to residential receptors on the Project site to a less than significant level.

AQ-4 Indoor Air Pollution. The mitigation actions listed below apply to all new residential units on the Project site:

- **Forced air ventilation with filter screens on outside air intake ducts must be provided for all residential units proposed on the site. The filter screens must have a minimum MERV 13 rating, capable of removing at least 90% of the particulate matter including fine particulate matter (PM<2.5 micron).**
- **For individual residential units with separate HVAC systems, a brochure notifying the future residents of the need for maintaining the filter screens must be prepared and provided at the time of ownership exchange. In addition, a notice of the diesel particulates risk hazard and the need for screen maintenance must be recorded in the property title and included with lease agreements.**
- **Windows and doors must be fully weatherproofed with caulking and weather-stripping that is rated to last at least 20 years.**

3 USEPA, *Exposure Factors Handbook*, 2011; Table 16-16 Time Spent (minutes/day) in Various Rooms at Home and in All Rooms Combined, Doers Only and Table 16-22 Mean Time Spent (minutes/day) Outside and Inside, Adults 18 Years and Older, Doers Only. “Doers Only” includes data for individuals that spent >0 time in motor vehicles and had 30 or more records.
Plan Requirements and Timing: These mitigation measures must be incorporated into the Project and shown on the plans submitted to the City for zoning clearance. The brochure and the specifications for the filter screens must also be submitted to the Planning and Environmental Review Director or designee for review before the City provides zoning clearance for the project.

Monitoring: The Planning and Environmental Review Director or designee must review the hazard avoidance measures and confirm acceptable wording in the brochure and the suitability of the proposed screens before the City provides zoning clearance. City building inspectors must check for installation of the filter screens and adequate weather-proofing in the appropriate units before the City issues certificates of occupancy.

Residual Impact. Compliance with these mitigation actions would provide for the removal of particulates before they enter the indoor environment, thereby reducing the overall exposure of individual residents. With this reduction in exposure to TACs, the combined exposure from time spent both indoors and outdoors would be below significance thresholds, as shown in Table 4.2-9. Resulting impacts would be less than significant.

Table 4.2-9

<table>
<thead>
<tr>
<th>Mitigated Potential Carcinogenic Health Risks Within the Project Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential 1</td>
</tr>
<tr>
<td>9-year Resident</td>
</tr>
<tr>
<td>Adult</td>
</tr>
<tr>
<td>Child</td>
</tr>
<tr>
<td>30-year Adult</td>
</tr>
<tr>
<td>Residential 2</td>
</tr>
<tr>
<td>9-year Resident</td>
</tr>
<tr>
<td>Adult</td>
</tr>
<tr>
<td>Child</td>
</tr>
<tr>
<td>30-year Adult</td>
</tr>
<tr>
<td>Residential 3</td>
</tr>
<tr>
<td>9-year Resident</td>
</tr>
<tr>
<td>Adult</td>
</tr>
<tr>
<td>Child</td>
</tr>
<tr>
<td>30-year Adult</td>
</tr>
<tr>
<td>Residential 4</td>
</tr>
<tr>
<td>9-year Resident</td>
</tr>
<tr>
<td>Adult</td>
</tr>
<tr>
<td>Child</td>
</tr>
<tr>
<td>30-year Adult</td>
</tr>
</tbody>
</table>

See appendix for complete model results.
c. Cumulative Impacts. The significance thresholds used for this analysis are intended to address cumulative air quality impacts (SBCAPCD, 2015a). Due to the County’s non-attainment status for ozone and the regional nature of the pollutant, if a project’s total emissions of the ozone precursors, NOx, or ROG, exceed the long-term threshold of 25 lbs/day, then the Project’s cumulative impacts would be considered significant. As shown in Table 4.2-4, the Project would not exceed any of these thresholds and therefore, the Project’s contribution to cumulative air quality impacts would be less than significant.

Cumulative development in the City of Goleta and the Goleta vicinity (Highway 154 to Gaviota) would contribute to the cumulative degradation of regional air quality. As discussed in Section 3.0, Related Projects, 1,511 residential units and more than 1.8 million square feet of non-residential development are currently planned and pending in and around Goleta. Pursuant to Goleta thresholds, the Project would have a significant cumulative impact if it were inconsistent with the adopted federal and state air quality plans of Santa Barbara County. As discussed in Impact AQ-1, the Project would be consistent with the growth assumptions within the 2013 CAP and therefore the project’s impact on air quality is not cumulatively considerable.
4.3 BIOLOGICAL RESOURCES

This section identifies biological resources present on the project site and assesses the project’s impacts on those resources. The discussion of biological resources incorporates the results of reconnaissance-level surveys of the project site conducted by the City’s EIR consultant (see Appendix D). The surveys updated the results of previous biological surveys of the site, including the Technical Review of Coastal Sage Scrub Environmentally Sensitive Habitat Area for the North Willow Springs Project (Dudek, 2014a) and Wildlife Corridor Analysis for the Heritage Ridge Project (Dudek, 2014b).1 The 2015 field reconnaissance surveys documented existing site conditions and the potential presence of sensitive biological resources, including sensitive plant and wildlife species, sensitive plant communities, jurisdictional waters and wetlands, and habitat for nesting birds.

4.3.1 Setting

a. Regional Setting. The project site is located within the South Coast region of Santa Barbara County within the Santa Ynez – Sulphur Mountains subsection of the Southern California Coast, an ecological unit that extends from the Santa Ynez River mouth in northern Santa Barbara County, south and east to the Sulphur Mountains in northern Ventura County. This ecological unit is generally defined by its topography and geography. Locally, the Santa Ynez Mountains to the north of the site form relatively steep hillsides vegetated by native chaparral and drained by incised streams along which grow bands of riparian shrubs and woodlands.

The presence and proximity of the 4,000+ feet high Santa Ynez Mountains adjacent to the Pacific Ocean influence climatic conditions by forcing moving air upwards, and causing an increase in precipitation along the coastal plain. Annual precipitation in this area ranges from 13 to 18 inches, increasing with elevation, and temperatures range from 45 to 65 degrees Fahrenheit (°F). Summer daytime temperatures are also often modified by morning fog and sea breezes and the growing season lasts 250 to 360 days per year.

Much of the coastal plain in the Goleta area between the Santa Ynez Mountains and Pacific Ocean is developed or has been historically disturbed by agriculture or ranching uses. Relatively undisturbed habitats are present along narrow riparian corridors, in scattered undeveloped lands of varying sizes, and in protected open space areas. The habitats and wildlife resources of the area reflect those typically found within the coastal plains of southern California. Native vegetation within the City of Goleta is fragmented, and consists primarily of riparian and upland woodlands and coastal scrub.

b. Project Site Setting. The Project is within the 47.4-square mile Goleta Slough Watershed, which is fed by five major streams: Atascadero, San Pedro, and San Jose Creeks (meet near the mouth of the slough) and Los Carneros and Tecolotito Creeks (meet “upstream” and north of the slough mouth). Not all the tributary creeks are equally important to the functioning of the slough. Atascadero (Maria Ygnacio is part of the Atascadero system), San Jose and San Pedro enter the slough on its extreme eastern edge, within a few hundred meters of the mouth, and have little influence on slough conditions during most of the year. In contrast, Tecolotito and Los Carneros, although smaller streams, enter on the northwest corner and waters, along with tidal inflows, that determine water quality for much of the wetland (Leydecker, 2006).

1 During the development of the Willow Spring I and II projects located adjacent to the south, the Project site was previously referred to as "North Willow Springs."
Lake Los Carneros is a historic man-made duck pond built in 1936, located north of U.S. 101, approximately 1,300 feet north of the project site. The lake is part of a 136-acre City natural area (Lake Los Carneros Natural and Historic Preservation or LLCNHP).

The Goleta Slough begins 1,200 feet south of the Project between Hollister Avenue and the Pacific Ocean. The Goleta Slough is a large expanse of open water and estuarine/wetland habitats that supports a rich and diverse coastal ecosystem of biological and cultural importance, and provides important ecosystem services such as floodwater storage capacity and the filtering of pollutants contained within stormwater runoff. The Goleta Slough is the northernmost example of a large southern California estuary and represents the northern limit of distribution for several plant and animal species. The slough contains breeding populations of listed species such as the State listed as endangered Belding’s savannah sparrow (*Passerculus sandwichensis beldingi*) and federally listed as endangered tidewater goby (*Eucyclogobius newberryi*), as well as other species of federal, state and local concern.

Los Carneros Creek flows intermittently approximately 90 feet to the north of the Project, parallel to U.S. 101, and then into an open, concrete-lined channel 450 feet to the east of the Project (beyond Aero Camino). It then flows from LLCNHP, to a culvert under U. S. 101, and is diverted in a concrete channel for 0.41 mile until it confluences with Tecolotito Creek and flows into the Goleta Slough, from whence its waters flow to the Pacific Ocean. The San Pedro Creek watershed (HUC 180600130202) includes San Pedro, San Jose, Los Carneros, and Tecolotito Creeks and their tributaries, and drains approximately 27.6 square miles. Tecolotito and Los Carneros Creeks had channel realignment projects implemented in 2006 as part of the airport expansion (County of Santa Barbara 2010). Compared with Tecolotito Creek, Los Carneros Creek is less developed and has fewer commercial or residential areas within its watershed (Leydecker, 2006).

The seven acre Los Carneros Wetland, classified as an Environmentally Sensitive Habitat Area (ESHA) in the City’s General Plan Conservation Element, is located adjacent to South Los Carneros Road and Hollister Avenue, south of the Project site. The Wetland is just west of the Willow Springs I development, beginning approximately 80 feet from the southern corner of the Project site. Between Willow Springs I and II is an oval-shaped private open space preserve area, which is landscaped with a combination of ornamental and native species.

The Project site has undergone disturbance and import of fill, as discussed under Section 2.0, Project Description. Soils in the Project site are mapped as Goleta fine sandy loam, 0% to 2% slopes, Milpitas-Positas fine sandy loam, 2% to 9% slopes, and Xerorthents cut and fill areas (NRCS, 2015).

Methodology. Rincon staff reviewed literature for baseline information on biological resources potentially occurring at the Project site and in the surrounding area. The literature review included information available in peer reviewed journals, standard reference materials (e.g., Bowers et al., 2004; Burt and Grossenheider, 1980; Holland, 1986; Baldwin et al., 2012; Sawyer et al., 2009; Stebbins, 2003; Oberhauser, 2004; American Ornithologists Union, 2014; United States Army Corps of Engineers (USACE), 2008 and 2014). Site-specific reports were reviewed, including the *Technical Review of Coastal Sage Scrub Environmentally Sensitive Habitat Area for the North Willow Springs Project* (Dudek, 2014a), *Wildlife Corridor Analysis for the Heritage Ridge Project* (Dudek, 2014b), and *Preliminary Landscape Plan, Heritage Ridge* (True Nature, 2014). Rincon also conducted a review of relevant databases of sensitive resource occurrences from the California Department of Fish and Wildlife (CDFW) California Natural Diversity Data Base (CNDDB) (CDFW, 2015a) and Biogeographic Information and Observation System (CDFW, 2015b); the U.S. Fish and Wildlife Service (USFWS) Critical Habitat Portal (USFWS, 2015a),
National Wetlands Inventory Wetlands Mapper (USFWS, 2015b), and Information, Planning and Conservation System (USFWS, 2015a); the United States Department of Agriculture, Natural Resources Conservation Service Web Soil Survey (United States Department of Agricultural, Natural Resources Conservation Service, 2015); and the California Native Plant Society (CNPS) Inventory of Rare and Endangered Plants of California (CNPS, 2015). The City of Goleta General Plan / Coastal Land Use Plan (2009) (General Plan), and the City of Goleta Environmental Review Guidelines and Environmental Thresholds Manual and State CEQA Guidelines (2014) were also reviewed. Other sources of information about the site included aerial photographs, topographic maps, geologic maps, climatic data, and project plans. The Rare Plants of Santa Barbara County list was also reviewed (Central Coast Center for Plant Conservation, 2005). Previous biological studies for projects occurring in the region were reviewed, as dated in Appendix D.

Rincon Consultants conducted a vascular plant survey; wildlife observations; vegetation mapping; and a search for rare, threatened, and endangered species, sensitive natural communities, and potential jurisdictional resources on three separate occasions from March through June 2015. Surveys were conducted on foot and covered the Project site and a 100-foot buffer surrounding the Project site. Wildlife species were identified by direct observation, vocalization, or by sign (e.g., tracks, scat, burrows). Dudek biologists also visited the site on January 22, 2014 and conducted an Environmentally Sensitive Habitat Area (ESHA) analysis of the Project site and vicinity. The Dudek biologists visited the site on five additional occasions in January and February 2013; and on four occasions from February through April 2014 to assess of the condition and quality confirm existing biological conditions; search for wildlife species, sign and tracks, and travel routes; and perform nocturnal spotlighting surveys. The site was also surveyed by Envicom in 2010 and Dudek 2008 as part of the Willow Springs II permitting process (City of Goleta, 2011). An inventory of native plant and animal species observed during the site visit was compiled, and an evaluation of potential jurisdictional features was performed. Where applicable, native vegetation communities were classified according to Sawyer et al. (2009), and cross-referenced with Holland (1986).

The following communities are present on site, as shown in Figure 4.3-1:

Baccharis pilularis (Coyote brush scrub) Alliance [32.060.00]. The Manual of California Vegetation (2009) describes this community as occurring in river mouths, stream sides, terraces, stabilized dunes of coastal bars, spits along the coastline, coastal bluffs, open slopes, and ridges, although the species is upland. Elevations range from sea level to approximately 4,900 feet above mean sea level (amsl). Stands in southern California tend to be largely at the beginning stages of ecological succession towards a steady state(e.g., maturity) , such as scrub and woodland types. _B. pilularis_ mixes with shrubs with southern affinities (_Artemisia californica, Encelia californica, Eriogonum fasciculatum, Salvia leucophylla, S. mellifera_). On the south coast, _Baccharis pilularis_ alliance appears as more disturbance related.

Coyote brush scrub at the site is a relatively open stand dominated by coyote brush with an understory of non-native grasses and forbs. The shrub layer consists almost exclusively of coyote brush, and biological diversity is low. California sagebrush is present, but at less than one percent of the total shrub cover. There are no other sage species present (i.e., species of the genus _Salvia_ or _Artemisia_). Commonly-occurring species in the understory herbaceous layer include sweet fennel (_Foeniculum vulgare_), pampas grass (_Cortaderia jubata_), short-podded mustard (_Hirschfeldia incana_), scarlet pimpernel (_Anagallis arvensis_), Harding grass (_Phalaris aquatica_), filarees (_Erodium spp._), ripgut brome (_Bromus diandrus_), rattail fescue (_Vulpia myuros_), and soft chess (_Bromus hordeaceous_).
Habitat Map

Figure 4.3-1

City of Goleta

Project Site

Habitats

- Bromus (diandrus, hordeaceus)-Brachypodium distachyon Herbaceous Semi-Natural Alliance [42.026.00]
- Baccharis pilularis (Coyote brush scrub) Alliance [32.060.00]
- Disturbed
- Brassica nigra and other mustards (Upland Mustards) Herbaceous Semi-Natural Alliance [42.011.00]
- Atriplex lentiformis Shrubland (Quailbush Scrub) Alliance [36.370.00]

Note: Where applicable, classification on natural communities (Alliances and Associations) is based on the Manual of California Vegetation (2009). Numbers in brackets following natural communities correspond with the codes in the Manual of California Vegetation, where applicable.

Imagery provided by Google and its licensors © 2015.

Heritage Ridge Residential Project EIR
Section 4.3 Biological Resources
Coyote brush is an early colonizer of disturbed areas. The coyote brush scrub on-site has become established in a slight depression, since this area was last mass graded. Due to the Project site’s long history of agricultural use and grading, the coyote brush scrub contains low native species diversity, is infested by invasive species, and has lower overall biological value as compared to coyote brush scrub in a less-disturbed condition. Based on these characteristics, this community is not an example of intact coastal sage scrub that would qualify as ESHA. For further discussion refer to Appendix D, Attachment F Technical Review of Coastal Sage Scrub Environmentally Sensitive Habitat Area for the North Willow Springs Project.

Atriplex lentiformis Shrubland (Quailbush Scrub) Alliance [36.370.00]. The Manual of California Vegetation (2009) describes this community as occurring on gentle to steep southeast- and southwest-facing slopes. Elevations range from sea level to approximately 557 feet above mean sea level (amsl). The alliance especially occurs in disturbed areas, including roadsides and fluvial areas with alkaline soils. Atriplex lentiformis is dominant in the shrub canopy with Artemisia californica, Atriplex canescens, Baccharis pilularis, Baccharis salicifolia ssp. salicifolia, Encelia californica, Kochia americana, Malosma laurina, Pluchea sericea, Rhus integrifolia, Sporobolus airoides, Suaeda taxifolia and Tamarix spp. Emergent trees may be present at low cover, including Myoporum laetum or Prosopis glandulosa.

The community on-site is comprised almost exclusively of common disturbance following native species and non-native invasive species. As is typical with most vegetation maintained in a ruderal condition by frequent disturbance, this vegetation type within Project site does not directly fit into the CDFW plant community classification system. The shrub layer of community on-site is dominated by quailbush, with co-dominant coyote brush. The understory is dominated by mustard and other non-native annuals. An emergent red willow trees is present in the southeast corner. The on-site community is characterized as ruderal scrub rather than a natural community, but is described as quailbush scrub for the purposes of classification. Quailbush and coyote brush are known initial colonizers after disturbances (i.e., grading), and native plant diversity and structure within the community is low. The Quailbush scrub is established on fill material, presumably since this area of the site was last mass graded. Quailbush scrub is not considered sensitive by CDFW, and is not classified as coastal sage scrub.

Bromus (diandrus, hordeaceus)-Brachypodium distachyon Herbaceous Semi-Natural Alliance [42.026.00]. This semi-natural stand is found in all topographic settings in foothills, waste places, rangelands, openings in woodlands. Elevations range from sea level to approximately 7,200 feet above mean sea level (amsl).

On-site areas mapped as non-native grasses and forbs consist overwhelmingly of introduced non-native species, with native species poorly represented. Ripgut brome, summer and black mustard, smilo grass (Stipa miliacea), soft chess, and foxtail barley (Hordeum murinum) are prevalent. Other selected non-native species occurring in notable quantities are long-beaked filaree (Erodium botrys), bristly ox-tongue (Helminthotheca <= Picris echioiodes), tocalote (Centaura melitensis), and Italian thistle (Carduus pycnocephalus). These species may be well distributed or concentrated in certain areas.

Native annual species represent much less than five percent of the vegetative cover. Among these species are Canada horseweed (Conyza canadensis), common tarweed (Deinandra fasciculata), and western ragweed (Ambrosia psilostachya). Emergent native shrubs include California sagebrush and coyote brush. Because they are comprised almost exclusively of non-native invasive species, areas mapped as Bromus grassland are not sensitive.
Brassica nigra and other mustards (Upland Mustards) Herbaceous Semi-Natural Alliance [42.011.00]. Typically occurs in fallow fields, grasslands, roadsides, levee slopes, disturbed coastal scrub, riparian areas, waste places. Elevations range from sea level to approximately 4,900 feet amsl. Brassica nigra, Brassica rapa, Brassica tournefortii, Hirschfeldia incana, Isatis tinctoria or Raphanus sativus are dominant in the herbaceous layer. Emergent trees and shrubs may be present at low cover.

Under the Willow Springs II EIR, this area was classified as “non-native grasses and forbs” (City of Goleta, 2012). On-site black mustard (brassica nigra) is dominant, and many other non-native annual species are also present. This area was required to be hydro-seeded with native seed for erosion control following grading in 2013 as part of Willow Springs II. Seeded species include purple needle grass (Stipa pulchra), nodding needle grass (Stipa cernua), California brome (Bromus carinatus), blue wildrye (Elymus glaucus), California brittlebrush (Encelia californica), western blue-eyed grass (Sisyrinchium bellum), small fescue (Festuca microstachys), and California poppy (Eschscholzia californica). Emergent trees include tree tobacco (Nicotiana glauca) and shrubs include castor bean (Ricinus communis) and coyote brush.

Pursuant to the General Plan CE Policy 5.2 and the City of Goleta Environmental Review Guidelines and Environmental Thresholds Manual, existing native grasslands must be comprised of 10% or more total relative cover (proportion in relation to other species) of native grasses and that removal of or disturbance to a patch of native grasses (e.g., purple needle grass) less than 0.25 acre that is clearly isolated and not part of a significant native grassland or an integral component of a larger ecosystem is allowed. The purple needle grass observed within the upland mustard area does not constitute sensitive native grassland pursuant to the General Plan and of Goleta Environmental Review Guidelines and Environmental Thresholds Manual, since it does not meet the coverage criteria and was required to be planted for erosion control following approved 2013 grading.

Disturbed. Disturbed areas include the Camino Vista roadway constructed in 2013, dirt roads, and areas cleared as part of the recent Los Carneros Bridge improvements. These areas have been recently graded or are subject to routine disturbance, leaving them barren or sparsely vegetated. Plant species consist overwhelmingly of non-native species, as well as occasional native species common to highly disturbed areas.

The project would result in the removal of the following acres of each habitat type shown in Table 4.3-1:

<table>
<thead>
<tr>
<th>Habitat Type</th>
<th>Acres Impacted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baccharis pilularis (Coyote brush scrub) Alliance</td>
<td>3.3</td>
</tr>
<tr>
<td>Atriplex lentiformis Shrubland (Quailbush Scrub) Alliance</td>
<td>4.9</td>
</tr>
<tr>
<td>Brassica nigra and other mustards (Upland Mustards) Herbaceous Semi-Natural Alliance</td>
<td>4.1</td>
</tr>
<tr>
<td>Bromus (dianthus, hordeaceus)-Brachypodium distachyon Herbaceous Semi-Natural Alliance</td>
<td>1.7</td>
</tr>
<tr>
<td>Disturbed</td>
<td>3.4</td>
</tr>
<tr>
<td>Total</td>
<td>17.4</td>
</tr>
</tbody>
</table>

Off-site natural communities, between the railroad and U.S. 101 to the north of the site, include Eucalyptus groves (Eucalyptus (globulus, camaldulensis) Semi-Natural Woodland Stands [79.100.00]) and Arroyo willow thickets (Salix lasiolepis Alliance [61.205.00]). 2

2 Also considered Southern Arroyo Willow Riparian Forest [CTT61320CA] under Holland, which is considered sensitive by CDFW.
Special Status Plants. For the purposes of this report, special status plant species are those plants listed, proposed for listing, or candidates for listing as threatened or endangered by the USFWS under the federal Endangered Species Act (FESA) (7 U.S.C. § 136, 16 U.S.C. § 1531 et seq.); those listed or proposed for listing, or candidates for listing as rare, threatened, or endangered by the CDFW under the California Endangered Species Act (CESA); and/or species on the Special Vascular Plants, Bryophytes, and Lichens List (CDFW, 2015c). This latter document includes the California Native Plant Society (CNPS) Inventory of Rare and Endangered Vascular Plants of California, Seventh Edition (CNPS, 2015) as updated online. Those plants contained on the CNPS Rare Plant Rank (CRPR) Lists 1, 2, 3, and 4 are considered special status species; refer to Appendix D for further discussion of CRPR specifics. CEQA Guidelines, Section 15125(a), also directs that special emphasis should be placed on resources that are rare or unique to the region. For example, plants listed by the Santa Barbara Botanic Garden (SBBG) or the Goleta Slough Ecosystem Management Plan (GSEMP) may be considered locally sensitive.

Based on the database and literature review, 17 special status plant species are known or have the potential to occur within a 5-mile vicinity of the Project site. Of these, seven special status plant species have a low potential to occur based on the presence of potentially suitable habitat and recorded occurrences:

- Coulter's saltbush (*Atriplex coulteri*) – CRPR 1B.2
- Davidson’s saltscale (*Atriplex serenana var. davidsonii*) – CRPR 1B.2
- Mesa horkelia (*Horkelia cuneata var. puberula*) – CRPR 1B.1
- Pale-yellow layia (*Layia heterotricha*) – CRPR 1B.1
- Black-flowered figwort (*Scrophularia atrata*) – CRPR 1B.2
- Southern tarplant (*Centromadia parryi ssp. australis*) – CRPR 1B.1
- Contra Costa goldfields (*Lasthenia conjugens*) – federally endangered and CRPR 1B.1
- Santa Barbara honeysuckle (*Lonicera subspicata var. subspicata*) – CRPR 1B.2

No special status plant species were observed during the spring 2015 surveys or previous surveys in 2014, 2013, 2010, or 2008. Based on the long history of agricultural use and soil disturbance at the Project site, and because the Project site was mass graded on at least two occasions since 1986, the potential for occurrence of special status plant species is considered to be very low. Furthermore, competition from invasive species further reduces the potential for occurrence of listed species.

Sensitive Plant Communities. One sensitive plant community that is tracked by the CNDDB occurs within the Project vicinity: Southern Coastal Salt Marsh. This nearshore marine tidal habitat is not present on-site. During the 2015 surveys no sensitive plant communities were present, nor were any of the individual indicator species associated with the communities observed. As discussed above, the purple needlegrass hydro-seeded within the upland mustard area is not considered a sensitive community pursuant to the General Plan and City of Goleta Environmental Review Guidelines and Environmental Thresholds Manual. ESHA on-site and adjacent to the Project is discussed below, shown in Figure 4.3-2, and discussed in detail in Appendix D. Special-Status Species and Environmentally Sensitive Habitats identified in the Goleta General Plan/Local Coastal Program are shown in Figure 4.3-3.

Special Status Wildlife. Special status wildlife species are animals listed, proposed for listing, or candidates for listing as threatened or endangered by the USFWS or National Marine Fisheries Service under the FESA; those listed or proposed for listing as rare, threatened, or endangered by the CDFW under the CESA; animals designated as “Fully Protected,” “Species of Special Concern,” or “Rare,” by the
Section 4.3 Biological Resources

Surrounding ESHA Map

Figure 4.3-2

Imagery provided by Google and its licensors © 2015.
Additional data provided by City of Goleta, March 2015.
Habitat mapping conducted by Jones & Stokes in April-May 2006 based on aerial imagery (1-foot resolution) and field observation, merged with 1) information on the occurrence of special status habitats and species collected by City from recent information from local environmental review, 2) mapping of creeks, ponds, lakes and reservoir location based on USGS topographic map review and habitat management plan documents, air photo interpretation, and field survey; and 3) review of California Natural Diversity Database (CNDDB) records by Jones & Stokes for occurrence of special status species in the Goleta and Dos Pueblos quadrangles and vicinities (2006 databases). Habitats reflect those comprising an ESHA.

ESHA locations are approximate. Any area not designated on the ESHA map that meets the ESHA criteria shall be accorded the same protections as if the area was shown on the map. ESHA buffers are not shown on this map. Refer to the applicable policy in the General Plan for the specific buffer widths.

Special-Status Species and Environmentally Sensitive Habitat Areas

Legend

- **Environmentally Sensitive Habitats**
 - Beach and Shingle
 - Unvegetated Open Creek Channel
 - Open Water
 - Riparian/Marsh/Estuarine Pond
 - Native Grassland

- **Special-Status Species**
 - Tidewater Goby
 - Red-Legged Frog
 - Kite Nest
 - Red-Shouldered Hawk Nest
 - Red-Tailed Hawk Nest
 - Vulture Nest
 - Western Snowy Plover

- **Other Features**
 - ESHA Location
 - Goleta City
 - UCSB

Amended by Reso. 09-59, 11/17/09

Source: City of Goleta

Figure 4.3-3
CDFW; and species on the Special Animals List (CDFW, 2015d). CEQA Guidelines Section 15125(a) also directs that special emphasis should be placed on resources that are rare or unique to the region. Based on the database and literature review, 47 special status wildlife species are known or have the potential to occur within the vicinity; known occurrences within 5 miles of the Project were considered in this analysis (Appendix D). Of these, 26 species have a low potential to occur, based on the “low” criteria. While species such as white-tailed kite and Coopers hawk have been recorded foraging on the site, they have a low potential to occur based on the category under Appendix D. For bird and bat species, the low category may be used for species that are documented but likely to be only transient through the area during foraging or migratory movements, and for which no suitable nesting or roosting habitat is present. The species that can be reasonably anticipated to occur were determined based on the reported ranges of the species, and the type, extent, and condition of habitat available at the site.

Based on the database and literature review, 47 special status wildlife species are known or have the potential to occur within the vicinity; known occurrences within 5 miles of the Project were considered in this analysis (Appendix D). Of these, 26 species have a low potential to occur, based on the “low” criteria. While species such as white-tailed kite and Coopers hawk have been recorded foraging on the site, they have a low potential to occur based on the category under Appendix D. For bird and bat species, the low category may be used for species that are documented but likely to be only transient through the area during foraging or migratory movements, and for which no suitable nesting or roosting habitat is present. The species that can be reasonably anticipated to occur were determined based on the reported ranges of the species, and the type, extent, and condition of habitat available at the site.

The use of the site by sensitive vertebrate wildlife species is limited to foraging by some species of birds and mammals listed as Fully Protected (FP), Species of Special Concern (SSC), Watch List (WL), or other Special Animals (SA) by the State of California. No species listed as threatened or endangered under the FESA or the CESA are expected to have the potential to occur at the site; for details refer to Appendix D, Special Status Species Evaluation Tables. No sensitive species are expected to reproduce at the site.

Special status species present or with a low potential to occur within or adjacent to the Project but could be potentially affected, are discussed below.

Low:

- Monarch butterfly (*Danaus plexippus*) – SA, foraging
- Silvery legless lizard (*Anniella pulchra pulchra*) – SSC
- Coast horned lizard (*Phrynosoma blainvillii*) – SSC
- Two-striped garter snake (*Thamnophis hammondii*) – SSC, foraging
- Cooper’s hawk (*Accipiter cooperi*) – WL, foraging
- Grasshopper Sparrow (*Ammodramus savannarum*) – SSC, foraging
- Sharp-shinned hawk (*Accipiter striatus*) – WL, foraging
- Short-eared owl (*Asio flammeus*) – SSC, foraging
- Long-eared owl (*Asio otus*) – SSC, foraging
- Oak titmouse (*Baeolophus inornatus*) – SA, foraging
- Burrowing owl (*Athene cunicularia*) – SSC, overwintering and foraging
- Vaux’s swift (*Chaetura vauxi*) – SSC, foraging
- Northern harrier (*Circus cyaneus*) – SSC, foraging
- Black swift (*Cypseloides niger*) – SSC, foraging
- White-tailed kite (*Elanus leucurus*) – FP, foraging
- Merlin (*Falco columbarius*) – WL, foraging
- Loggerhead shrike (*Lanius ludovicianus*) – SSC, foraging
- Yellow warbler (*Setophaga petechia*) – SSC, foraging
- Hoary bat (*Lasiurus cinereus*) – SA, foraging

3 The “low” definition, from Appendix D: Suitable or marginal habitat may occur in the Project site; however: no CNDDB records of the species have been recorded within twenty five years; records of the species within 5 miles of the Project are suspected to be now extirpated or potentially misidentified with other species; or individuals were not observed during field surveys and are not anticipated to be present. For bird and bat species, this category may be used for species that are documented, but likely to be only transient through the area during foraging or migratory movements, and for which no suitable nesting or roosting habitat is present.
Heritage Ridge Residential Project EIR
Section 4.3 Biological Resources

- Pallid bat (Antrozous pallidus) – SSC, foraging
- Silver-haired bat (Lasionycteris noctivagans) – SA, foraging
- Western mastiff bat (Eumops perotis californicus) – SSC, foraging
- Western red bat (Lasiurus blossevillii) – SSC, foraging
- Townsend’s big-eared bat (Corynorhinus townsendii) – SSC, foraging
- Yuma myotis (Myotis yumanensis) – SA, foraging
- American badger (Taxidea taxus) – SSC, foraging

No special status wildlife species were observed during 2015 or previous surveys, with the exception of foraging raptors. As many as five species of bats and three other species of mammals listed as SSC may occur at the Project site. The bat species would only be expected to aerially forage occasionally over the site, and would not be expected to roost, hibernate, or reproduce on the site. The badger could potentially reach the Project site from natural areas to the north by way of the Los Carneros Creek riparian corridor; although, given the disturbed condition of the Project site and vicinity, as well as its small size, any occurrence of badgers would likely be transient.

Nesting Bird Habitat. The Project site contains habitat that can support nesting birds, including raptors, protected under the California Fish and Game Code (CFGC) Section 3503 and the Migratory Bird Treaty Act (MBTA) (16 U.S.C. §§ 703–712). Woody shrubs, eucalyptus and willow woodlands, and ornamental trees are present within and adjacent to the Project that could provide suitable nesting habitat. However, no active or previously occupied nests were observed in the vegetation during the 2015 or previous surveys.

Many other sensitive bird species potentially use the Project site for foraging (see Appendix D), but are not expected to nest thereon. The yellow-breasted chat and the yellow warbler may temporarily forage in the disturbed coyote brush scrub during migration, as each is known to utilize scrub habitats and is known to occur within the Goleta Slough Ecosystem and nearby Tecolotito Creek. The northern harrier is a fairly common visitor to the Goleta Slough and has been observed roosting at the Los Carneros Wetland, which is a few hundred feet to the south of the Project. This species as well as migrants such as the Vaux’s swift and black swift may potentially forage over the Project site when present in the area. The burrowing owl and loggerhead shrike are also known from the Goleta Slough and have been observed in the vicinity of the Project to the west of Los Carneros Road.

Raptor Habitat. The City and surrounding area are inhabited by several species of migratory and resident raptors. Sensitive raptors species are known to occur or have potential to occur at the Project site, including the white-tailed kite, burrowing owl, northern harrier, Cooper’s hawk, sharp-shinned hawk, long-eared owl, short-eared owl, and merlin may forage on or near the Project site. The white-tailed kite and burrowing owl are discussed below.

White-tailed kite. The white-tailed kite is a regular breeder and year-round resident in the Goleta area. Numbers declined in the area beginning in the 1970s through the early 1990s, but subsequently rebounded, based on annual Santa Barbara Audubon Society Christmas Bird Count data and annual monitoring of kite populations by local biologists (National Audubon Society 2015; Holmgren 2011). Although roost sites may shift suddenly within and between seasons, nearly all roosts on the South Coast since 1965 have been on or within one mile of More Mesa (Lehman, 2015). At the Goleta Slough, white-tailed kites forage regularly and have been recorded roosting in small numbers. Kites have been observed foraging over the Project site. The white-tailed kite inhabits low elevation, open grasslands, savannah-like habitats, agricultural areas, wetlands, and oak woodlands (Dunk, 1995). They
nest in trees, usually with a dense canopy, but nest trees can vary from single, isolated trees to trees within large woodlands. Along the South Coast, preferred nest trees include (in order of frequency used): oaks, pines, Monterey cypress, eucalyptus, and willows (Holmgren, 2000). In the Goleta area, nest sites are always adjacent to open space areas with a stable prey base, and kites show long-term fidelity to sites with good foraging opportunities (Holmgren, 2000). A variety of foraging habitat types are used, but those that support larger and more accessible prey populations are more suitable. Diurnally active rodents, primarily meadow vole (*Microtus californicus*), but also house mouse (*Mus musculus*) and western harvest mouse (*Reithrodontomys megalotis*) are the kite’s principal dietary components. White-tailed kite territory size is a function of prey and competitor abundance. Reported average territory sizes include 4 to 53 acres, 47 to 130 acres, and 42 to 297 acres (City of Goleta, 2011). They are also found less commonly over agricultural areas and along highway rights-of-way (Lehman, 2015).

Burrowing owl. The burrowing owl formerly bred along the South Coast and in western Santa Barbara County, but its presence along the South Coast and western portions of Santa Barbara County is now restricted to late fall and winter transients from more interior portions of California (Lehman, 2015). Favored overwintering sites over the past two decades have been More Mesa and San Marcos Foothills (Lehman, 2015). Burrowing owls frequent extensive dry or sparse grassland and agricultural areas. The burrowing owl nests in burrows typically dug by fossorial mammals such as badgers and ground squirrels. Man-made structures, such as cement culverts and debris piles, may also be used. Recent sightings of wintering burrowing owls along the South Coast include Atascadero Creek near More Mesa in 2008, rocky grassland northeast of Foothill Road and Highway 154, the University of California Santa Barbara (UCSB) West Campus in 1998 and other University lands north of the Coal Oil Point Reserve in 2001. The latter record was of a single individual observed within a burrow in a heavily disturbed area in the southern portion of the University-owned South Parcel, several hundred feet northwest of Devereux Slough in winter, 2001. A burrowing owl may have been observed on November 7, 2006 by Goleta staff along the railroad berm to the north of the Village at Los Carneros development site west of Los Carneros Road (City of Goleta, 2014a). Given the lack of recent records in the project vicinity, fragmented ruderal habitat subject to ongoing disturbance, and the adjacency of on-site ruderal habitat to U.S. 101 and the Union Pacific Railroad (UPRR) tracks, the burrowing owl has low potential to overwinter on or adjacent to the Project site.

As discussed above, the low potential to occur determination is applied to species that are documented, but likely to be only transient through the area during foraging or migratory movements. Several other raptors that do not meet the aforementioned definition as “sensitive” (but are protected when nesting pursuant to CFGC § 3503.5) were observed or have the potential to forage at the site, including the American kestrel (*Falco sparverius*), barn owl (*Tyto alba*), great horned owl (*Bubo virginianus*), red-shouldered hawk (*Buteo lineatus*), red-tailed hawk (*Buteo jamaicensis*), and turkey vulture (*Cathartes aura*). The following discussion of raptor habitat focuses considerably on the sensitive white-tailed kite, as the local population of white-tailed kites has been well studied, it is the only FP raptor documented as foraging (only) at the Project site, and it also nests in the Goleta area (outside the Project site).

The General Plan extends protection to raptor nesting and roosting sites, by designating nesting and roosting sites as ESHA. The City requires that new development be set back at least 100 feet from active and historical raptor nests that qualify as ESHA, under CE Policy 8.4 (when feasible). Nesting raptors are also protected by Fish and Game Code Sections 3503 and 3503.5, as well as the Migratory Bird Treaty Act.
Raptor nests were not observed during the biological surveys conducted in 2015, 2014, 2013, 2010, and 2008, and the General Plan does not have a record of a historical raptor nest at or adjacent to the Project, as shown in the General Plan CE Figure 4.1 (Figure 4.3-1). Special Status and other sensitive raptors do not have potential to nest at the Project site due to lack of suitable nesting habitat and the proximity of the site to existing development, noise, and human activities, or because the Goleta area is outside of the species current breeding range. The Project site also lacks habitat for communal roosts of turkey vultures or white-tailed kites. The stand of eucalyptus located to the north of the northern stockpile area and the UPRR could be used by nesting raptors, although this is considered unlikely due to the proximity of the trees to Los Carneros Road and U.S. 101 and, therefore, considerable traffic and noise. Additionally, the off-site trees were surveyed for nests in the spring 2015, and raptor nests (active or inactive) were not detected.

White-tailed kites gather in communal roosts during the non-breeding season. Roost aggregations of several to 45 individuals were recorded during regular monitoring of several roost sites in Goleta from November 1986 to May 2000 (Holmgren, 2000). Historically, More Mesa has been the most important communal roosting site in the Santa Barbara area, which is approximately three miles from the Project. Turkey vulture communal roosts at Ellwood North and Ellwood West on Ellwood Mesa are documented in the Ellwood-Devereux Coast Open Space and Habitat Management Plan (March 2004). The northern harrier has also roosted at the Los Carneros Wetland (GSEMP, 1997).

At the Los Carneros Wetland, white-tailed kites nested in 1990 (City of Goleta, 2012), and winter roosts were observed 1985–1990 (Lehman, 2015). However, presence/absence data for nesting kites is lacking for the wetland for most years since 1990. This historical nest site is several hundred feet to the south of the Project and, therefore, well outside of the 100-foot buffer required between new development and historical nest sites of sensitive (special status) raptors by the General Plan (City of Goleta, 2012).

White-tailed kite nest sites can be vacated for a period of years and returned to later for nesting (Holmgren, 2000). The possibility of kites returning to roost or nest at the Los Carneros Wetland cannot be discounted, although it is less likely now that the wetlands are nearly surrounded by residential development and roads. In the Goleta area, kite nest sites have always been adjacent to open space areas with a stable prey base (Holmgren, 2000). Historical nest sites in the Goleta area have been abandoned when adjacent foraging areas have been compromised (Holmgren, 2000). Selected important nesting areas for the white-tailed kite in the Goleta area include Ellwood Mesa, LLCNHP, Coal Oil Point Reserve and nearby undeveloped areas, More Mesa, the East Storke Campus Wetland, and the Goleta Slough.

General Plan Policy CE 8.2 requires that all development be located, designed, constructed, and managed to avoid disturbance or adverse impacts to sensitive (special status) species and their habitats, including nesting, rearing, roosting, foraging, and other elements of required habitats. The City’s Environmental Thresholds and Guidelines Manual instructs that a project may result in a significant impact if it substantially fragments, eliminates, or otherwise disrupts foraging areas and/or access to food resources.

The Project site includes 4.74 acres of *Bromus* grassland, 4.17 acres of quailbush scrub, 3.29 acres of coyote brush scrub, and 4.06 acres of upland mustards that likely provide limited low-quality foraging habitat for raptors. The raptor foraging habitat at the Project site is separated from Bishop Ranch and Lake Los Carneros foraging habitat by U.S. 101 and UPRR train tracks. Two important factors influencing habitat quality for foraging are prey density, as well as habitat features affecting prey accessibility, such
as suitable perches (Dunk 1995). A number of prey species including Botta’s pocket gophers, California ground squirrels, brush rabbits, various passerines, and western fence lizards, as well as several rodent burrows were observed during the biological surveys of the site in 2010, 2013, 2014, and 2015. Based on previous environmental analysis, the site has prey availability and foraging value (City of Goleta, 2011). The Project site does not contain notable perching habitat for foraging raptors. There are a few medium-sized trees, fences, and tall posts adjacent to the Project site, as well as tall eucalyptus trees to the north, which could serve as perches for foraging raptors. However, these potential perches are generally close to existing development or the traffic and noise of U.S. 101.

The Project site is part of a local wildlife linkage between natural habitats to the north of U.S. 101, the project site, and Los Carneros Wetland. These habitat connections are expected to have positive effects on the foraging value of the site, as they allow for dispersal of small mammals and other prey species to repopulate the site following population declines. Prey density is in part dependent upon the ability of prey populations to rebound following cyclical declines caused by over-exploitation by predators or catastrophes, such as drought or disease. Habitat connectivity is an important factor affecting the ability of prey populations to rebound. Corridors and connections among habitat areas indirectly support kites as well as other birds-of-prey by maintaining their prey base.

White-tailed kites are known to forage up to tens of kilometers from communal roost sites, so when prey reductions occur at the local level, kites have a sufficiently large daily range that they can find other areas to hunt (Dunk, 1995). When collapse of prey populations occurs at the regional scale, kites can vacate an area until prey populations rebuild at which time kites gradually reoccupy suitable foraging areas, nest sites, and roost locations (Dunk, 1995). The local population of white-tailed kites has fluctuated dramatically presumably in response to prey abundance. Kites are a nomadic species able to adopt new home bases and vacate long-used areas quite abruptly (Dunk, 1995). The presence and abundance of white-tailed kites is strongly correlated with the presence of meadow voles (Stendell, 1972). California voles (*Microtus californicus*) were not observed, but can be expected to occur at the Project site.

As discussed previously, white-tailed kites formerly nested at the Los Carneros Wetland. If kites were to return to nest at the Los Carneros Wetland, the foraging habitat at the Project site would become of greater importance, as kites seldom forage more than 0.5 mile from the nest when breeding (Hawbecker, 1942). Henry (1983) found the mean breeding home range to be as low as 0.2 mile. The Project is within a 0.2-mile radius of the wetland, and much of the area within a 0.5-mile radius of the wetland is currently developed and would be almost completely developed under the Project. With development of the Project, kites nesting at the Los Carneros Wetland would be able to forage within a 0.5-mile radius of the wetland at the areas within the Goleta Slough Ecosystem south of Hollister Road, and undeveloped fields and native habitats north of U.S. 101.

The Project site is also within a 0.5-mile radius of the natural habitats at LLCNHP, where nesting kites or kites displaying persistent territoriality have been observed in most years since year 1999 (City of Goleta, 2012). Kites have been recorded nesting in the pine trees south of the dam in recent years (Millikan, 2011). Although the Project is within a 0.5-mile radius of this area, the foraging habitats at the LLCNHP and adjacent undeveloped fields to the north of U.S. 101 are probably of sufficient size and quality to support successful kite breeding. The Project is outside of the anticipated foraging range of nesting white-tailed kites at other known key nesting areas in the Goleta area (City of Goleta, 2012).
Although the Project site is estimated to be of moderate value to foraging raptors, it is of lesser regional importance given its small size, fragmented condition, proximity to urban development and road right-of-ways, and low native habitat diversity. The Project site is part of a fragmented area of disturbed habitat that is surrounded by development and roads. The Goleta area contains a number of other natural areas that provide comparatively larger expanses and higher value raptor habitat, as evidenced by the documented use and repeated nesting of various species of raptors in these areas (City of Goleta, 2012). For example, quality raptor habitat exists at Ellwood Mesa, LLCNHP, the Goleta Slough, Coal Oil Point Reserve and vicinity, and the Santa Ynez foothills.

Raptors generally require large home ranges, and individual foraging territories are often measured in terms of tens of acres to square miles. During breeding, demand for prey increases and additional habitat must be available for young birds to disperse from nesting locations and establish new territories. Urban development and other land-use conversion have resulted in the removal of substantial amounts of raptor foraging habitat in the Goleta area. Loss of foraging habitat reduces prey abundance and availability, which reduces and limits the number of raptors a given area can support. In general, smaller populations are less resilient to environmental stress (e.g. drought, disease, and fluctuations in prey availability).

Semi-aquatic Animals and Off-site Aquatic Critical Habitat. Semi-aquatic species (e.g., California red-legged frog, two-striped garter snake) are not likely to occur in and upstream from the channelized section of Los Carneros Creek adjacent to the Project, because only a limited band of riparian habitat is present that is adjacent to and subject to noise and vibration disturbances from U.S. 101 and UPRR. The upland areas within 100 feet of the creek include the off-site filled and compacted UPPR tracks, and areas on the Project site that have recently been graded and reseeded. Areas within 500 feet of the creek are not suitable upland transitional habitat.

Off-site Los Carneros Creek provides intermittent aquatic habitat; during the dry season flow is low and consists of agricultural and urban run-off (Leydecker, 2006). The creek is designated critical habitat for the southern steelhead, and south of Hollister Avenue for the tidewater goby (*Eucyclogobious newberryi*). However, neither species is anticipated to be present adjacent to the Project since the riparian area is separated from the Goleta Slough by 0.41 mile of channelization. Refer to Appendix D for map of designated critical habitat in the Project vicinity.

Jurisdictional Drainages and Wetlands. No areas defined as wetlands by Federal, State or local policies are located on the Project site. Two previously identified jurisdictional features exist off-site adjacent to Project: 1) Los Carneros Creek, approximately 90 feet (measured from the edge of riparian vegetation) north of the northeast corner and channelized east of the Project; and 2) the Los Carneros Wetland adjacent to S. Los Carneros Road and Hollister Avenue, approximately 80 feet south of the southeastern corner of the Project site. No jurisdictional features are present within the Project site.

Los Carneros Creek riparian habitat, measured to edge of the willow thickets, extends approximately 100 feet wide beyond the limits of the banks where the creek crosses U.S. 101. The potential off-site jurisdictional edge of riparian vegetation begins approximately 90 feet from the northern Project boundary. During 2015 surveys the ordinary high water mark (OHWM) was not apparent as the creek was obscured by vegetation. The off-site drainage is intermittent and does not regularly contain flowing water (Leydecker, 2006). Los Carneros Creek is channelized approximately 400 feet to the east of the Project, separated by Aero Camino. Water in Los Carneros Creek flows approximately 1.18 river miles
south to its confluence with Tecolotito Creek, then approximately 2.24 river miles through the Goleta Slough to the Pacific Ocean.

As authorized by the USACE 404 Permit (No. 95-50087-DJC) the Los Carneros Wetland is permitted to receive stormwater flows from the Willow Springs I & II development, and the Project site. The northern portion of the Los Carneros Wetland was required to be created to both as mitigation for filling a portion of a wetland on Willow Springs I, and to manage stormwater run-off from Willow Springs I & II and the Project site.

Wildlife Movement Corridors. Wildlife need to access essential habitat for water, foraging, breeding, and cover. Examples of barriers or impediments to movement include housing and other urban development, roads, fencing, unsuitable habitat, or open areas with little vegetative cover. “Wildlife corridor” is a term commonly used to describe linkages between discrete areas of natural habitat that allow movement of wildlife for foraging, dispersal, and seasonal migration.

The Project is in a highly urbanized area. At the regional/landscape level scale, the City is not within any mapped landscape models, such as an Essential Connectivity Area or Natural Landscape block in the California Essential Habitat Connectivity Project: A Strategy for Conserving a Connected California (Spencer, et al. 2010). Recent EIRs analyzed potential impacts to wildlife corridors for proposed residential projects adjacent to Los Carneros Road and south of U.S. 101: Willow Springs II, to the east of Los Carneros Road (City of Goleta, 2011), and the Village at Los Carneros (City of Goleta 2014), to the west of Los Carneros Road. Tecolotito Creek is recognized as ESHA under the General Plan and considered a wildlife corridor for mammal species that travel between the Santa Ynez Mountain foothills and the Santa Barbara Airport and greater Goleta Slough (Dudek, 2014b). Los Carneros Creek that connects areas north of U.S. 101 to the Goleta Slough is a poor wildlife linkage providing minimal wildlife habitat. The “stormwater culvert” consists of an approximate 2,000-foot concrete-lined flood control channel with steep walls and 6-foot high chain-link fences at the top-of-slope (west and east) bordering the channel. The Project site was evaluated as an alternative wildlife movement corridor, from the Los Carneros Creek culvert under U.S. 101, through the Project site and Los Carneros Wetland, below Hollister Avenue, and to the Goleta Slough (City of Goleta, 2011; Figure 4.3-3).4

The General Plan does not specifically define “wildlife corridors” or “habitat networks” which as discussed below, are protected under the General Plan. A wildlife movement corridor was defined by the City in the Willow Springs EIR as:

“...physical connections that allow wildlife to move between patches of suitable habitat in both undisturbed landscapes, as well as environments fragmented by urban development. Large areas of suitable habitat and corridors between these areas are necessary to maintain healthy ecological and evolutionary processes. For example, wildlife movement corridors are necessary for dispersal and migration, to ensure the mixing of genes between populations, and so wildlife can respond and adapt to environmental stress.”

The Wildlife Corridor Analysis for the Heritage Ridge Project (Appendix D) further defines wildlife movement between core areas and/or habitat patches as wildlife corridors and linkages:

4 The wildlife analysis shown in Figure 4.3-3 of the Willow Springs II EIR does not account for the existing cultural resource fencing present in the project site.
Habitat Linkage: An area which possesses sufficient cover, food, water and/or other essential elements to serve as a movement pathway between two or more large areas of habitat. An example of a link would be a belt of coastal sage scrub traversing a development, and connecting suitable habitat areas on either side of the developed area.

Wildlife Corridor: Areas of open space of sufficient width to permit larger, more mobile species to pass between larger areas of open space (core habitats), or to disperse from one major core habitat to another. Such areas can be several hundred feet wide, unobstructed, and usually possess cover, food and water.

The Willow Springs II EIR identified two biologically significant ecological habitat “patches” in the area, the Santa Ynez Mountains and the Goleta Slough. The latter, the Goleta Slough, has become isolated from the “core habitats” of the Santa Ynez Mountains due to urban expansion in the City. Several creeks connect these two ecological areas, including Tecolotito (Glen Annie), Los Carneros, San Pedro, Las Vegas, San Jose, and Marie Ignacio. Tecolotito Creek has been determined to be one of four primary corridors in the Goleta Valley with sufficient culvert sizes to allow for movement of larger mammals (i.e., deer and black bears) (Hoagland et al., 2011; City of Goleta 2012). However, in the Village of Los Carneros FEIR, the City (2014) noted that the largest species to move through Tecolotito Creek and its culverts are foxes (Vulpes spp.) and the American badger, and found the 110-foot total minimum width (60 feet for the Tecolotito Creek ESHA and 50 feet for adjacent upland habitat) proposed for the Los Carneros Village project was sufficient for wildlife species utilizing corridor (City of Goleta, 2014c). Based on literature, existing regional data, and site-specific studies, Tecolotito Creek and its culverts provide the best option for wildlife movement between the Santa Ynez Mountain foothills and the Goleta Slough on Santa Barbara Airport property.

In 2014 and 2013, wildlife camera studies were conducted, as summarized in the Wildlife Corridor Analysis for the Heritage Ridge Project (Appendix D). The study found evidence of a wildlife linkage between the Santa Ynez Mountain foothills and the Los Carneros Wetlands through the Heritage Ridge Project site and no linkage between the Los Carneros Creek or Wetlands and the greater Goleta Slough on the Santa Barbara Airport. This on-site wildlife linkage is important for many small- (raccoon, striped skunk, etc.) and medium- (coyote and bobcat) sized mammal species that use these areas (wetlands and foothills) to hunt, seek shelter, breed, and conduct other normal behaviors important for their survival, especially within the wilderness-urban interface. The study confirmed that the Hollister Avenue culvert at Tecolotito Creek offers the most ideal wildlife access point to the Goleta Slough on Santa Barbara Airport property. Another possible wildlife linkage exists to the east connecting to Las Vegas Creek at the Twin Lakes Golf Course, which also connects to the Goleta Slough, although with impediments. The expected end point of the linkage for most wildlife species traveling to the east may be the golf course for hunting opportunities.

Local Policies and Ordinances. Natural resources are regulated and protected through the Conservation Element (CE) of the General Plan, which contains policies aimed at protecting ESHAs that are generally mapped in Figure 4.1 of the General Plan (Figure 4.3-2). The General Plan provisions are also included in the City’s Zoning Ordinance through the ESHA Goleta Overlay (Section 35-250B).\(^5\)

Policies in the CE reinforce State and Federal regulations that protect special-status habitats and species and apply additional local restrictions to identify, preserve, and protect the City’s biological resources.

\(^5\) The City’s zoning regulations also include a Riparian Corridor Goleta overlay (Inland Zoning Ordinance, as adopted by the Goleta Municipal Code, Section 35-250C (RC-Gol)), but it only applies to rural agriculturally designated parcels; the existing and Project site land use designation is urban.
Below is a summary of each ESHA type mapped on or near the Project (See Figures 4.3-2 and 4.3-3), and the text of the policies that regulate these resources.

A portion of the Project site that contains coyote brush scrub is currently designated an ESHA pursuant to the City’s General Plan. It is mapped on Figure 4-1 of the Conservation Element as “sage scrub” on the northeast corner of the Project site in the approximate areas fenced for cultural resources, as shown in Figure 4.3-2. Pursuant to CE Policy 1.5, an ESHA designation may be removed if a site-specific biological study contains substantial evidence that an area previously shown as an ESHA on Figure 4-1 does not contain habitat that meets the definition of an ESHA (excluding illegal removal). If the City Council determines that the area is not an ESHA, a map modification will be included in the next General Plan/Coastal Land Use Plan amendment. Please refer to Appendix D, Biological Resource Appendix, Attachment F, Technical Review of Coastal Sage Scrub Environmentally Sensitive Habitat Area for the North Willow Springs Project (Dudek, 2014a), for a site-specific biological study and substantial evidence regarding the ESHA designation. The area originally designated ESHA also extended onto Willow Springs II; refer to Figure 4-1 City’s General Plan Conservation Element (Figure 4.3-3). A General Plan Amendment removing the sage scrub ESHA designation from Willow Springs II was approved by the Goleta City Council on June 17, 2014.

The coastal sage scrub on the Project site mapped under the City’s General Plan was not mapped as ESHA under the County’s 1993 Goleta Community Plan (County of Santa Barbara, 1993). The on-site ESHA was mapped as “Various Annual Grasslands” a habitat type in 2004 under the city-wide Detailed Habitat Inventory (City of Goleta, 2004b). The 2006 General Plan EIR maps the on-site ESHA as “scrub.” However, “coyote brush scrub” in not considered ESHA under the Programmatic General Plan EIR (City of Goleta, 2006, Page 3.4-10). A description of the coyote brush scrub is provided under Section 4.3.1. Based on the historical mapping, 2014 Dudek Study, and confirmation in 2015 by Rincon biologists the onsite coyote brush scrub is not an ESHA resource, and was not ESHA under any previous plans or designations.

The General Plan CE Policy 5.3 defines coastal sage scrub habitat as a drought-tolerant, Mediterranean habitat characterized by soft-leaved, shallow-rooted subshrubs such as California sagebrush, coyote brush, California encelia, goldenbush (Ericameria ericoides), giant wild rye (Elymus condensatus), and annual non-native grasses. Of these species only coyote brush was observed as dominant or codominant within the mapped on-site ESHA. The National Vegetation Classification Hierarchy as Applied to California Vegetation identifies coastal sage scrub as a macrogroup of multiple alliances, none of which includes coyote brush as the dominant alliance species. Under General Plan CE Policy 5.3 coastal sage scrub habitat must have both the compositional and structural characteristics of coastal sage scrub as described in a classification system recognized by the CDFW. However, no other characteristic coastal sage scrub species was observed as occurring even infrequently or sparsely (< 8% cover) by Rincon or Dudek biologists.

Coastal Sage Scrub ESHA. The coyote brush scrub does not meet City’s General Plan Policy CE 1.1a or CE 1.1b definitions of ESHA, and is not “rare or especially valuable because of its special nature or role in an ecosystem,” when considering the following conditions:

- Coyote brush scrub is a common plant community. Coyote brush scrub receives the lowest rarity ranking (G5S5) and is not considered sensitive by the State of California (CDFW, 2010);
The coyote brush scrub at the site is disturbed, contains high cover of invasive species, low native plant species diversity, and has become established at the site relatively recently since the area was last graded. The site has been subject to agricultural activity related earth disturbance for much of the last 100 years;

- Threatened, endangered, or other special status wildlife species are not expected to reproduce at the site, and the site is not essential to the life-cycle of any listed wildlife species;

- Threatened, endangered, or other special status plant species have not been found at the site, and are not expected due to prior grading and agricultural use, as well as the site’s existing disturbed condition; and

- The coyote brush scrub is within an urban area, adjacent to existing industrial and residential development, and is not contiguous with native habitats.

Therefore, although according to Figure 4-1 in the Conservation Element of the Goleta General Plan the Project site contains coastal sage scrub ESHA, habitat that meets ESHA criteria was not observed within the Project boundary or nearby areas.

The coyote brush scrub does not meet the criteria in relevant City’s General Plan policies to be considered an ESHA or coastal sage scrub; and therefore, would not be subject to the ESHA protection policies of the General Plan. Conservation Element Policy CE 1.5: Corrections to Map of ESHAs allows ESHAs to be removed from Figure 4-1 of the General Plan if a site-specific biological study demonstrates substantial evidence that the area does not in fact contain habitat that meets the definition of an ESHA. The Project includes a General Plan Amendment to remove the Coastal Sage Scrub ESHA designation that is being concurrently processed. For further details, refer to Appendix D Technical Review of Coastal Sage Scrub Environmentally Sensitive Habitat Area for the North Willow Springs Project.

Stream Protection Area ESHA. The riparian habitat associated with the Los Carneros Creek adjacent the northeast property line is mapped as a Stream Protection Area (SPA) ESHA, thereby warranting a 100-foot buffer under CE Policy CE 2.2.

Wetland ESHA. The Los Carneros Wetland begins approximately 80 feet from the southeast portion of the Project site, and is designated ESHA pursuant to General Plan Conservation Element Figure 4-1 and General Plan CE Policy the 3.5 Protection of Wetlands Outside the Coastal Zone. A buffer evaluation is required under Policy CE 3.5; the policy requires a minimum buffer of 50 feet.

The Los Carneros Wetland is an approximate 7.25-acre open space area located north of Hollister Avenue, east of Los Carneros Way, and southwest of the residential units at Willow Springs I. It is approximately 600 feet southwest of the Willow Springs II project. The GSEMP considered the Los Carneros Wetland a major subarea of the Goleta Slough Ecosystem. The Los Carneros Wetland is a rare, surviving remnant freshwater-to-estuarine transitional habitat at the northern edge of the Goleta Slough. It contains areas of brackish and freshwater marsh, as well as willow-dominated, palustrine scrub-shrub/forested wetlands that were once part of a continuous corridor connecting Lake Los Carneros and the Goleta Slough. The site has historically supported nesting and roosting white-tailed kites. The wetland is also known as a roosting and foraging habitat for the northern harrier, short-eared owl, sharp-shinned hawk, and Cooper’s hawk, and supports the only Goleta Valley location for yerba mansa (*Anemopsis californica*), a locally important species according to the GSEMP. The Los Carneros Wetland is upstream from and connected to the Goleta Slough through a small culvert traversing north-south beneath Hollister Road. The Los Carneros Wetland serves as an approved detention area and bio-
filter for stormwater flows from the existing Willow Springs I and II developments, and the Project. Refer to Section 4.8, *Hydrology and Water Quality*, and the Preliminary Hydraulic Report and Preliminary Stormwater Control Plan in Appendix G for additional information regarding Project drainage.

General Plan Policies. Below is a summary of the biological resource policies in the CE that could potentially apply to the Project. The full text of the biological resource policies are included in Appendix D.

- **Policy CE 1: Environmental Sensitive Habitats Area Designation and Policy.**

 Impacts directly to ESHA, as opposed to an ESHA buffer, do not apply since no ESHA is present onsite and the existing designation would be removed. The key protections and guidelines are stated in Policy CE 1, which for this project only includes those applicable to ESHA buffers since the project is within 100 feet of the Los Carneros Wetland and Los Carneros Creek SPA. Per Policy 1.9 development adjacent to ESHA is subject to the following standards:

 - Site designs shall preserve wildlife corridors or habitat networks.
 - Site plans and landscaping shall be designed to protect ESHAs, with priority given to protecting, supporting, and enhancing wildlife habitat values. Planting of nonnative invasive species is prohibited in ESHAs and ESHA buffers.
 - All new development shall be sited and designed to minimize grading, alteration of natural landforms and physical features, and vegetation clearance in order to reduce or avoid soil erosion, creek siltation, increased runoff, and reduced infiltration of stormwater and to prevent net increases in baseline follows for any receiving water body.
 - Light and glare will be controlled and directed away from wildlife habitat. Exterior night lighting shall be minimized, restricted to low intensity fixtures, shielded, and directed away from ESHAs.
 - Noise levels from new development should not exceed an exterior noise level of 60 Ldn at the habitat site. During construction, this level may be exceeded if it can be demonstrated that significant adverse impacts on wildlife will be avoided or will be temporary.
 - The timing of grading and construction activities shall be controlled to minimize potential disruption of wildlife during critical time periods such as nesting or breeding seasons.
 - Grading, earthmoving, and vegetation clearance adjacent to an ESHA shall be prohibited during the rainy season, generally from November 1 to March 31, except where necessary to protect or enhance the ESHA or to remediate hazardous flooding hazardous geologic conditions.

Wildlife corridors are protected under CE Policy 1.9. A local wildlife linkage has been identified on the Project site, as discussed under Section 4.3.1.b (above).

- **Policy CE 2: Protection of Creek and Riparian Areas.**

 Policy CE 2.2, designated Streamside Protection Areas (SPA), requires a 100-foot buffer from Los Carneros Creek, shown in Figure 4.1 (Figure 4.3-3). SPA buffers may be adjusted based
on a site-specific recommendation to the City. Section 4.3.2.b (below) includes a buffer recommendation from off-site Los Carneros Creek.

- **Policy CE 3: Protection of Wetland.**

The off-site Los Carneros Wetland, which was previously identified as an USACE wetland (i.e., hydrophytic vegetation, hydrology, and soils) is protected under Policy CE 3.2, as discussed under Section 4.3.2.b (below).

- **Policy CE 8: Protection of Special-Status Species.**

Nesting and roosting habitat for raptors are protected as ESHA in the under Policy CE 8. No historical raptor nests are mapped nor were raptor nests observed in suitable eucalyptus tree habitat; therefore raptor nest ESHA is not present and this policy does not apply.

- **Policy CE 9: Protection of Native Woodlands.**

Within the City there is currently no specific Tree Protection Plan or Ordinance adopted. Protection of trees within the City is regulated by Section 4.0, CE 9 of the General Plan, the Goleta Municipal Code Appendix A Grading Ordinance Guidelines for Native Oak Tree Removal (GMC), and the Draft State of the Goleta Urban Forest Report: An Urban Resource Assessment for the City of Goleta (dated November 17, 2009; herein referred to as the Goleta Urban Forest Report). The General Plan contains policies for the preservation of native trees including oaks (Quercus spp.), walnut (Juglans californica), California sycamore, cottonwood (Populus spp.), willows (Salix spp.) and other native trees found in ESHAs (General Plan Policy CE 9: Protection of Native Woodlands). However, per the GMC Part III – Program Basics trees voluntarily planted (e.g., landscape trees), regardless of species, are not protected. Landscape trees may be replaced. No native trees are present on-site or are proposed for removal, and alteration of the plants sycamores present along the western boundary would not conflict with this policy. Willows and eucalyptus tree present off-site in, but would not be directly affected by the Project.

- **Policy CE 10: Watershed Management and Water Quality.**

c. **Regulatory Setting.** The following is a brief summary of the regulatory context under which biological resources are managed at the federal, state, and local levels. A number of federal and state statutes provide a regulatory structure that guides the protection of biological resources.

Federal.

include provisions for the protection and management of federally listed threatened or endangered plants and animals and their designated critical habitats. The ESA requires a permit to take threatened or endangered species during lawful project activities. The administering agency is the USFWS for terrestrial, avian, and most aquatic species.

Fish and Wildlife Coordination Act. Section 7 of Fish and Wildlife Coordination Act (16 U.S.C., § 742a, et seq., 16 U.S.C., § 1531, et seq., and 50 C.F.R. § 17.1, et seq.) require consultation if any project facilities could jeopardize the continued existence of an endangered species. Applicability depends on federal jurisdiction over some aspect of the project (e.g., dredge or fill activities in “waters of the US”). The administering agency is typically the USACE in coordination with the USFWS.

Migratory Bird Treaty Act of 1918. The Migratory Bird Treaty Act (16 U.S.C. §§ 703-711) includes provisions for protection of migratory birds, which prohibits the taking of migratory birds under the authority of the USFWS and CDFW.

Clean Water Act of 1977, Section 404. This section of the Clean Water Act (33 U.S.C. §§ 1251, et seq., 33 C.F.R. §§ 320 and 323) gives the USACE authority to regulate discharges of dredge or fill material into waters of the US, including wetlands. The Project site is included under the development area specified in 404 Permit No 95-50087 The Willow Springs I & II Wetland Mitigation Plan which was approved by the USACE requires the Los Carneros Wetland be used to retain storm water runoff to improve wetland hydrology, and is required to be maintained in perpetuity as a wetland in accordance with the USACE 404 Permit No 95-50087.

State.

California Endangered Species Act of 1984. The California Endangered Species Act and implementing regulations in the Fish and Game Code §§ 2050 through 2098, include provisions for the protection and management of plant and animal species listed as endangered or threatened, or designated as candidates for such listing. The Act includes a consultation requirement “to ensure that any action authorized by a State lead agency is not likely to jeopardize the continued existence of any endangered or threatened species…or result in the destruction or adverse modification of habitat essential to the continued existence of the species” (Fish and Game Code § 2090). Plants of California declared to be endangered, threatened, or rare are listed within the California Code of Regulations (C.C.R.) Title 14, Section 670.2. Animals of California declared to be endangered or threatened are listed at 14 CCR Section 670.5. 14 C.C.R. §§ 15000, et seq. describes the types and extent of information required to evaluate the effects of a project on biological resources of a project site.

California Species Preservation Act 1970: California Fish and Game Code §§ 900 – 903. This law includes provisions for the protection and enhancement of the birds, mammals, fish, amphibians, and reptiles of California, and is administered by the CDFW.

Fish and Game Code. The Fish and Game Code provides specific protection and listing for several types of biological resources, including:

- **Fully Protected Species**
- **Streams, rivers, sloughs, and channels**
- **Significant Natural Areas**
- **Designated Ecological Reserves**
Fully Protected Species are listed in Fish and Game Code §§ 3511 (fully protected birds), 4700 (fully protected mammals), 5050 (Fully Protected reptiles and amphibians), and 5515. The Fish and Game Code of California prohibits the taking of species designated as Fully Protected.

Fish and Game Code Section 1600 requires a Streambed Alteration Agreement for any activity that may alter the bed and/or bank of a stream, river, or channel. Typical activities that require a Streambed Alteration Agreement include excavation or fill placed within a channel, vegetation clearing, structures for diversion of water, installation of culverts and bridge supports, cofferdams for construction dewatering, and bank reinforcement.

Fish and Game Code Section 1930 designates Significant Natural Areas. These areas include refuges, natural sloughs, riparian areas, and vernal pools and significant wildlife habitats. An inventory of Significant Natural Areas is maintained by the CDFW Natural Heritage Division and is part of the NDDB. Fish and Game Code Section 1580 lists Designated Ecological Reserves. Designated Ecological Reserves are significant wildlife habitats to be preserved in natural condition for the general public to observe and study.

Fish and Game Code Sections 2081(b) and (c) allow CDFW to issue an incidental take permit for a State listed threatened and endangered species only if specific criteria are met. These criteria can be found in 14 C.C.R. § 783.4(a) and (b). No Section 2081(b) permit may authorize the taking of “fully protected” species and “specified birds.” If a project is planned in an area where a fully protected species or specified bird occurs, an applicant must design the project to avoid all takings; the CDFW cannot authorize takings under these circumstances. Fish and Game Code Section 3503 specifies that it is unlawful to take, possess, or needlessly destroy the nest of any bird, except as otherwise provided by this code. Fish and Game Code Section 3503.5 specifies it is unlawful to take, possess, or destroy any birds in the orders Falconiformes or Strigiformes (birds-of-prey), to take, possess, or needlessly destroy the nest of any such bird, except as otherwise provided.

CEQA and CEQA Guidelines. The CEQA Guidelines provide a framework for the analysis of impacts to biological resources. The administering agency is the CEQA Lead Agency, which is in this case the City of Goleta.

Native Plant Protection Act of 1977. The Native Plant Protection Act of 1977 and implementing regulations in Fish and Game Code §§ 1900, et seq. designates rare and endangered plants and provides specific protection measures for identified populations. It is administered by the CDFW.

Public Resources Code Sections 25500 & 25527. These code sections prohibit the siting of development in certain areas of critical concern for biological resources, such as ecological preserves, wildlife refuges, estuaries, and unique or irreplaceable wildlife habitats of scientific or educational value. If there is no alternative, strict criteria are applied under the authority of the CDFW.

Local.

City of Goleta General Plan/Coastal Land Use Plan (amended 2009). The Goleta General Plan includes policies that protect and preserve biological resources within the City by designating specific resources and areas as protected, including ESHAs, restricting activities and uses in protected areas, providing for the management of the resources on City lands, specifying impact avoidance and mitigation requirements for types of activities and by type of biological resource, and providing guidance.
for development and conservation decisions over the long-term. The policies anticipate the potential impacts to biological resources from the land uses and activities that will occur under the Goleta General Plan and serve to avoid, reduce, and/or mitigate those impacts. The key policies regarding biological resources are in the Conservation Element that pertain to the project are discussed under Section 4.1.3.b, Local Policies and Ordinances.

4.3.2 Impact Analysis

a. Methodology and Significance Thresholds. The analyses in this portion of the EIR are based on the methodology described above under Section 4.1.1, Project Site Setting.

CEQA Guidelines Appendix G. In accordance with Appendix G of the CEQA Guidelines, the project would have a significant impact on biological resources if it would:

1. **Have a substantial adverse effect, either directly or through habitat modifications,** on any species identified as a candidate, sensitive, or special-status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or US Fish and Wildlife Service;
2. **Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the California Department of Fish and Wildlife or US Fish and Wildlife Service;**
3. **Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means;**
4. **Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites;**
5. **Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance; or**
6. **Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan.**

The Project is not subject to an adopted habitat conservation plan, natural community conservation plan, or other approved local, regional, or state habitat conservation plan. Therefore, the Project would have no impact with respect to Threshold 6. This issue is discussed in Section 4.15, Effects Found Not to be Significant.

City of Goleta Environmental Thresholds and Guidelines Manual. The City of Goleta’s Environmental Thresholds and Guidelines Manual defines the following thresholds of significance:

Types of Impacts to Biological Resources. Disturbances to habitats or species may be significant, based on substantial evidence in the record, if they substantially impact significant resources in the following ways:

- **Substantially reduce or eliminate species diversity or abundance.**
- **Substantially reduce or eliminate quantity or quality of nesting areas.**
c. Substantially limit reproductive capacity through loss of individuals or habitat.
d. Substantially fragment, eliminate, or otherwise disrupt foraging areas and/or access to food resources.
e. Substantially limit or fragment range and movement (geographic distribution of animals and/or seed dispersal routes).
f. Substantially interfere with natural processes, such as fire or flooding, upon which the habitat depends.

Less Than Significant Impacts. The Environmental Thresholds and Guidelines Manual provides examples of areas in the City of Goleta where impacts to habitat are presumed to be less than significant, including:

- Small acreages of non-native grassland if wildlife values are low
- Individuals or stands of non-native trees if not used by important animal species such as raptors or monarch butterflies
- Areas of historical disturbance such as intensive agriculture
- Small pockets of habitats already significantly fragmented or isolated, and disturbed or degraded
- Areas of primarily ruderal species resulting from pre-existing man-made disturbance

b. Project Impacts and Mitigation Measures.

Impact BIO-1 Biological surveys of the project site identified a lack of special status plant species or suitable habitat for special status wildlife species. However, the project site contains habitat that could support nesting and/or foraging birds protected under state and federal law. Impacts on sensitive species are Class II, significant but mitigable [Threshold 1].

No special status plant species are expected to be impacted by the project. No special status wildlife species have the potential to occur based on the absence of suitable habitat and ongoing disturbance (Appendix D). In the unlikely event a special status terrestrial species was present on-site, it would be capable of escaping harm during vegetation removal and grading/construction activities. Impacts to individuals would not have an impacts to population in the area, given the fragmented nature of the Project site and presence of suitable habitat at north of U.S. 101. Therefore, no special status terrestrial species are expected to be significantly impacted by the project and no further analysis of special status terrestrial species is included within this report. Sensitive wildlife species with potential to occur at the Project site are limited to some species of birds and mammals listed as FP or SSC by the State of California, as discussed above. Sensitive avian species may forage at the Project site, but are not expected to reproduce thereon. Foraging species are highly mobile could move to other suitable foraging sites.

There are no historical or active raptor nests or communal roosts at the Project site or within 100 feet of the Project. No sensitive or non-sensitive raptors have potential to nest at the Project site due to lack of suitable nesting habitat and proximity to development, noise, and human activities, or because the Project site is outside of the species current breeding range. The Project site also lacks habitat for turkey vulture or white-tailed kite communal roosts. Therefore, development of the Project would not substantially reduce or eliminate quantity or quality of raptor nesting or communal roosting areas.
As discussed above, the scrub and non-native grassland likely provides limited low-quality foraging habitat for raptors, including white-tailed kites known to roost at Lake Los Carneros beginning 700 feet north of the Project. On an incremental basis, development of the Project would result in the permanent loss of approximately 13.27 acres of suitable foraging habitat for raptors. As discussed under Section 4.3.1, the foraging habitat at the Project site is not essential for the successful breeding of raptors nesting in the Goleta Valley. As discussed in Section 4.3.1.b, the Project site lacks suitable perches and nesting habitat, foraging habitat has been subject to ongoing disturbance, the site is fragmented by existing development and infrastructure, and higher value foraging habitat is available in the project vicinity (e.g., Lake Los Carneros). Therefore, development of the Project would not substantially limit reproductive capacity of raptors through loss of foraging habitat.

The undeveloped areas adjacent to the north of the Project site and to the west would continue to provide moderate value foraging habitat for raptors, including for the white-tailed kite if this species were to nest at the Los Carneros Wetland.

The incremental loss of 13.47 acres of suitable foraging habitat would not have a significant effect on regional raptor populations, as 13.47 acres represents a small percentage of the raptor foraging habitat in the Goleta area. Also, the Project site is of lower importance to raptors when compared to the larger and more diverse natural habitats in the Goleta area. For example, suitable foraging habitat exists at Ellwood Mesa, Bishop Ranch, Los Carneros Lake, Santa Barbara Municipal Airport and Goleta Slough, and UCSB areas, as well as at additional undeveloped private lands. Raptors are mobile species with generally large home ranges that are capable of compensating for the loss of small acreages of foraging habitat in a local area by moving to other suitable foraging habitats. The sensitive white-tailed kite, for example, is known to forage up to tens of kilometers from communal roost sites, and may become nomadic in response to food shortages. Therefore, development of the Project would not substantially eliminate raptor foraging areas or access of raptors to food resources. Impacts to raptors from the loss of marginal foraging habitat are less than significant.

As detailed in Appendix D, the nests of most native birds and raptors are state and federally protected. The Project has potential to result in indirect impacts to nesting birds, including passerine species protected under the MBTA, if they are nesting within the Project site and/or immediate vicinity during construction activities. Nesting birds may potentially occur within shrub vegetation on and adjacent to the Project site, and in trees along Los Carneros Creek. No suitable raptor nesting habitat is present in Project site, however suitable nesting habitat is present in the eucalyptus trees to the north of the Project site Adjacent to U.S 101. As discussed under Section 4.3.1.b in the context of General Plan Policy 8.4, no historical raptor nests are mapped within the Project vicinity, and no nests were identified during surveys of adjacent eucalyptus woodland habitat at the appropriate time of year. Direct indirect impacts to nesting birds resulting from implementation of the Project are potentially significant. Implementation of Mitigation Measure BIO-1 would reduce potential new indirect short-term construction impacts to the nesting birds and raptors to a less than significant level.

Mitigation Measure. The following mitigation measure is required to reduce potential impacts to nesting birds to a less than significant level. Mitigation Measure BIO-1 is drawn from the Biological Resources Assessment in Appendix D.

BIO-1 Nesting Birds and Raptors. To avoid construction impacts to nesting birds and raptors, vegetation removal and initial ground disturbance must occur outside the bird and raptor breeding season, which is typically February 1 through September 1.
(January 1 through September 1 for some raptors), but can vary based on local and annual climatic conditions. If construction must begin within the breeding season, then not more than two weeks before ground disturbance and/or vegetation removal commences, a bird and raptor pre-construction survey must be conducted by a City-approved biologist within the disturbance footprint plus a 300-foot buffer, as feasible. If the Project is phased, a subsequent pre-construction nesting bird and raptor survey is required before each phase of construction within the Project site. If no raptor or other bird nests are observed no further mitigation is required. Pre-construction nesting bird and raptor surveys must be conducted during the time of day when bird species are active and be of sufficient duration to reliably conclude presence/absence of nesting birds and raptors within the 300-foot buffer. A report of the nesting bird and raptor survey results, if applicable, must be submitted to the Planning and Environmental Review Director, or designee, for review and approval before the City issues grading permits.

If active nest of species protected by CFG Code 3503 or the MBTA Migratory Bird Treaty Act protected bird nests are found within 300 feet of the Project site, their locations must be flagged and then mapped onto an aerial photograph of the Project site at a scale no less than 1”=200’ and/or recorded with the use of a GPS unit. If active raptor nests are detected the map will include topographic lines, parcel boundaries, adjacent roads, known historical nests for protected nesting species, and known roosting or foraging areas, as required by Conservation Element Policy 8.3 of the Goleta Community Plan / Coastal Land Use Plan. If feasible, the buffer must be 300 feet in compliance with Conservation Element Policy CE 8.4 of the Goleta General Plan/Coastal Land Use Plan. If the 300-foot buffer is infeasible, the City approved biologist may reduce the buffer distance as appropriate, dependent upon the species and the proposed work activities. If any active non-raptor bird nests are found, a suitable buffer area (varying from 25-300 feet), depending on the species, must be established by the City approved biologist. No ground disturbance can occur within the buffer until the City-approved biologist confirms that the breeding/nesting is completed and all the young have fledged. Alternately, a City approved biologist must monitor the active nest full-time during construction activities within the buffer to ensure Project activities are not indirectly impacting protected nesting birds and raptors.

Plan Requirements and Timing: Before the City issues a grading or building permit(s), the Planning and Environmental Review Director, or designee, must verify that construction and grading is occurring outside the nesting season, or that nesting bird and raptor surveys have been conducted, and buffer requirements specified above are in place (if applicable). This measure, and any buffer requirements, must be incorporated into the grading plans for the Project.

Monitoring: The Planning and Environmental Review Director, or designee, must verify compliance before the City issues any grading or building permit(s) and conduct periodic site inspections to ensure compliance throughout the construction period.
Residual Impact. Construction and operational direct and indirect Project impacts on sensitive species from would be less than significant with Mitigation Measure BIO-1 requiring nesting bird and raptor surveys for ground disturbance during the nesting season. With the implementation of this measure, impacts would be reduced to a less than significant level.

Impact BIO-2

No riparian habitat or sensitive community is present on-site; therefore, no direct impact to will occur. Indirect Impacts to off-site sensitive community from the introduction of invasive species would be Class II, significant but mitigable [Threshold 2].

Vegetation at the Project site consists of coyote brush scrub or ruderal/disturbed areas that consist overwhelmingly of non-native grasses and forbs. Evidence demonstrating that the coyote brush scrub at the site does not meet the definition of an ESHA is provided above under Section 4.3.1.b. No plant communities within the Project site are considered to be sensitive. The Project site is outside the County High Fire Hazard Area and the City’s Wildland Fire Hazard Area; therefore, the Santa Barbara County Fire Protection District is not anticipated to require off-site fuel modification. Indirect dust impacts to sensitive and riparian communities (i.e., willow thickets) in the Los Carneros Creek SPA would be addressed through adherence to Santa Barbara County Air Pollution Control District requirements.

Invasive plant species are non-native organisms that escape into surrounding ecosystems, where they become established and proliferate. Many invasive species form monocultures (dense stands of one plant) that push out native species and impair wildlife habitat (Cal-IPC, Invasive Plant Definitions, 2015). Some invasive species also can change fundamental processes in ecosystems including the hydrologic cycle, fire regimes, and soil chemistry. The planting of nonnative, invasive species reduces the available habitat for native plant and wildlife species within the Project limits and may cause the spread of invasive species to adjacent areas, including the Los Carneros Wetland where project stormwater run-off is eventually detained. Similarly, the use of nonnative, invasive species in erosion control seed mixes on stockpiles during construction would potentially cause the spread of invasive species to adjacent areas along Los Carneros Creek and Los Carneros Wetland.

The installation of Project landscaping or erosion control seeding could facilitate the spread of invasive species depending on the final landscaping plan plant palette. According to the project’s Preliminary Landscape Plan, no species proposed are listed as invasive by the California Invasive Plant Council (Cal-IPC). However, if species are planted in the future that are not specified in the Landscape Plan plant palette, impacts would be potentially significant. Similarly, the use of nonnative, invasive species in erosion control seed mixes on stockpiles during construction would potentially cause the spread of invasive species to adjacent areas along Los Carneros Creek and Los Carneros Wetland. Impacts to off-site sensitive communities from the introduction on invasive species would be potentially significant, but mitigable.

Mitigation Measures. The following mitigation measures are required to reduce potential indirect impacts off-site sensitive communities from introduction of invasive species to a less than significant level.

BIO-2 Invasive Species Seeding and Landscaping. Nonnative, invasive plant species cannot be included in any erosion control seed mixes and/or landscaping plans associated with the Project. The California Invasive Plant Inventory Database contains a list of
nonnative, invasive plants (California Invasive Plant Council [Updated 2011] or its successor).

Plan Requirements and Timing: Before the City issues a Building Permit, the applicant must submit a final landscape plan for review and approval by the Planning and Environmental Review Director, or designee.

Monitoring: The Planning and Environmental Review Director, or designee, must verify compliance before the City issues any grading or building permit(s). Before the City issues a certificate of occupancy, the Planning and Environmental Review Director, or designee, must inspect landscape plantings features to ensure that they have been installed consistent with approved plans.

Residual Impact. Implementation of Mitigation Measure BIO-2 prohibiting invasive and exotic species would reduce indirect invasive species impacts to off-site sensitive communities to a less than significant level.

Impact BIO-3 No jurisdictional water or wetlands are present on-site. Therefore, no direct impact to will occur. Indirect Impacts to off-site waters and wetlands would be Class III, *less than significant [Threshold 3]*.

Direct Impacts. No areas defined as wetlands by Federal, State or local policies are located on the Project site. The Project would have no direct impacts to off-site riparian vegetation or Los Carneros Creek jurisdictional waters. Development is proposed greater than 90 feet from the edge of vegetation of Los Carneros Creek off-site, and is hydrologically separated by the filled and compacted UPRR track.

Sedimentation and Run-off Indirect Off-site Impacts. Drainage from the Project would be directed to previously constructed storm drains as part the Willow Springs I & II development, and ultimately drain to the existing retention basin (Los Carneros Wetland) located along the southwest boundary of Willow Springs I as approved by resource agencies as part of Willow Springs I & II (MAC Design Associates, 2014; USACE, 1995). As discussed in Table 4.8-1 under Section 4.7, *Hydrology and Water Quality*, the post-construction would be less than 7% below existing run-off during a 100 year rain fall event, with no change in post-development run off during 10 year (or less) rain events. The negligible (less the 7% during a 100 year rainfall event) reduction in run-off during infrequent major rainfall events (i.e., 25–100 year events) would not result in any hydrological interruption to in Los Carneros Wetland or affect the existing hydrological process. Adherence to existing stormwater regulations would ensure there is no increase to normal water flows pre- and post-construction flows as permitted by the agencies into Los Carneros Wetland.

Development of the Project would remove existing on-site vegetation and increase the amount of impervious surfaces, which has the potential to affect the quality of stormwater runoff reaching downstream waterbodies, including primarily the Los Carneros Wetland, and potentially downstream from the wetland to the Goleta Slough. Pollutants (e.g. sediment, hydrocarbons, heavy metals, herbicides, and fertilizers) could be transported in stormwater runoff as a result of temporary construction activities and routine human activities during the operational phase of the Project. Pollutant run-off from the Project has the potential degrade water and soil quality in sensitive wetland, riparian and aquatic habitats and natural communities (e.g. the Los Carneros Wetland and the Goleta
Slough), as well as indirectly impact sensitive wildlife and vascular plant species dependent upon these habitat areas.

The Project includes the installation of low impact development design strategies intended to retain water on the project site and encourage groundwater infiltration, including preservation of the 2-acre park in the center of the project, the use of permeable pavements, bioretention basins, vegetated swales, permeable pavements set on a gravel reservoir, and a subsurface ADS Stormtech Chamber system (Mac Design, 2014). The bio-swales and bio retention areas would be planted with Carex and other grasses. The Project includes landscaped bio-filter areas that would help to cleanse surface runoff. Stormwater flows from the project must meet appropriate water quality standards through implementation of Best Management Practices to control surface water runoff quality. The City's Stormwater Management Plan (SWMP), approved through the Central Coast Regional Water Quality Control Board (RWQCB) in compliance with the 1972 Clean Water Act, establishes measures and practices to reduce the discharge of pollutants and to protect downstream water quality. Compliance with the City SWMP with respect to construction period discharges and long-term operational discharges would be required. As required by the SWMP, water quality measures must be implemented prior to the surface runoff reaching the Los Carneros Wetland. With adherence to existing legal requirements, construction and operational direct and indirect impacts to jurisdictional waters and wetlands would be less than significant.

Mitigation Measures. This impact would be less than significant, and no mitigation is required.

Residual Impact. Adherence to existing City SWMP regulations would ensure less than significant potential indirect run-off and sedimentation impacts to off-site waters and wetlands. Impacts would be further reduced by Mitigation Measure HWQ-2 under Section 4.8, Hydrology and Water Quality.

Impact BIO-4 The project is located within local wildlife linkage. Indirect impacts to wildlife movement from development of residences would be Class II, less than significant with mitigation [Threshold 4].

As discussed above, no regional landscape linkages are mapped on-site, either by the California Essential Connectivity Project (2010) or any of the four primary corridors in the Goleta Valley identified by Hoagland (2011). Tecolotito Creek, approximately 0.38 mile west of the Project, offers the most ideal wildlife access point to the Goleta Slough (Hoagland, 2011). The Project is separated from the regional corridor by Los Carneros Road and existing development, and would not result in any significant indirect or direct impacts to resident or migratory wildlife using Tecolotito creek for migration, foraging, or breeding. The Project site provides degraded, low value foraging habitat, and is not expected to function as breeding habitat for terrestrial species, aquatic species, or raptors. As discussed above, impacts to nesting passerine birds would be less the significant with implementation of Mitigation Measure BIO-1.

Terrestrial and Aquatic Habitat. A local wildlife linkage is documented on the Project site, which extends between the Santa Ynez Mountain foothills and the Los Carneros Wetlands. The local wildlife linkage is located along the northern and western portions of the Project site to the east and along Los Carneros Road and eventually south (off-site) to the Los Carneros Wetlands (City of Goleta, 2012; Appendix D). As discussed above, the habitat on-site is generally ruderal and low value; the conversion on 13.26 acres of mostly ruderal habitat would not have a significantly impacts foraging, breeding, or access to food sources for aquatic species. The Project would not directly affect movement of aquatic species.
species within off-site Los Carneros Creek, and indirect aquatic impacts would be less than significant with adherence to existing stormwater regulations discussed in EIR chapter Section 4.8.

Direct Linkage Impacts. The Project will directly impact the width and topography of the on-site terrestrial wildlife linkage from Santa Ynez Mountain foothills and the Los Carneros Wetlands, through the Project site and across the existing intersection of Calle Koral and Camino Vista. This on-site wildlife linkage is important for many small- (raccoon, striped skunk, etc.) and medium- (coyote and bobcat) sized mammal species that use these areas (wetlands and foothills) to hunt, seek shelter, breed, and conduct other normal behaviors important for their survival, especially within the wilderness-urban interface. As discussed above under Section 4.3.1.b, the **Wildlife Corridor Analysis for the Heritage Ridge Project** did not find evidence of a linkage between the Los Carneros Wetland and “patch” habitat at the Goleta Slough (Appendix D). The Preliminary Landscape Plan includes a 25-40-foot wide wildlife connection along a sound wall along the west perimeter of the site to allow for movement of mammals and other wildlife species between the Santa Ynez Mountain foothills and Los Carneros Wetland to the south of the site. The sound wall would separate parking lots (north and west side of Project) and condominiums (south side of Project) from the designated wildlife linkage (True Nature, 2014). The wildlife connection would begin at a recently constructed culvert north of the project under the UPRR tracks, continue along the western property line, and end at the Los Carneros Wetland. A low maintenance native plant palette would provide vegetative cover that is generally preferred by small and medium sized mammal species for movement. The wildlife linkage will also be in compliance with applicable fire codes and is proposed to be resistant to vagrant establishments. The proposed wildlife connection would not funnel wildlife movement into new routes that would further endanger their survival, such as onto a road or into fencing hazards.6 Wildlife would continue to be funneled through intersection of Calle Koral and Camino Vista, as mapped under the 2012 Willow Springs EIR, after implementation of the proposed wildlife connection (City of Goleta, 2012; True Nature, 2014). Project generated traffic at the intersection of Los Carneros Way a Calle Koral would increase by approximately 35% (Associated Transportation Engineers, 2015). However, a general increase in traffic by 35% is not expected to significantly affect nighttime wildlife movement, since traffic trip increases would generally occur during daytime hours when wildlife is least active. No new roadways are proposed. Based on Project design, which would reroute wildlife movement, and the isolation of the local wildlife linkage from Goleta Slough habitat, direct impacts to wildlife movement would be less than significant.

Indirect impacts. Indirect impacts on remaining undeveloped areas adjacent to the Project that would reduce the area available and quality of the corridor for wildlife movement include new noise, lighting, and human and pet encroachment, as well as increased traffic along Calle Koral Road and Camino Vista Road. The Project site is primarily exposed to traffic noise from U.S. 101 and train noise from the UPRR tracks, located to the north of the Project site, which are expected to remain the primary noise generators during Project operation. Construction of the sound wall would reduce impacts from the existing UPRR and U.S. 101 noise sources, and short-term impacts would be less than significant with incorporation Section 4.10, **Noise**, mitigation measures. Mitigation measures restricting lighting, regulating chemical use, and promoting homeowner pet and wildlife corridor education would mitigate indirect edge-effects to a less than significant level.

6 Consistent with the Willow Springs II FEIR Figure 4.3-3, the **Wildlife Corridor Analysis for the Heritage Ridge Project** found evidence of existing wildlife linkage from the project site into the Los Carneros Wetland across the existing intersection Calle Koral and Camino Vista.
Mitigation Measures

BIO-4(a) Lighting Plan. In addition to the lighting specifications in Mitigation Measure AES-5, light and glare from new development must be controlled and directed away from the wildlife corridors shown on the conceptual landscape plan, Los Carneros Creek SPA ESHA, Los Carneros Wetland ESHA, and the open space areas adjacent to the development. Exterior night lighting must be minimized, restricted to low intensity fixtures, shielded, and directed away from ESHAs, wildlife corridors, and open space.

Plan Requirements and Timing: The locations of all exterior lighting fixtures, complete cut-sheets of all exterior lighting fixtures, and a photometric plan prepared by a registered professional engineer showing the extent of all light and glare emitted by all exterior lighting fixtures must be approved by the Planning and Environmental Review Director, or designee, before the City issues a Building Permit for construction.

Monitoring: Before the City issues a certificate of occupancy, the Planning and Environmental Review Director, or designee, must inspect exterior lighting features to ensure that they have been installed consistent with approved plans.

BIO-4(b) Landscape Chemical and Pest Management Plan. All pesticides, herbicides, and fertilizers used at the Project site must be those designated for use near aquatic and wetland habitats, and must be applied with techniques that avoid over-spraying and control application to avoid excessive concentrations. Rodenticides are prohibited.

Plan Requirements and Timing: A Landscape Chemical and Pest Management Plan (Plan) must be developed by the applicant and approved by the Planning and Environmental Review Director, or designee, before a final map is recorded. The requirements must be printed on the final approved landscape plans, each residential unit lease document, the map, and recorded on the property deed. The Plan must provide a prohibition on use of pesticides, herbicides, fertilizers and rodenticides. These prohibitions must be the subject of at least one annual communication by the applicant to the residents in the form of a meeting and/or newsletter or electronic update that is distributed to residents.

Monitoring: Evidence of this effort must be provided to the Planning and Environmental Review Director, or designee, each year by January 1st. The management must also provide the Planning and Environmental Review Director with an annual monitoring report by January 1st of each year demonstrating the use of aquatic and wetland habitat appropriate fertilizer, herbicides, and pesticides consistent with the Plan on the property. If determined necessary by the City, the City may require the applicant to retain a City approved qualified biologist to verify the correct use of appropriate herbicides, pesticides, and fertilizers as part of the annual monitoring report.

BIO-4(c) Domestic Pet Predation, Feline Disease, and Wildlife Corridor Education. The applicant must prepare a public education campaign for future residents of the Project site regarding: 1) the effects of domestic animal predation on wildlife (e.g.,
domestic cats and protected bird species); 2) promoting indoor cats since bobcats are susceptible to the same diseases as domestic cats, and disease can be transmitted between domestic cats and bobcats (or vice versa); and 3) the importance of wildlife corridors.

Plan Requirements and Timing: The education materials must be prepared by a City approved qualified biologist, approved by the Planning and Environmental Review Director (or designee) and must be recorded with the Final Map. The education materials must be distributed with the unit lease documents, and the subject of at least one annual communication by the applicant to the residents in the form of a meeting and/or newsletter or electronic update that is distributed to all residents.

Monitoring: Evidence of this effort must be provided to the Planning and Environmental Review Director each year by January 1st.

Residual Impact. Implementation of the above Mitigation Measures BIO-4(a) regulating lighting, Mitigation Measure BIO-4(b) requiring preparation of a Landscape Chemical and Pest Management Plan, and Mitigation Measure BIO-4(c) mandating resident education will reduce potential indirect edge effect impacts to the local wildlife linkage to less than significant, especially at night, when most mammals were observed moving through the area.

Impact BIO-5 The Goleta General Plan / Coastal Land Use Plan identifies the presence of coastal sage scrub, an Environmentally Sensitive Habitat Area, on the project site. However, biological assessment surveys for this EIR indicate that no protected habitat ESHAs are present on-site. Impacts to ESHA would be Class III, less than significant [Threshold 5].

The Project has the potential to conflict with General Plan policies that protect impact wildlife corridors, the planting of invasive species, require an SPA buffer for Los Carneros Creek and a Wetland ESHA buffer for Los Carneros Wetland, and require specific restrictions in and adjacent to ESHA consistent with Policy CE 1. Accordingly, potential impacts to resources protected by the General Plan CE are presented below.

Policy CE 1: Environmental Sensitive Habitats Area Designation and Policy. The off-site willow thickets along Los Carneros Creek are designated as SPA ESHA (CE 2.2) and Los Carneros Wetland is designated as Wetland ESHA (CE 3.1). Therefore, the provisions of Policy CE 1.9 apply that require preservation of wildlife corridors or habitat networks, limit lighting and noise generation adjacent to ESHA, and prohibit invasive landscaping.

Impacts to wildlife movement corridors are discussed and measures to mitigate indirect impacts recommended under Impact BIO-4 (above). Policy CE 1.9 specifically limits lighting directed at ESHA. Mitigation Measure BIO-4(a), which limits night lighting, is required under Impact BIO-4.

General Plan CE Policy 1.9 prohibits planting of nonnative, invasive species in ESHAs and buffer areas adjacent to ESHAs. The landscape plan includes both ornamental and native plantings, a palette that would improve the Project’s compatibility with ESHA, such as by providing a food source for insects and birds (e.g., coffee berry, coast live oak). Mitigation Measure BIO-2 would prohibit invasive species.
Implementation of Mitigation Measures BIO-1, BIO-2, and BIO-4(b) would reduce impacts and ensure consistency with the General Plan. The Project is consistent CE Policy 1, and no additional mitigation measures are necessary.

Policy CE 2: Protection of Creek and Riparian Areas. Policy CE 2.2 requires a buffer of 100 feet from an SPA, but also allows the City to adjust the 100-foot buffer at the time of environmental review, if “1) no alternative siting is available, and 2) the Project’s impacts will not have significant adverse effects on streamside vegetation or the biotic quality of the stream.” However, the Project is hydrologically separated from the creek by the UPRR tracks (on compacted fill). Because of the location of the UPRR tracks, a buffer of 90 feet (a 10-foot reduction) to the edge of the limits of project development (e.g., landscaping, fencing, parking) would be acceptable from the edge of Los Carneros Creek riparian vegetation. The Project would be constructed within existing disturbed areas only, and has been designed to avoid impacts to sensitive resources (e.g., incorporation of wildlife connections in the landscaping). No habitable structures are proposed within 100 feet of the edge of riparian vegetation. Only trees, parking, landscaping, and the sound wall are proposed to be placed 90 feet from the edge of the Los Carneros Creek riparian vegetation, and such placement would not affect the existing degraded function of the SPA buffer. In addition, the Project’s on-site storm water drainage system includes permanent water quality BMPs such as bio-swales, catch basin filters, and the existing retention/infiltration basins, to capture and filter potentially occurring pollutants from developed areas. The presence of existing drainage infrastructure and proposed on-site BMPs make it unnecessary for the upland SPA buffer to filter and remove potentially occurring pollutants from developed areas. No direct impacts would occur to Los Carneros Creek from implementation of the Project. The Project has potential to result in indirect impacts to the riparian corridor associated with Los Carneros Creek and aquatic habitat in channelized Los Carneros Creek during construction activities. However, as discussed above, impacts to wetlands and waters would be less than significant with adherence to existing regulations (e.g., SWPPP, General Plan Policy 1.9(g) and CE 10). Mitigation Measure BIO-4(b) regulating the use of fertilizers, pesticides, and herbicides, applied for wildlife migration protection, would also protect streamside vegetation and the biotic quality of the stream. The proposed sound wall at the property line (90 feet from the edge of riparian vegetation) would further reduce indirect impacts from noise, run-off, and lighting. Therefore, a buffer of less than 100 feet is adequate since reduced buffer (90 feet from edge of riparian vegetation) would not have a substantially adverse effect on the functions and values of Los Carneros Creek. With implementation the 90-foot buffer recommendation from the edge of riparian vegetation, the Project is consistent CE Policy 2, and no additional mitigation measures are necessary.

Policy CE 3: Protection of Wetlands. The Project would not conflict with CE 3.3 through CE 3.8, since no fill is occurring and the Project buffer from the edge of wetland vegetation is greater than 50 feet. The edge of the Project site is approximately 80 feet northwest of the beginning of the wetland, and is separated by Camino Vista. Policy CE 1.4 requires a buffer of 100 feet from any wetland in the coastal zone, whereas outside the coastal zone Policy CE 3.5 requires “a wetland buffer of a sufficient size to ensure the biological integrity and preservation of the wetland shall be required...buffer shall be no less than 50 feet.” The Los Carneros Wetland is directly north of the coastal zone; a 100-foot buffer is not required by the General Plan. However, since development is proposed within 100 feet from the edge of the wetland, a wetland ESHA buffer is recommendation is included in this assessment. The proposed buildings are greater than 100 feet from the beginning of the wetland. Run-off would be conveyed into the existing storm water system that discharges into the Los Carneros Wetland, as

7 Measured from the top of the bank or the outer limit of wetlands and/or riparian vegetation, whichever is greater.
permitted by USACE. The portion of the wetland within 100 feet of the Project was required to be created to mitigate for USACE wetland impacts for Willow Springs I, and to serve as a retention basin for Willow Springs II and the Project (Appendix D). The wetland was once hydrologically connected to Lake Los Carneros and the Goleta Slough; however now the wetland is fragmented and isolated. Given the urbanized setting and that the area is approved for treating the Project’s stormwater, the existing 80 foot buffer is adequate. Mitigation Measure BIO-4 regulating the use of fertilizers, pesticides, or herbicide (applied for wildlife protection) would also protect wetland vegetation and the biotic quality of the wetland. Therefore, the proposed development 80 feet from the property line to the edge of wetland vegetation would not have a substantially adverse effect on the functions and values of Los Carneros Wetland. The Project is consistent with CE Policy 3, and no additional mitigation measures are necessary.

Policy CE 9: Protection of Native Woodlands. Implementation of the Project would not result in protected tree removal or alteration. No trees are present on-site, and off-site trees (e.g. eucalyptus, willow) between the UPRR tracks and U.S. 101, and are located an adequate distance outside the development footprint and would not be affected by the Project. The Project is consistent with Policy CE 9.

Policy CE 10: Watershed Management and Water Quality. Existing regulations addresses the requirements of Policy CE 10. The Project is consistent with Policy 10, and no additional mitigation measures are necessary.

Recommended Mitigation Measures. This impact would be less than significant, and no mitigation measures are required.

Residual Impact. As mitigated, the Project is consistent with the General Plan. No significant impact would occur as a result of a conflict with local policies and ordinances.

c. **Cumulative Impacts.** Section 15130 of the CEQA Guidelines provides guidance on the discussion of cumulative impacts. Two conditions apply to determine the cumulative effect of a project: first, the overall effect on biological resources caused by existing and known or forecasted projects must be considered significant under the significance thresholds discussed above; and second, the project must have a “cumulatively considerable” contribution to that effect. The analysis includes a discussion of the adopted Programmatic General Plan FEIR analysis, and an updated project-specific cumulative analysis of the loss sensitive species and habitat and raptor foraging habitat.

Cumulative Programmatic General Plan Biological Resource Impacts. The Programmatic General Plan FEIR (City of Goleta, 2006; SCH # 2005031151), incorporated herein by reference, evaluated direct and indirect impacts from the conversion of existing vacant sites to the land uses designated for those areas in the General Plan. This analysis included the project site build-out. The Project build-out is consistent with the General Plan land use designation. No significant unavoidable (Class I) impacts to biological resources were identified as a result of General Plan build-out. Biological resource impacts associated with build-out of vacant sites under the General Plan EIR were identified as less than significant (Class II), with adherence to Policies CE 1–10, Policies OS 1–7, and Policies LU 1,6, and 9. Development of the Project would not change the existing General Plan land use designation (Medium Density R-MD and Affordable Housing Opportunity Site) that was evaluated in the Programmatic General Plan FEIR. As discussed above, the Project impacts would be mitigated consistent with the General Plan policy requirements. The Statement of Overriding Consideration and FEIR adopted by the Goleta City Council is specific to Class II long-term impacts from the development of vacant land to
specific special status species (Impact 3.4-5), native species (Impact 3.4-6,7), special status habitats (Impacts 3.4-2,3,4), and wildlife corridors (Impact 3.4-8). Cumulative impacts to biological resources, including the “loss of foraging habitat (grassland) for resident and migratory raptors” attributable to projects in the City, were found to be less than significant (Class III) with adherence to General Plan policies and applicable federal and state regulations (Impact 3.4-14). Cumulative impacts to biological resources would not be cumulatively considerable, as identified under the Programmatic General Plan FEIR. As discussed above, the Project is consistent with the General Plan biological resource protection policies. Therefore, as identified in the Programmatic General Plan FEIR, cumulative biological resources impacts would be less than significant with implementation of the General Plan policies.

Cumulative Loss of Sensitive Species and Habitat and Wildlife Connectivity. Cumulative development in the Central Hollister area of Goleta consists of infill of remaining undeveloped parcels (e.g., Village at Los Carneros, Cortona Apartments) within an urbanized area. Previous development in this area permanently eliminated extensive tracts of native plant communities, some of them now classified as rare or threatened. Native habitats support native wildlife species, many of which cannot survive in, or do not adapt to, the noise and disturbance associated with residential and urban developments. Species that do tolerate developed, landscaped, and disturbed sites include aggressive, non-native species that further displace native plants and wildlife, or may prey upon native species.

As discussed in Section 4.3.2.b vegetation on the majority of the Project site consists of non-native grasses and disturbance-following native shrubs. The proposed conversion from existing conditions to residential development would not be a cumulatively considerable contribution to a cumulatively significant effect, as the reduction and fragmentation of native habitats (including sensitive habitats), loss of native plant species diversity and populations, and reduction in native wildlife diversity and populations has already occurred in the past and was evaluated under the Programmatic General Plan FEIR. Moreover, mitigation measures would protect existing biological resources on and adjacent to the Project, such as nesting birds and wildlife connectivity. Cumulative impacts sensitive species and habitats would be less than significant.

Cumulative Loss of Raptor Habitat. The 16.29-acre Project site is not a significant nesting or roosting habitat for raptors and the Project’s conversion to urban development, when considered with other cumulative development in the area, would not result in significant loss of suitable nesting or roosting habitat for raptors.

The Project and several related projects in the Goleta area would result in the loss of foraging habitat for raptors including, without limitation, non-native grassland, open scrubland, and disturbed/ruderal fields. The Project would not result in a cumulative impact to raptor foraging areas or access to food resources, as the foraging habitat at the Project site is of lesser importance to raptors at a regional scale due to its small size, fragmented condition, and proximity to existing development; the foraging habitat at the site is not essential to successful nesting of raptors in the Goleta area; suitable foraging habitat exists at several other locations in the area, such as Ellwood Mesa, Bishop Ranch, Los Carneros Lake, Santa Barbara Municipal Airport and Goleta Slough, and UCSB areas, as well as additional undeveloped private lands; and, raptors are mobile species capable of compensating for the loss of small acreages of suitable foraging habitat in a local area by finding and utilizing other suitable habitats. Approximately four acres of the Project site itself was recently inaccessible to raptors for foraging for at least two years when stockpiled soils were present in the native hydro-seed area. The Project’s contribution (13.47 acres would be permanently removed by development of the Project) to the loss of raptor habitat would not make cumulatively considerable contribution to a cumulatively significant effect, and is therefore less than significant.
This page intentionally left blank.
4.4 CULTURAL RESOURCES

This section analyzes the Project’s potential impacts to cultural resources. The analysis is based primarily on an Archaeological Resources Assessment: North Willow Springs Project, City of Goleta, California prepared by Dudek (May 2014) and on a peer review of this report by Rincon Consultants, Inc. in May 2015. This report considers a series of previous cultural resources investigations conducted for the Project site and adjacent properties: an original excavation in 1929, subsequent excavations in 1982, an intensive ground surface collection of artifacts in 1990, Extended Phase 1 excavations in 1996, a Supplemental Phase 2 investigation in 1999, and a Phase 3 Data Recovery Mitigation program in 2014. The technical report is on file at the City of Goleta.

4.4.1 Setting

a. Regional Setting. A summary of the prehistory and history of the general project area, excerpted from the Goleta General Plan FEIR, is provided below.

Prehistory. Evidence exists for the presence of humans in the Santa Barbara coastal area for more than ten thousand years. While some researchers (e.g., Orr, 1968) suggest that the Santa Barbara Channel area may have been settled as early as 40,000 years ago, only limited evidence for occupation much earlier than 9,500 years has been discovered. Even so, human prehistory along the Santa Barbara channel area coast may extend back as much as 12,000 years (Erlandson et al., 1987; Erlandson et al., 1996). Approximately 7,500 years ago, prehistoric human settlement in the region appears to have increased rapidly with a number of sites dating to approximately this time, and many more dating subsequent to it (Colten 1987, 1991; Erlandson, 1988, 1997; Glassow, 1997). At that time, people in the area practiced a mostly gathering subsistence economy, focusing mainly on natural vegetal resources, small animals, and marine resources such as shellfish. One of the major tool types evident in their assemblage was the milling stone and muller (also referred to as mano and metate). This two-part tool was used primarily to process (grind) various kinds of seeds, small animals, and vegetal foodstuffs. The large quantities of these tools found by archaeologists in the sites of these people resulted in the designation of this period as the Milling Stone Horizon (Erlandson, 1994).

Beginning at sites dating to approximately 5,000 years ago, archaeologists began to notice differences in some archaeological site assemblages. These differences involved changes in the tool inventory with new tool types indicative of new subsistence technologies. Most significant of these differences were projectile points indicative of hunting activities, and the mortar and pestle suggestive of the utilization of a new vegetal foodstuff, the acorn. Another change involved an increase in fishing and the procurement of marine mammals for food. The use of these new technologies increased during the next approximately 3,000 years, until approximately 2,000 to 1,500 years ago. During this period, prehistoric habitation increased considerably in the Goleta area.

The advent of new technologies and subsistence strategies again became evident approximately 2,000 to 1,500 years ago, signaling a distinctive change in the pattern of prehistoric culture in California. Included in these new technologies were the bow and arrow and, in some areas, ceramics. Burial practices also changed in some areas of California with cremation of the dead supplanting inhumation. The period is characterized as a time of cultural elaboration and increased sophistication including artistic, technological, and sociological changes (Erlandson and Torben, 2002).
Ethnographic Background. At the time of first European contact in 1542, the Goleta area was occupied by a Native American group speaking a distinct dialect of the Chumash language. Historically, this group became known as the Barbareño Chumash (Landberg, 1965); the name deriving from the Mission Santa Barbara under whose jurisdiction many local Chumash came after its founding in 1776. The Chumash were hunters and gatherers who lived in an area with many useful natural resources and were politically organized into chiefdoms. They had developed a number of technologies and subsistence strategies that allowed them to maximize the exploitation of these natural resources. Consequently, before a drastic change caused by disease and other forms of cultural disruptions introduced by the Spaniards, Chumash settlements were numerous, with some containing large residential areas, semi-subterranean houses, and large cemeteries. At the time of Spanish contact, the Goleta area and immediate vicinity was highly populated with at least ten Chumash villages (Johnson, et al., 1982). A number of these settlements were situated around what was in prehistoric times a much larger Goleta Slough. The slough, which may have resembled a bay in prehistoric times (Grenda, et al., 1994), contained an abundance of marine resources including shellfish, fish, birds, and marine mammals. Early Spanish explorers, missionaries, and administrators characterized the Chumash as having a strong propensity for trade, commerce, and craft specialization, as well as for intervillage warfare (Erlandson, 1994).

History. The first European contact to the Santa Barbara coastal region was by the Portuguese explorer Juan Rodriguez Cabrillo in 1542, whose voyage up the California coast under the flag of Spain was the first expedition to explore what is now the west coast of the United States. It was, however, Spanish explorer Sebastian Vizcaino, sailing though the region in December 1602, retracing Cabrillo’s voyage, who christened the channel Santa Barbara in honor of Saint Santa Barbara (Guinn, 1907). After 1602, there is no verified documentation of European contact in the region until Portolá’s expedition along the coast of California en route to Monterey Bay in 1769. Accompanying Portolá was Sergeant José Francisco Ortega, who would become the first comandante of the Santa Barbara Presidio, constructed in 1781–82 (Whitehead, 1996).

Mission Santa Barbara was founded on December 4, 1786, and in the first year of commission, 186 Chumash people were baptized, 83 of which were from the Goleta region (Johnson, et al., 1982:20). In 1803, a proportionally large number of baptisms occurred throughout the five missions located within the Chumash territory, putting such a strain on the missions that the newly baptized were allowed to remain in certain native villages which were renamed after saints (Johnson, et al., 1982). In the Goleta area, there were at least two of these communities, San Miguel and San Francisco, the native villages of Mescalitán (S’axpilil) and Cieniguitas (Kaswa’s), respectively (Johnson, et al., 1982:21).

In the time between the establishment of the Santa Barbara Mission and Presidio and the end of Spanish rule in California in 1822, the Goleta area was primarily used by the Franciscan fathers for grazing cattle and sheep (County of Santa Barbara, 1993). In 1806, a measles epidemic took many lives and marked the beginning of the decline of both the Mission Santa Barbara and the native population (Johnson, et al., 1982). In 1822 and 1823, the most severe drought in mission history occurred, resulting in two very poor harvest years. A Chumash revolt occurred in 1824, possibly influenced by the lack in food supply (Johnson et al., 1982:25). Many of the Chumash population dispersed into the mountains and to the southern San Joaquin Valley. After two Mexican expeditions into the interior, many of them were persuaded to return to Santa Barbara (Blakley and Barnette, 1985).

Although Mexico had gained independence from Spain in 1822, it was not until 1835 that secularization of the missions occurred, the mission became a parish church, and the Chumash were made free citizens.
(Johnson, et al., 1982). The policy of the Mexican government was to grant the mission lands and other unclaimed property to prominent citizens who were required to develop the properties and to build homes on them (EIP Associates, 2004). The City of Goleta encompasses parts of two of these land grants: Los Dos Pueblos Rancho, granted to Nicholas Den in 1842, and La Goleta, granted to Daniel Hill in 1846 (Tompkins, 1960; King, 1982). The ranchos were used by Den and Hill primarily to raise cattle for hide and tallow production (Tompkins, 1960; King, 1982; EIP Associates, 2004).

The American period began in 1848, when Mexico signed a treaty ceding California to the United States. Santa Barbara County was one of the original counties of California, formed in 1850 at the time of statehood. In 1851, a land act was passed that required the confirmation of ownership of Spanish land grants, although the process took many years to complete. Daniel Hill received a patent for La Goleta on March 10, 1865, and Los Dos Pueblos was patented to N. A. Den on February 23, 1877, 15 years after his death (California Secretary of State, 2000).

The 1870s saw the characterization of the Goleta area began to shift from sparsely populated cattle ranches to farmsteads and towns. The area of La Goleta north of Hollister Avenue was subdivided into 38 parcels, ranging from 31 to 258 acres each (King, 1982:51), and a town taking on the name of Goleta was established in the southwestern portion of the old La Goleta land grant. Early pioneers during this time include J. D. Patterson, Richard Sexton, B. A. Hicks, Ira A. Martin, John Edwards, and Isaac Foster (King, 1982). By 1890, the population of Goleta had grown from 200 in 1870 to 700 people (King, 1982:51).

In 1887, the Southern Pacific Railroad connected Santa Barbara County to Los Angeles and in 1901 to San Francisco, bringing with it the expansion and growth of ranching and agriculture in the Goleta Valley (Grenda, et al., 1994). Goleta in the early 1900s was described by J. M. Guinn as “a small village eight miles to the northwest of Santa Barbara. The country around to a considerable extent is devoted to walnut-growing and olive culture” (1907:422). Joseph Sexton, who had developed the softshell walnut, inspired many additional area farmers to plant their land with walnuts and a grower’s association was formed (King, 1982). In the early 1870s, Sherman Stow planted lemon, walnut, and almond orchards; the lemon orchards were the first commercial lemon planting in California (Tompkins, 1966; Grenda, et al., 1994). The lemon industry continued to develop, and in the 1930s, a lemon packing plant was constructed. Today agriculture in the Goleta foothills consists mainly of lemons and avocados (King, 1982; Goleta Valley Urban Agriculture Newsletter, 2002).

Oil production along the Goleta coast began in the 1920s and boomed in 1928 with the discovery of the Ellwood oil fields. After 1937, oil production began to decline; however, natural gas was also discovered along the coast and is still being tapped today (County of Santa Barbara, 1993). Suggestions that the Goleta slough be turned into a harbor first originated in the early 1920s and persisted into the 1960s, although this plan eventually disintegrated with the infilling of marshlands in 1930s and 1940s in order to accommodate an airport. In 1941, the City of Santa Barbara bought Mescalitan Island and the surrounding tide flats (King, 1982; County of Santa Barbara, 1993). The 1950s and 1960s brought tremendous change to the Goleta area, as the construction of Cachuma dam provided a relief to the area’s problem of a reliable water source and fueled rapid growth and commercial and residential development (Grenda, et al., 1994; County of Santa Barbara, 1993).

b. Project Site Setting. The Project site is located on a coastal terrace on the lower edge of the coastal foothills of the Santa Ynez Mountains, part of an east-west trending Transverse Range Province. The origin of these rolling foothills is marine Pleistocene terrace (City of Goleta General Plan FEIR, 2006;
Dibblee, 1950). The Project site is near Tecolotito Creek, which flows into the Goleta Slough. Soil in the Project site is mixed varying from Goleta fine sandy loam, 0% to 2% slopes, Milpitas-Positas fine sandy loam, 2% to 9% slopes, and Xerorthents cut and fill areas (United States Geological Survey, 1982).

A summary of historic use of the Project site and its archaeological resources is provided below.

History. Agricultural, grading, and construction activity have disturbed the soil of the Project site. Before 1928, the Project site was used for agriculture and grading, and portions of orchard remained fallow in the eastern portion of the site until the 1980s. In 1986 a mass grading plan for the entire site was approved and initiated. Initial grading consisted of clearing and grubbing of orchard trees and root structures. Surface material was scraped and placed in windrows. At this time, investigations of prehistoric cultural resources were undertaken, and grading resumed outside of fenced sensitive archaeological areas. In 1997 the Project site served as a staging area for fill during construction of the Los Carneros Road/U.S. 101 interchange. Ongoing activity associated with two stockpile permits first issued in 2002 has occurred outside of a 50-foot buffer from the fenced archaeological site CA-SBA-56 (this archaeological site is discussed in greater detail below).

Archaeological Resources. The prehistoric archaeological site CA-SBA-56 was originally documented directly south of the Project site, within what is today the Willow Springs II site (Willow Springs Apartments). David Banks Rogers first recorded this archaeological site in 1929, based on the excavation of 46 trenches, as a residential “midden” associated with a village site. This site was characterized by very dense deposits of shellfish, stone tools, and grinding stones, and fragments of a human skeleton. Beginning in the 1980s, various archaeological investigations within and around the known site area were conducted mostly to define and refine the boundaries of CA-SBA-56 and to obtain enough archaeological data to determine its significance with respect to dates of occupation and function. These studies have resulted in refinements of site boundaries, identification of areas of intact and/or disturbed or destroyed components, and confirmation that the midden deposits represent a multi-occupational site (at least two major periods of occupations and each spanning hundreds of years of use). Excavations conducted in 1982 (Gerstle and Serena, 1982) resulted in a determination that the main residential midden at CA-SBA-56 was eligible for listing on the National Register of Historic Places (NRHP). Because CA-SBA-56 has been deemed NRHP-eligible, it is also a significant archaeological resource pursuant to CEQA Guidelines Section 15064.5(a)(3).

Following removal of the fallow orchard on the Project site, archaeological monitoring of brushing and grading operations in 1989 identified a “low density artifact scatter” within the Project site, along the ridgeline north of the main residential midden area at CA-SBA-56. A human bone fragment was collected in this area and reburied outside of the Project site. In 1990, an intensive ground surface collection conducted by Science Applications International Corporation (SAIC) and the ISERA Group revealed chipped stone flakes, ground stone, hammerstones, shellfish, animal bone, and ochre within the Project site. Extended Phase 1 excavations conducted by SAIC and the ISERA Group in 1996 identified intact archaeological deposits between six and 24 inches below the ground surface on the Project site, consistent in nature with those that had been collected on the surface. In addition, these excavations revealed an intact human burial. Upon identification of the burial, excavations in the vicinity were halted and the burial remains undisturbed at the location of discovery in the southern portion of the Project site. Such human remains are protected by State law (see Codes Governing Human Remains, below).
The Extended Phase 1 excavations (SAIC and ISERA Group 1996) resulted in the extension of the CA-SBA-56 boundary northward along and beyond the elevated knoll in the Project site. The low density artifact scatter in CA-SBA-56 within the Project site constitutes a significant archaeological resource under the CEQA Guidelines. The boundary of the archaeological area and a 50-foot buffer have been fenced to ensure that no disturbance to the resource occurred during placement of stockpile soils on the Project site that occurred during a period from approximately 1998 to 2014. Cultural materials within the elevated knoll area have sufficient densities and varieties of prehistoric food and artifacts to address research questions about past Native American occupation of the area.

Carbon Dating of Cultural Materials. It is believed that the archaeological site CA-SBA-56 was occupied during the Early Period (“Oak Grove,” 8,000 to 3,350 years before present [B.P.]) and Late Period “Canalino,” 800 to 150 B.P.) of Chumash prehistory (SAIC, 1999). A series of investigations provided an age of 6,600 and 6,700 B.P. for deposits within the main residential midden area. Radiocarbon dating of shellfish collected from the low density artifact scatter has indicated that this area was occupied from 6,930 to 7,080 years B.P., within the Early Period. There is also ample evidence for major gaps in occupation, likely the result of environmental conditions that would have affected accessibility of the site area, such as higher water levels.

Cultural Material Distributions. CA-SBA-56 is a relatively large site with a dense, central residential midden deposit, an area of intermediate artifact density within the Project site, a low density artifact scatter to the north, and peripheral low-lying areas. The Supplemental Phase 2 work completed by SAIC (1999) and Phase 3 Data Recovery Mitigation program completed by Dudek (Stone and Victorino, 2014) produced an understanding of the density and diversity of cultural materials recovered from these areas in CA-SBA-56. By collectively assembling all documented investigations, the following generalizations of deposit distributions and diversity in CA-SBA-56 were determined:

- **Main Residential Midden.** This area of the site, now protected as open space under 18 inches of fill in Lot 20 of the Willow Springs I project, has substantially greater densities of shellfish (over 5,000 percent) and chipped stone flakes resulting from stone tool manufacturing (200-300 percent greater than the remainder of CA-SBA-56). Concentrations of animal bone are also 100 percent greater than areas to the north. Intact resource deposits still remain within the main residential midden. This is the area of CA-SBA-56 that was determined NRHP-eligible in 1982.

- **Intermediate Artifact Scatter.** This area of CA-SBA-56, located along the ridgeline within the Willow Springs II site to the south, has moderate amounts of chipped stone flakes and low amounts of fragmented animal bone, but nearly no shellfish. As these remains have been dated to either the late Early to Early Middle Period, they appear to be later than the main residential midden occupation of CA-SBA-56 within Lot 20 of the Willow Springs I project. They represent specialized activity areas peripheral to the main residential midden to the south in Lot 20 (Stone and Victorino, 2014). Intact resource deposits remain within the intermediate artifact scatter.

- **Low Density Artifact Scatter.** This low density shell midden deposit, located within the Project site, along the ridgeline north of the main residential midden area, is comprised of chipped and ground stone (mano and metate fragment) artifacts associated with the Early and Middle Periods. The artifact densities appear to have been considerably lower than those in the central midden area (1/20th of the shellfish and bone densities, and 1/6th of the chipped stone flake and tool density),
though the extent of stone tool manufacturing/resharpening appears to be higher than the intermediate artifact scatter located along the ridgeline within the Willow Springs II site to the south. An intact undisturbed human burial was identified in the southern portion of the Project site at the low density artifact scatter during the Extended Phase 1 excavations in 1996. Excavations within the low density artifact scatter within the project site revealed that the soils have been previously disturbed a depth of four inches below the ground surface.

- **Low-Lying Areas Surrounding the Knoll.** The low-lying areas peripheral to the main residential midden and intermediate artifact scatter have extremely sparse densities of cultural material or none at all. The cultural deposits on the project site have been disturbed up to 12 inches below the ground surface as a result of past agricultural grading activities. Nearly all of the cultural materials encountered in this area were recovered from the top eight inches of soil, and animal bone recovered was highly fragmented. This suggests that most of these materials have been previously disturbed and little, if any, intact deposits remain within the low-lying areas. Although some sparse materials recovered during the Phase 2 excavations and previous Extended Phase 1 trenching and shovel test pits were recovered below the disturbance zone, they are thought to represent very sporadic temporary activity adjacent to Carneros Creek. Therefore, the shellfish and flakes recovered in this area generally lack stratigraphic integrity, and provide little information about the prehistoric activities that occurred at CA-SBA-56, particularly when compared to the intermediate artifact scatter along the raised knoll.

Extent of Prior Data Collection and Evaluation. The larger CA-SBA-56 site, including portions of the Project site, has been subjected to extensive archaeological field surveys, which have included:

- Geomorphological analysis;
- Analysis of historic land uses and disturbances through historic photograph analysis;
- A minimum of ten surface surveys resulting in the recovery of 591+ artifacts;
- The identification of one human femur at the Willow Springs II site;
- Disking for better visual inspections;
- A minimum of 29 Shovel Test Pits (STPs);
- A minimum of 56 controlled trenches and examination of one looter’s trench;
- Excavation of 14 controlled excavation units (four were located within the intermediate artifact scatter and 10 were placed in the low-lying areas);
- Recovery of column samples;
- Hundreds of artifacts from subsurface contexts;
- One human burial (left in situ);
- Reports of at least two possible hearths; and
- Carbon-14 dates confirming the two major periods of occupation (Early Period and Late Period).

CA-SBA-56 has been subjected to a high level of testing and evaluation, resulting in a relatively large body of data that, to date, has not been synthesized.

c. Native American Scoping. The Coastal Band of the Chumash Nation representative (members of the Chumash Native American Community) have been actively involved in past archaeological
investigations at CA-SBA-56. Along with other contemporary Chumash, they consider all prehistoric archaeological sites to be important heritage resources. Contemporary Chumash in many cases consider that the integrity or intactness of archaeological deposits does not affect their heritage significance. However, the heritage significance of a resource does not directly correlate to the archaeological significance of a resource. The City sent a certified letter on November 23, 2015 to Michael Cordero representing the Coastal Band of the Chumash Nation per their request pursuant to SB 18. The City made numerous attempts to arrange a meeting with the tribe. The City sent a letter on November 23, 2015, requesting the tribe respond within 30 days or they would assume the tribe was no longer interested in meeting with the City. The City did not receive a response, but will notify the Native Americans on the City’s Native American contact list of the release of this Draft EIR.

d. Regulatory Setting.

State of California.

California Environmental Quality Act (CEQA). Section 15064.5 of the CEQA Guidelines states that a resource is “historically significant” if it meets one of the criteria for listing in the California Register of Historical Resources (CRHR) (Public Resources Code § 5024.1; 14 CCR § 4852). A resource may qualify for CRHR listing if it:

(A) Is associated with events that have made a significant contribution to the broad patterns of California’s history of cultural heritage;
(B) Is associated with the lives of persons important in our past;
(C) Embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic values; or
(D) Has yielded, or may be likely to yield, information important in prehistory or history.

Cultural resources meeting one or more of these criteria are defined as “historical resources” under CEQA. Included in the definition of historical resources are prehistoric archaeological sites, historic archaeological sites, historic buildings and structures, traditional cultural properties important to a tribe or other ethnic group, cultural districts and landscapes, and a variety of other property types.

Impacts to “unique archaeological resources” are also considered under CEQA as described under Public Resources Code § 21083.2. This section defines a “unique archaeological resource” as:

“an archaeological artifact, object, or site, about which it can be clearly demonstrated that, without merely adding to the current body of knowledge, there is a high probability that it meets any of the following criteria:

1. Contains information needed to answer important scientific research questions and there is a demonstrable public interest in that information.
2. Has a special and particular quality such as being the oldest of its type or the best available example of its type.
3. Is directly associated with a scientifically recognized important prehistoric or historic event or person (Public Resources Code § 21083.2(g)).

Potential impacts to identified cultural resources need only be considered if the resource is an “important” or “unique archaeological resource” under the provisions of CEQA Guidelines 15064.5 and
15126.4 and the eligibility criteria. If a resource cannot be avoided, then the resource must be examined pursuant to CEQA Guidelines 15064.5 and 15126.4 and pursuant to the eligibility criteria as an “important” or “unique archaeological resource.”

A non-unique archaeological resource is an archaeological artifact, object, or site that does not meet the above criteria. Impacts to non-unique archaeological resources and resources that do not qualify for listing on the CRHR receive no further consideration under CEQA.

Codes Governing Human Remains. Section 15064.5 of the CEQA Guidelines also assigns special importance to human remains and specifies procedures to be used when Native American remains are discovered. The disposition of human remains is governed by Health and Safety Code § 7050.5 and Public Resources Code § 5097.94 and 5097.98, and falls within the jurisdiction of the NAHC. If human remains are discovered, the County Coroner must be notified within 48 hours and there should be no further disturbance to the site where the remains were found. If the remains are determined by the County Coroner to be Native American, the County Coroner is responsible for contacting the NAHC within 24 hours. The NAHC, pursuant to Public Resource Code § 5097.98, will immediately notify those persons it believes to be most likely descended from the deceased Native Americans so they can inspect the burial site and make recommendations for treatment or disposal.

City of Goleta. Cultural resources information and policies applicable to the Project are found in the Open Space Element (Chapter 3) and the Visual and Historic Resources Element (Chapter 6) of the Goleta General Plan. The following selected policies would apply:

- Open Space Element Policy 8.1.
- Open Space Element Policy 8.2.
- Open Space Element Policy 8.3.
- Open Space Element Policy 8.4.
- Open Space Element Policy 8.5.
- Open Space Element Policy 8.6.
- Visual and Historic Resources Element Policy 5 Objective.

4.4.2 Impact Analysis

a. Methodology and Significance Thresholds. The significance of a cultural resource and impacts to the resource is determined by whether or not that resource can increase the collective knowledge regarding the past. The primary determining factors are site content and degree of preservation. A finding of archaeological significance follows the criteria established in the CEQA Guidelines and the City’s Environmental Thresholds and Guidelines Manual. Pursuant to the Appendix G of the CEQA Guidelines, potentially significant impacts would occur if development of the Project site would:

1. Cause a substantial adverse change in the significance of a historical resource as defined in CEQA Guidelines §15064.5;
2. Cause a substantial adverse change in the significance of an archaeological resource pursuant to CEQA Guidelines §15064.5;
3. Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature; and/or
4. Disturb any human remains, including those interred outside of formal cemeteries.
Impacts related to Thresholds 1 and 3 were found to be less than significant, and are discussed in Section 4.15, Effects Found Not to Be Significant. Therefore, the analysis in this section focuses on Thresholds 2 and 4.

According to the City of Goleta Cultural Resource Guidelines, a project would have a significant impact on a cultural resource if it results in the physical demolition, destruction, relocation, or alteration of the resource or its immediate surroundings such that the significance of such a resource would be materially impaired.

b. Project Impacts and Mitigation Measures.

Impact CR-1 Based on archaeological investigations conducted on the Project site, there is evidence that an intact archaeological deposit (associated with CA-SBA-56) is present. Construction activities for the Project could potentially have a significant impact on CA-SBA-56. This would be a Class II, significant but mitigable impact [Thresholds 2 and 4].

Proposed grading activities on the Project site have been designed to avoid disturbance of the low density artifact scatter (refer to Section 2.5.3 of the Project Description), which is a significant archaeological resource pursuant to CEQA Guidelines Section 15064.5(a)(3). To prevent disturbance of the soil, existing vegetation within the boundary of CA-SBA-56 is proposed to be removed by hand, remaining root balls and masses would be sprayed with a topical herbicide to ensure no further growth, and the resulting dead masses of vegetation would be left in place. A geotextile tensar fabric (Tensar BX1200 or equivalent) would be placed on top of the existing ground surface to reduce the force of compaction from overlying fill soils and redistribute the compaction load force over a wider area, thereby minimizing the disturbance of friable cultural remains such as shellfish and animal bone. No remedial grading, subgrade preparation, or scarification would occur prior to placement of the geotextile fabric. Then the CA-SBA-56 site and a 50-foot buffer would be covered in a minimum of two feet of protective fill soil to prevent direct impacts to archaeological resources. Fill soils would be spread from the outside in no greater than eight-inch lifts with rubber-tired equipment, such that equipment only operates on top of the fill soils. This protocol would follow the previously approved measures implemented in the protection of CA-SBA-56’s intermediate artifact scatter resources within the Willow Springs II project.

The Project has also been designed to avoid physical disturbance of the low density artifact scatter. A two-acre public park would be located over this area in the south-central portion of the site, while proposed buildings would be placed away from the archaeological site to the southwest, north, and east. All proposed features above the low density artifact scatter, including landscaping, irrigation, a decomposed granite trail, a permeable concrete parking area, a picnic area, and a lodgepole perimeter fence, would be placed on top of fill soils and would not require disturbance of the existing ground surface. Therefore, the Project would not have direct impacts on significant archaeological resources at the low density artifact scatter.

Although the site layout proposed and placement of protective fill over the low density artifact scatter would avoid direct impacts to this significant archaeological resource, the preservation of cultural deposits by intentional burial would result in a significant indirect impact on the research values of the cultural resource. Placement of overlying fill would preclude the opportunity for future investigations to determine the way in which the portions of CA-SBA-56 to be buried are related chronologically and
functionally to the central midden area and the intermediate artifact scatter to the south. This indirect impact can be mitigated through implementation of a limited Phase 3 Data Recovery investigation to obtain a systematic sample of prehistoric remains from the low density artifact scatter. The physical extent of this investigation would be limited by the lower density of cultural remains in this area, relative to that of the central midden at CA-SBA-56, and by the availability of previous research from the Phase 3 Data Recovery Program for the Willow Springs II project immediately to the south.

Mitigation Measures. The following measures would address areas of intact CA-SBA-56 deposits where proposed ground disturbances cannot be feasibly avoided. These measures are consistent with conditions of approval for the Willow Springs II project, where relevant.

CR-1(a) Limited Phase 3 Data Recovery. The applicant must provide a Phase 3 Data Recovery Program Plan developed by a City-approved archaeologist for excavations at the low density artifact scatter at CA-SBA-56.

Plan Requirements: The Phase 3 plan must be prepared in accordance with the City of Goleta’s *Environmental Thresholds and Guidelines Manual*, Open Space Element Policy 8.5, the California Office of Historic Preservation’s (1990) *Archaeological Resource Management Reports (ARMR): Recommended Contents and Format*, and CEQA § 21083.2 and CEQA Guidelines § 15126.4(b). The plan must include:

- Research design;
- Discussion of relevant research questions that can be addressed by the CA-SBA-56 resources;
- Methods used to gather data, including data from previous studies;
- Laboratory methods to analyze the data;
- An assessment of artifacts recovered and any corresponding field notes, graphics, and lab analyses; and
- Results of investigations.

The plan must provide for a systematic sample of the area to be capped, such that the research value of the deposit is adequately characterized.

The Phase 3 must be funded by the applicant and must be prepared by a City-approved archaeologist. The Phase 3 must be documented in a draft and final report and must be reviewed and approved by a City-retained archaeologist. Pursuant to City Cultural Resource Guidelines, the final report, archaeological collections, field notes, and other standard documentation must be permanently curated at the UCSB Repository for Archaeological Collections.

The Phase 3 must specify that a Chumash Native American observer must be retained by the applicant to observe all excavation activity associated with the Program. The observer must maintain daily notes and documentation necessary, and provide the observation notes and documentation to all interested Chumash representatives who request to be informed of the Phase 3 excavation progress.
Timing: A Phase 3 research design prepared pursuant to City of Goleta’s Environmental Thresholds and Guidelines Manual, and a copy of a contract (including a detailed scope of work) between the applicant and a City-approved archaeologist and Chumash Native American observer for the Phase 3 program, and the subsequent draft and final Phase 3 report, must be reviewed and approved by the City and City-retained archaeologist (funded by the applicant) before recordation of the final map. The applicant must provide a bond subject to City approval to the City for completion of the Phase 3 program that must be released upon completion of the Phase 3 mitigation and all contract requirements as determined by the City in writing. All excavation and curation requirements must be met prior to issuance of any Land Use Permit for grading. The Phase 3 excavation must be undertaken before placement of fill over the low density artifact scatter.

Monitoring: The Phase 3 Data Recovery Program must be submitted for approval by the City and City-approved archaeologist before the applicant records a final map. City staff and the City-retained archaeologist must periodically site inspect to verify completion of the Phase 3 field work. The City-retained archaeologist must review and approve the draft and final Phase 3 reports. The applicant must provide the City with a letter from the UCSB Repository for Archaeological Collections indicating that all required materials have been accepted for curation.

CR-1(b) Surface Preparation and Fill Soils within CA-SBA-56. Preparation of the ground surface and the placement of fill soils within the CA-SBA-56 boundary must adhere to the following requirements:

- Systematically collect all diagnostic artifacts on the ground surface;
- Remove all organic material from the archaeological site surface by hand (including brushing, raking, or use of power blower);
- Place a layer of geotextile fabric over all archaeological site areas to receive fill;
- Use fill soils within 1 pH of that identified in the low density artifact scatter soils, as evaluated in the field prior to construction;
- Use a contrasting color for the lower six inches of fill soils, signaling to any future sub-surface activity (e.g., landscaping activity) that excavation shall not extend deeper; and
- Place the fill soils ahead of the loading equipment so that the machine does not have contact with the archaeological site surface.
- Moisten fill soils sufficient so that they are cohesive under the weight of the heavy equipment as the material is spread out over the archaeological site and buffer area.

Plan Requirements and Timing: Before the City issues any grading permit, the Planning and Environmental Review Director must approve a Construction Monitoring Plan prepared by the applicant. Plan specifications for the monitoring must be printed on all plans submitted for grading, landscaping, and building permits. The applicant must enter into a contract...
with a City-approved archaeologist and an applicant selected Chumash Native American observer(s) and must fund the provision of on-site archaeological/cultural resource monitoring during initial grading and excavation activities prior to any LUP issuance for grading.

Monitoring: The Planning and Environmental Review Director, or designee, must approve the Construction Monitoring Plan and ensure there is a valid contract with an archaeologist and a Chumash Native American observer, and must conduct periodic field inspections to verify compliance during ground-disturbing activities.

CR-1(c) Excavations within Low Density Artifact Scatter. Excavations for all landscaping and recreational improvements within the low density artifact scatter cannot encroach within six inches of the existing ground surface.

Plan Requirements and Timing: This requirement must be printed on all plans submitted for any LUP for grading. The area where excavations would not encroach on the low density artifact scatter as specified herein must be clearly marked on the plans.

Monitoring: The Planning and Environmental Review Director, or designee, must conduct periodic field inspections to verify compliance during ground-disturbing activities.

CR-1(d) Monitoring. Before initiating any staging areas, vegetation clearing, or grading activity, the applicant and construction crew must meet on-site with a City-approved archaeologist and appropriate local Chumash consultant(s) and present the procedures to be followed in the unlikely event that cultural artifacts are discovered on site. If cultural resources of potential importance are uncovered during construction, the following must occur per the Goleta General Plan Open Space Policy 8.6:

a. The grading or excavation shall cease and the City shall be notified.

b. A qualified archeologist shall prepare a report assessing the significance of the find and provide recommendations regarding appropriate disposition.

c. Disposition will be determined by the City in conjunction with the appropriate Chumash representatives.

A City-approved archaeologist and local Chumash consultant must monitor all ground-disturbing activities on the Project site, including surface vegetation removal and the Phase 3 Data Recovery Program. The monitor(s) must have the following authority:

1) The archaeological monitor(s) and Chumash monitor(s) must be on-site on a full-time basis during any earthmoving activities, including preparation of the area for capping, grading, trenching, vegetation removal, or other excavation activities. The monitors will continue their
duties until it is determined through consultation with the applicant, City Planning and Environmental Review Director or designee, archaeological consultant, and Chumash consultant that monitoring is no longer warranted;

2) The monitor(s) may halt any activities impacting previously unidentified cultural resources and conduct an initial assessment of the resource(s);

3) If an artifact is identified as an isolated find, the monitor(s) must recover the artifact(s) with the appropriate locational data and include the item in the overall inventory for the site;

4) If a feature or concentration of artifacts is identified, the monitor must halt activities in the vicinity of the find, notify the applicant and the Planning and Environmental Review Director or designee, and prepare a proposal for the assessment and treatment of the find(s). This treatment may range from additional study to avoidance, depending on the nature of the find(s);

5) The monitor must prepare a comprehensive archaeological technical report documenting the results of the monitoring program and include an inventory of recovered artifacts, features, etc.;

6) The monitor must prepare the artifact assemblage for curation with an appropriate curation facility (e.g., UCSB or local Chumash facility) and include an inventory with the transfer of the collection; and

7) The monitor must file an updated archaeological site survey record with the UCSB Central Coastal Information Center.

Plan Requirements and Timing: This requirement must be printed on all plans submitted for any land use, building, grading, or demolition permits. The applicant must enter into a contract with a City-approved archaeologist and applicant-selected Chumash consultant and must fund the provision of on-site archaeological/cultural resource monitoring during initial grading and excavation activities before issuance of a land use permit. Plan specifications for the monitoring must be printed on all plans submitted for grading, and building permits.

Monitoring: City Planning and Environmental Review Director or designee must conduct periodic field inspections to verify compliance during ground-disturbing activities.

CR-1(e) Continued Chumash Consultation. Previous Chumash consultation with the City of Goleta and Project applicant resulted in the archaeological site CA-SBA-56 being identified as important to the Chumash community. Continued Chumash consultation must occur throughout the remainder of the Project including any design changes, alternatives analysis, or mitigation measure implementation to ensure that impacts to CA-SBA-56 are mitigated in a manner that would be respectful of the site’s Chumash heritage.

Plan Requirements and Timing: This condition must be printed on all building and grading plans.
Monitoring: The Planning and Environmental Review Director or designee must check plans before the City issues a land use permit and must spot check in the field throughout grading and construction.

CR-1(f) Human Remains. Before initiating any staging areas, vegetation clearing, or grading activity, the applicant and construction crew must meet on-site with a City-approved archaeologist and appropriate local Chumash consultant(s) and present the procedures to be followed in the unlikely event that human remains are uncovered. These procedures must include those identified by Public Resources Code § 5097.98. In addition, a satisfactory disposition of the remains must be agreed upon by the City-approved archaeologist and appropriate local Chumash consultant(s) so as to limit future disturbance. If the remains are determined to be of Chumash descent, the County Coroner has 24 hours to notify the Native American Heritage Commission (NAHC). The NAHC will then identify the person(s) thought to be the Most Likely Descendant (MLD) of the deceased Chumash, who will then help determine what course of action should be taken in dealing with the remains.

Plan Requirements and Timing: Before the City issues grading permits, the applicant must provide the City Planning and Environmental Review Director or designee the contact information of the Chumash consultant and the agreed upon procedures to be followed. In the event that remains are found and if the remains are found to be of Chumash origin, the County Coroner will notify the Native American Heritage Commission and the Commission will name the Most Likely Descendant (MLD). The MLD, consulting archaeologist, applicant, and City Planning and Environmental Review staff will consult as to the disposition of the remains. If the remains are identified as non-Chumash, the County Coroner will take possession of the remains and comply with all state and local requirements in the treatment of the remains.

Monitoring: The Planning and Environmental Review Director or designee must confirm that the County Coroner is notified in the event human remains are found, and that the Native American Heritage Commission is contacted if the remains are of Chumash origin.

Residual Impact. With implementation of the above mitigation measures, potential impacts to known and as-yet undetected archaeological resources would be reduced to a less than significant level.

Impact CR-2 The Project would result in a permanent reduction in the heritage value associated with a known undisturbed human burial site located at the low density artifact scatter. This would be a Class I, significant and unavoidable impact [Threshold 4].

As described above, an intact undisturbed human burial was identified at the low density artifact scatter in 1996. The area in which the human burial was identified is located within the proposed native plant landscape located in undulating hummocks, to avoid future foot traffic over this particularly sensitive location.
The heritage value of a resource is dependent on the values placed on the resource by culturally affiliated descendent communities. These values will vary based on the descendent community but may include the resource’s ability to expand traditional knowledge, contribute to religious practices, or represent a sacred location. Other values placed on a resource may include aesthetic value, artistic value, or scientific/research value. Burial sites are often considered sacred to traditional communities, including Native Americans. Descendent communities may view disturbances to a known burial site as diminishing the heritage value of the site. The City sent a certified letter on November 23, 2015 to a representative of the Coastal Band of the Chumash Nation pursuant to consultation under SB 18. The City made several attempts to contact the tribe and arrange a meeting regarding the Project and its potential effects on CA-SBA-56. The November letter requested a response from the tribe within 30 days (December 23, 2015) and no response was received during this period. However, a previous project (Willow Springs II) also had the potential to impact site CA-SBA-56. During the Willow Springs II project, the Coastal Band of the Chumash Nation and the Santa Ynez Band of Chumash Indians stated that CA-SBA-56 was important to their heritage and that the integrity of CA-SBA-56, or lack thereof, does not affect the heritage value of a resource to the Chumash community (Envicom Corporation 2012). The Chumash community also stated during the Willow Springs II project, that a single reburied femur bone contained heritage value to their community (Envicom Corporation 2012). Based, on these past consultation efforts, the Project’s intent to permanently cap CA-SBA-56 would unavoidably alter the setting of the resource, causing a significant impact to the heritage value of this resource.

Mitigation Measures. Mitigation Measures CR-1(a) through CR-1(f) would reduce the Project’s impact on the research value of this cultural resource. However, the heritage value of CA-SBA-56 would be unavoidably impacted through alteration of the setting.

Residual Impact. Because of the direct impacts to a Native American site with a known human burial, there is a potential to impact the heritage value of this known resource. Therefore, Impact CR-2 would remain significant and unavoidable.

Impact CR-3 Excavations in the low-lying areas surrounding the elevated knoll have low potential to contribute to the understanding of CA-SBA-56 occupations. This would be a Class III, less than significant impact [Threshold 2].

Proposed improvements would result in ground disturbance in the low-lying areas surrounding the elevated knoll. Excavations would extend up to five feet below grade for two bioretention basins and three feet below grade for two bioswales. Four residential buildings with two-foot-deep foundations would also encroach on the low-lying area soils. In addition, landscaping with ornamental trees, shrubs, and turf, as well as irrigation, would require excavations up to two feet deep. However, the low-lying areas have sparse or no cultural remains, based on the findings of Extended Phase 1 and Phase 2 archaeological investigations. Any cultural remains in the low-lying areas have been determined from the Extended Phase 1 and Phase 2 archaeological investigations to have low potential to contribute to the understanding of CA-SBA-56 occupations and are not significant cultural resources pursuant to the CEQA Guidelines and the City’s Environmental Thresholds and Guidelines Manual.

Mitigation Measures. Mitigation is not required because this impact would be less than significant.

Residual Impact. This impact would be less than significant without mitigation.
c. Cumulative Impacts. Cumulative development in the Goleta Valley would continue to disturb areas that may potentially contain cultural resources, including archaeological resources. Two approved projects, the Marriott Residence Inn and Cortona Apartments, are known to involve impacts to cultural resources. However, all potential development sites in the City are considered sensitive for archaeological resources due to their location adjacent to the Goleta Slough. Existing City policies and regulations would protect any unknown resources that might be uncovered in the course of project development. As discussed in Section 4.4.1, Setting, City policies require protection of cultural resources through, among other techniques, appropriate site design, monitoring of grading activities in archaeologically sensitive areas, avoidance or capping of identified resources, and coordination with Chumash representatives. While there is the potential for significant cumulative impacts to cultural resources within the Goleta Slough area, it is anticipated that potential impacts associated with individual development projects will be addressed on a case-by-case basis in accordance with City requirements.

CA-SBA-56 has been subject to previous impacts resulting from the development of the Willow Springs I and Willow Springs II projects. While environmental review of these previous projects determined that impacts to this resource were reduced to a less than significance level through mitigation, the cumulative impact to the heritage value of CA-SBA-56 as a whole is potentially significant. Pursuant to CEQA Guidelines § 15355, cumulative impacts can result from individually minor but collectively significant projects taking place over a period of time. As discussed above, the Project’s impacts to cultural resources related to CA-SB-56 would be significant and unavoidable. Therefore, cumulative cultural resource impacts would be significant and unavoidable.
4.5 GEOLOGY AND SOILS

This section discusses the Project’s potential impacts relating to geologic hazards. This section is partially based on the Geotechnical Engineering Report included in Appendix E.

4.5.1 Setting

Regional. The City of Goleta occupies a portion of the eight-mile long and three-mile wide flat alluvial plain known as the Goleta Valley (City of Goleta, 2006a). The Goleta Valley is a broad, flat alluvial plain bordered on the south by the bluffs of the Pacific coastline, and on the north by foothills and terraces of the foreland of the Santa Ynez Mountain Range. It generally slopes gently into the Goleta Slough, which is located in the south central portion of the valley (City of Goleta, 2004).

Project Site. The site is relatively flat to gently sloping with the exception of the moderately steep slopes that surround the stockpile soils that were previously placed along the perimeter of the archeological area in the center of the project site and the property lines. Topography within the archeological area is characterized by a modest ridge that trends generally northwest to southeast between 25 and 36 feet above sea level (ASL). Low-lying level soils drain generally to the south. Soil stockpiling has resulted in elevating surrounding topography to approximately 43 ASL. As a result, the central portion of the site has the highest elevations on the property and forms a ridge that divides the site drainage, with approximately half of the site draining in a westerly direction and half of the site draining in an easterly direction from the higher, center portion of the site.

Soils in the project area are mapped as Goleta fine sandy loam, 0% to 2% slopes, Milpitas-Positas fine sandy loam, 2% to 9% slopes, and Xerorthents (dry, shallow, erosional soils) cut and fill areas (United States Geological Survey, 1982). A sparse to moderate growth of weeds and brush covers the site. Vegetative cover on the site is variable and dependent upon the activity of the stockpile (Mac Design Associates, 2014). The project site’s general subsurface profile consists of fill soils overlying alluvial soils. The fill soils are sands in a slightly moist to moist condition with a loose to medium dense consistency. The underlying alluvium was generally moist to wet layered sand, silt, and clay soils. The sands are loose to very dense, and the clays were very soft to hard. Fine to coarse gravel was also observed within the fill and alluvial soils. Subsurface water was encountered at approximate depths ranging from 22.5 to 38 feet below the existing ground surface.

b. Seismic and Other Geologic Hazards. Similar to much of California, the project site is located within a seismically active region. The Transverse Ranges are characterized by east-west trending structural features in contrast to the dominant northwest-southeast structural trend of California. The nearest confirmed, seismically active fault to the project site is the North Channel Slope Fault located four miles offshore. The closest Alquist-Priolo mapped earthquake fault is over 20 miles to the southeast (Pitas Point/Red Mountain Faults). The More Ranch Fault is located approximately 1 mile south of the Project site, and is characterized as active in the Santa Barbara County Comprehensive Plan Seismic Safety and Safety Element.

Other potential seismic hazards known to occur within the vicinity of the project site include ground rupture, ground acceleration, and liquefaction. The site is approximately 1.6 miles from the Pacific Ocean. The majority of the site is within a Potential Tsunami Runup Area according to the Goleta
General Plan/Coastal Land Use Plan ("General Plan") Fire, Flood, and Tsunami Hazards Map (2006). The northwestern corner of the project site is outside of the Potential Tsunami Runup Area. Tsunamis are discussed further in Section 4.8, Hydrology and Water Quality.

Fault Rupture. Seismically-induced ground rupture occurs as the result of differential movement across a fault. An earthquake occurs when seismic stress builds to the point where rocks rupture. As the rocks rupture, one side of a fault block moves relative to the other side. The resulting shock wave is the earthquake. If the rupture plane reaches the ground surface, ground rupture occurs. Potentially active faults are those that have moved during the last 2.5 million years, but not during the last 10,000 years while active faults show evidence of movement within the last 10,000 years. No fault zones are located on the project site according to the General Plan Geologic Hazards Map (2006).

Groundshaking. The International Building Code (IBC) classifies structures into Seismic Design Categories, which involves more than the location of the structure as is the case with the Uniform Building Code (UBC). Seismic Design Categories includes classifications of A-F and are based on three criteria:

1. Probable site ground motions, which is based on Federal Emergency Management Agency maps, the maximum spectral acceleration and the design acceleration response;
2. Soil site class, which are based on soil classifications A-F (hard rock, rock, very dense soil/soft rock, stiff soil, soft soil and special soil); and
3. Building occupancy use, which is broken down by four types – Type IV (agricultural buildings), Type III (essential buildings), Type II (structures that represent a substantial hazard in the event of a collapse), Type I (all other buildings).

The process to determine the applicable Seismic Design Category must be done by an engineer.

Liquefaction and Seismically Induced Settlement. Liquefaction is a seismic phenomenon in which loose, saturated granular and non-plastic fine grained soils lose their structure/strength when subjected to high-intensity ground shaking. Liquefaction occurs when three general conditions exist:

1. Shallow groundwater (within the top 50 feet of the ground surface);
2. Low density non-plastic soils; and
3. High intensity ground motion.

These conditions are present at the project site and foundation soils may be subject to liquefaction. Loose granular soil can also settle (compact) during liquefaction and as pore pressures dissipate following an earthquake. According to the Geotechnical Engineering Report (Earth Systems Pacific, 2014, refer to Appendix E), soil borings and the results of six cone penetrometer test soundings indicate that there is a potential for liquefaction to occur in some layers of the saturated alluvial soils on the project site. If liquefaction were to occur at the site, the repercussions would likely be in the form of dynamic settlement (compression and loss of soil volume). Due to the relative thickness or depth of the overlying non-liquefiable soils and the site’s relatively flat topography, loss of soil bearing and lateral spreading are not likely.

Settlement (total and differential) can occur when foundations and surface improvements span materials having variable consolidation characteristics, such as the soils on the project site with variable
in situ moisture and density. Such a situation could stress and possibly damage foundations and surface improvements, often resulting in severe cracks and displacement.

Expansive Soils. Soils with relatively high clay content are expansive due to the capacity of clay minerals to take in water and swell (expand) to greater volumes. According to the Earth Systems Pacific *Geotechnical Engineering Report*, previous expansion index testing of the clay soils produced values that place these soils in the "medium" expansion category. Expansive soils tend to swell with seasonal increases in soil moisture and shrink during the dry season as soil moisture decreases. The volume changes that the soils undergo in this cyclical pattern can stress and damage slabs and foundations if precautionary measures are not incorporated in design and in the construction procedure.

Corrosive Soils. Based on the Earth Systems Pacific *Geotechnical Engineering Report*, site soils are classified as “moderately corrosive to corrosive” to certain construction materials that would be in contact with the soils.

Erosive Soils. Soil erosion is the removal of soil by water and wind. Factors that influence erosion potential include the amount of rainfall and wind, the length and steepness of the slope, and the amount and type of vegetative cover. According to the Earth Systems Pacific *Geotechnical Engineering Report*, site soils are highly erodible.

c. Regulatory Setting. The California Building Code (CBC), the Alquist-Priolo Earthquake Fault Zoning Act, the Seismic Hazards Mapping Act, the Goleta General Plan, and the Goleta Municipal Code (GMC) prescribe measures to safeguard life, health, property and public welfare from geologic hazards. Each of these is described below:

California Building Code. California law provides a minimum standard for building design through the California Building Code (CBC) (C.C.R. Title 24). Chapter 23 of the CBC contains specific requirements for seismic safety. Chapter 29 regulates excavation, foundations, and retaining walls. Chapter 33 of the CBC contains specific requirements pertaining to site demolition, excavation, and construction to protect people and property from hazards associated with excavation cave-ins and falling debris or construction materials. Chapter 70 of the CBC regulates grading activities, including drainage and erosion control. Construction activities are subject to occupational safety standards for excavation, shoring, and trenching as specified in California Division of Occupational Safety and Health (Cal/OSHA) regulations (C.C.R. Title 8).

Alquist-Priolo Earthquake Fault Zoning Act. The Alquist-Priolo Earthquake Fault Zoning Act was signed into law in 1972 (Public Resources Code § 2621, et seq.; 14 C.C.R. §§ 3600, et seq.). The purpose of this Act is to prohibit the location of most structures for human occupancy across the traces of active faults and to thereby mitigate the hazard of fault rupture. Under the Act, the State Geologist identifies “Earthquake Fault Zones” along known active faults in California (14 C.C.R. §3601). Cities and counties affected by the zones must regulate certain development projects within the zones. They must withhold development permits for sites within the zones until geologic investigations demonstrate that the sites are not threatened by surface displacement from future faulting (14 C.C.R. §3603).

Seismic Hazards Mapping Act. The California Geologic Survey, formerly the California Department of Conservation, Division of Mines and Geology (CDMG), provides guidance with regard to seismic hazards. Under CDMG’s Seismic Hazards Mapping Act (1990), seismic hazard zones are to be identified and mapped to assist local governments in land use planning (Public Resources Code §§ 2690, et seq.). The intent of
these maps is to protect the public from the effects of strong ground shaking, liquefaction, landslides, ground failure, or other hazards caused by earthquakes. In addition, CDMG’s Special Publications 117, “Guidelines for Evaluating and Mitigating Seismic Hazards in California,” provides guidance for the evaluation and mitigation of earthquake-related hazards for projects within designated zones of required investigations.

City of Goleta Regulations. The Safety Element of the Goleta General Plan contains policies intended to reduce the potential for geologic hazards to adversely affect people and property, including the following:

SE 1.3 Site-Specific Hazards Studies. Applications for new development shall consider exposure of the new development to coastal and other hazards. Where appropriate, an application for new development shall include a geologic/soils/geotechnical study and any other studies that identify geologic hazards affecting the proposed project site and any necessary mitigation measures. The study report shall contain a statement certifying that the project site is suitable for the proposed development and that the development will be safe from geologic hazards. The report shall be prepared and signed by a licensed certified engineering geologist or geotechnical engineer and shall be subject to review and acceptance by the City.

SE 1.6 Enforcement of Building Codes. [GP] The City shall ensure through effective enforcement measures that all new construction in the city is built according to the adopted building and fire codes.

SE 4.3 Geotechnical and Geologic Studies Required. [GP/CP] Where appropriate, the City shall require applications for planning entitlements for new or expanded development to address potential geologic and seismic hazards through the preparation of geotechnical and geologic reports for City review and acceptance.

SE 4.5 Adoption of Updated California Building Code Requirements. [GP] The City shall review, amend, and adopt new California Building Code requirements, when necessary, to promote the use of updated construction standards. The City shall consider and may adopt new optional state revisions for Seismic Hazards.

The GMC adopts the most recent CBC and contains additional requirements for construction in the City (Chapter 15, Buildings and Construction) (15 GMC, § 15.01, et seq.).

4.5.2 Impact Analysis

a. Methodology and Significance Thresholds. Assessment of impacts is based on review of site information and conditions and City information regarding geologic issues. In accordance with the CEQA Guidelines, a project would result in a significant impact if it would:
1. Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving rupture of a known earthquake fault, strong seismic ground shaking, seismic-related ground failure, including liquefaction, or landslides;
2. Result on substantial soil erosion or the loss of topsoil;
3. Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse;
4. Be located on expansive soil, creating substantial risks to life or property; or
5. Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater.

Per the City’s *Environmental Thresholds and Guidelines Manual* (2002), impacts are classified as potentially significant with regard to geology if:

A. The project site or any part of the project is located on land having substantial geologic constraints, as determined by Planning and Environmental Review or Public Works departments. Areas constrained by geology include parcels located near active or potentially active faults and property underlain by rock types associated with compressible/collapsible soils or susceptible to landslides or severe erosion. “Special Problems” areas designated by the Board of Supervisors have been established based on geologic constraints, flood hazards and other physical limitations to development;
B. The project results in potentially hazardous geologic conditions such as the construction of cut slopes exceeding a grade of 1.5 horizontal to 1 vertical;
C. The project proposes construction of a cut slope over 15 feet in height as measured from the lowest finished grade; and
D. The project is located on slopes exceeding 20% grade.

Based on the *Geotechnical Engineering Report* and the geologic hazards mapping in the General Plan, geologic hazards posed by onsite septic systems, fault rupture, landslides, lateral spreading, and slopes exceeding 20% grade would be less than significant [Thresholds A and D]. In addition, the Project involves no construction of cut slopes exceeding a grade of 1.5:1 or construction of a cut slope over 15 feet in height [Thresholds B and C]. Consequently, impacts related to these thresholds would be less than significant and are discussed in Section 4.15, *Effects Found Not to be Significant*.

b. Project Impacts and Mitigation Measures.

Impact GEO-1 Project site soils are prone to liquefaction, which could cause settlement in a seismic event and expose on-site structures to property damage. Impacts would be Class II, *significant but mitigable* [Thresholds 1 and 3].

As discussed in Section 4.5.1, *Setting*, soil borings and the results of six cone penetrometer test soundings indicate that there is a potential for liquefaction to occur in some layers of the saturated...
alluvial soils on the project site. Liquefaction could result in settlement that could cause property damage.

The combined magnitude of both liquefaction and seismically induced settlement would be less than four inches. The magnitude of differential settlement was estimated to be less than two inches. As described in the Geotechnical Engineering Report (Earth Systems Pacific, 2014), settlement resulting from liquefaction and seismic activity may damage foundations and surface improvements if grading of the project site is not completed to the recommendations in the Geotechnical Engineering Report. Therefore, this impact is potentially significant, and mitigation is required to ensure that grading is completed to the recommendations of the Geotechnical Engineering Report.

Mitigation Measure. Mitigation Measure GEO-1 would reduce impacts related to seismically induced liquefaction to a less than significant level. To reduce the potential for settlement within the archaeological area, special grading techniques will need to be implemented to minimize the impact of site development in this area. Accordingly, recommendations from the Geotechnical Engineering Report for the archaeological area and buffer zone are included in Mitigation Measure GEO-1.

GEO-1 Geotechnical Design Considerations. The recommendations in the Geotechnical Engineering Report (Earth Systems Pacific, 2014) related to soil engineering within and outside of the Archaeological Area must be incorporated into the Project’s grading and building plans, as summarized here:

Areas Outside the Archaeological Area:
- All existing fill soils should be completely removed and replaced as compacted fill. Any existing utilities that will not be serving the site must be removed or properly abandoned.
- Voids created by the removal of materials or utilities, and extending below the recommended overexcavation depth, must be immediately called to the attention of the geotechnical engineer. No fill may be placed unless the geotechnical engineer has observed the underlying soil.
- Following site preparation, soils in the building area should be removed to a level plane at a minimum depth of 3 to 8 feet below the bottom of the deepest footing or 3 to 8 feet below existing grade, whichever is deeper, as recommended by the geotechnical engineer in the field.
- Soils in the surface improvement area should be removed to a level plane at a minimum depth of 1-foot below the proposed subgrade elevation or 2 feet below the existing ground surface, whichever is deeper.
- Soils in the fill areas beyond the building and surface improvement areas should be removed to a depth of 2 feet below the existing ground surface.
- Stabilization of surface soils by vegetation or other means during and following construction must be implemented, particularly those disturbed during construction.

Areas Inside the Archaeological Area, including the 50-foot Archaeological Buffer Zone:
• Existing ground surface in the grading area inside of the archaeological area should be prepared for construction by removing the stockpile soils and all other existing fill soils down to the native soil surface.

• All vegetation, debris, and other deleterious material should be removed from the native soil surface by hand (can include brushing, raking, or the use of a power blower) to the degree practicable at the ground surface such that no soil disturbance occurs.

• Remnants of the vegetation should then be sprayed with topical herbicide per manufacturer’s specifications approximately 60 days prior to implementing grading operations.

• Root ball masses must be left in place to die.

• Any existing utilities that will not be serving the site must be removed or properly abandoned. The appropriate method of utility abandonment will depend upon the type and depth of the utility.

• Surface vegetation removal and herbicide application must be accomplished 60 days prior to the geogrid placement; it is acceptable to place import sand on the native soil surface where uneven areas or undulations exist to create as level a surface as practicable to place the geogrid on as it improves both the constructability and performance of the geogrid system.

• The native soil surface must be covered with a tri-axial geogrid such as Tensar TX 7, or an approved equivalent. The geogrid must be anchored and/or overlapped as recommended by the manufacturer prior to placing any fill soil.

• The first 6 inches of fill placed on top of the geogrid must be an imported sand material reviewed and approved by the City of Goleta to provide a visual indication to avoid impeding into the native soils.

• Fill soils must be placed and spread from the outside to the inside of the archeological area with track earthmoving equipment such that the equipment must only be working on top of the fill soils. The fill soils must be placed such that the earthmoving equipment does not come into contact with the archeological area native soils or the geogrid.

Grading (General):

• On-site material and approved import materials may be used as general fill and up to 18 inches below the bottom of the slab-on-grade elevation within the building area where conventional foundations will be used.

• A minimum of 18 inches of nonexpansive material when measured from the bottom of the conventional foundation slabs-on-grade should be placed in the building area.

• Proposed imported soils should be evaluated by a geotechnical engineer before being used, and on an intermittent basis during placement on the site.

• All materials used as fill should be cleaned of any debris and rocks larger than 6 inches in diameter, and no rocks larger than 3 inches in diameter should be used within the upper 3 feet of finish grade.

• Fill slopes should be keyed and benched into competent soil.
Heritage Ridge Residential Project EIR
Section 4.5 Geology and Soils

- Slopes under normal conditions should be constructed at 2:1 (horizontal to vertical) or flatter inclinations. Slopes subject to inundation should be constructed at 3:1 or flatter inclinations.
- Stabilization of surface soils by vegetation or other means during and following construction must be implemented, particularly those disturbed during construction.

If the portions of the site cannot be graded to those recommendations, rigid mat foundations should be used in lieu of conventional foundation systems.

Foundations:
- Foundations must not be constructed within 10 feet of LID drainage improvements. If this is not the case, the geotechnical engineer must review the type of LID drainage improvement planned within 10 feet of a foundation to ascertain if revised and/or supplemental foundation recommendations are needed.
- Conventional and Rigid Mat Foundations systems must be engineered in accordance with the recommendations contained in the Geotechnical Engineering Report (Earth Systems Pacific, 2014).

Plan Requirements and Timing. Grading and building plans must be submitted for review and approval by the Planning and Environmental Review Director or designee before the City issues grading and building permits.

Monitoring. The Project soils engineer must observe all excavations before placement of compacted soil, gravel backfill, or rebar and concrete and report observations to the City. The City will conduct field inspections as needed.

Significance After Mitigation. Implementation of Mitigation Measure GEO-1 would reduce potential impacts due to liquefaction resulting in settling of soils on the site to a less than significant level by requiring removal of onsite soils, moisture conditioning, and compaction of surfaces before placing appropriate fill soils or a rigid mat foundation system. As noted above, Mitigation Measure GEO-1 includes special grading techniques to minimize the impact of site development in the archaeological area.

Impact GEO-2 Expansive soils are present on the project site, which could damage slabs and foundations. Impacts would be Class II, significant but mitigable [Threshold 4].

As discussed in Section 4.5.1, Setting, according to the Earth Systems Pacific Geotechnical Engineering Report, previous expansion index testing of the clay soils on the project site produced values that place these soils in the “medium” expansion category. Expansive soils tend to swell with seasonal increases in soil moisture and shrink during the dry season as soil moisture decreases. The volume changes that the soils undergo in this cyclical pattern can stress and damage slabs and foundations if precautionary measures are not incorporated in design and in the construction procedure. Impacts would be potentially significant.
Heritage Ridge Residential Project EIR
Section 4.5 Geology and Soils

Mitigation Measure. The recommendations in the Geotechnical Engineering Report (Earth Systems Pacific, 2014) related to removal of existing fill, site grading, and foundation design, which are required by Mitigation Measure GEO-1, would reduce impacts related to expansive soils to a less than significant level.

Significance After Mitigation. Implementation of Mitigation Measure GEO-1 would reduce potential impacts due to expansive soils to a less than significant level by requiring non-expansive materials or a rigid mat foundation system to be placed below all building areas.

Impact GEO-3 Soils on the project site are highly erodible. On-site development may increase soil erosion on the project site during and after construction. Impacts would be Class II, significant but mitigable [Threshold 2].

The Project would involve construction of 360 dwelling units and associated landscaping and hardscape. Based on information provided in the Project grading plan, the amount of stockpiled dirt on the Project site totals 293,100 cubic yards. Of this 293,100 cubic yards, a total of 115,000 cubic yards of soil would be exported off-site before construction of the Project. Excavation and grading could result in erosion of soils and sedimentation. During grading and soil storage, there is the potential for soil migration offsite via wind entrainment and/or water erosion.

Impacts would be minimized during all phases of Project construction through compliance with a City-issued Grading Permit (this permit is described in Section 4.8, Hydrology and Water Quality). To comply with this permit, the applicant would be required to prepare and implement a Stormwater Pollution Prevention Plan (SWPPP), which must include erosion and sediment control BMPs that would meet or exceed measures required by the City-issued Grading Permit, as well as BMPs that control other potential construction-related pollutants. Erosion control BMPs are designed to prevent erosion, whereas sediment controls are designed to trap sediment once it has been mobilized. Examples of BMPs that may be implemented during construction include the use of geotextiles and mats, temporary drains and swales, silt fences and sediments traps. Erosion control practices may include the use of drainage controls such as down drains, detention ponds, filter berms, or infiltration pits; removal of any sediment tracked offsite within the same day that it is tracked; containment of polluted runoff onsite; use of plastic covering to minimize erosion from exposed areas; and restrictions on the washing of construction equipment.

A SWPPP would be developed for the Project as required by, and in compliance with, the City-issued Grading Permit and City regulations, including grading regulations. The Construction General Permit requires the SWPPP to include a menu of BMPs to be selected and implemented based on the phase of construction and the weather conditions to effectively control erosion and sediment using the Best Available Technology Economically Achievable and Best Conventional Pollutant Control Technology (BAT/BCT). As development implementation of an SWPPP is a standard requirement that would apply to the Project.

Nonetheless, soils on the project site are highly erodible. Implementation and maintenance of proper drainage and the stabilization of surface soils, particularly those disturbed during construction, by vegetation or other means during and following construction are necessary to reduce the potential of erosion damage. Impacts would be potentially significant.
Mitigation Measure. The recommendations in the Geotechnical Engineering Report (Earth Systems Pacific, 2014) related to grading, drainage and landscape maintenance, which are required by Mitigation Measure GEO-1, would reduce impacts related to soil erosion to a less than significant level.

Significance After Mitigation. Implementation of Mitigation Measure GEO-1 would reduce potential impacts related to soil erosion to a less than significant level by requiring soils exposed by grading to be stabilized with vegetation or other materials during and following construction.

c. Cumulative Impacts. Cumulative projects proposed in and around Goleta (refer to Section 3.0, Related Projects) would expose additional people and property to seismic and geologic hazards that are present in the region. The magnitude of geologic hazards for individual projects would depend upon the location, type, and size of development and the specific hazards associated with individual sites. Any specific geologic hazards associated with each individual site would be limited to that site without affecting other areas. In addition, existing regulations, including compliance with CBC requirements, would reduce seismic and geologic hazards to acceptable levels. Seismic and geologic hazards would be addressed on a case-by-case basis and would not result in cumulatively considerable impacts. Cumulative geologic hazard impacts would be less than significant and the Project’s contribution would not be cumulatively considerable.
4.6 GREENHOUSE GAS EMISSIONS

This section discusses the Project’s potential impacts related to emissions of greenhouse gases (GHG) and global climate change. Traffic projections used in emissions estimates are based on the *Traffic, Circulation, and Parking Study* prepared by Associated Transportation Engineers (ATE) dated August 25, 2014. The traffic study is included as Appendix I to this EIR. Air quality model results and calculations are based on calculations completed by Dudek as part of the *Air Quality and Greenhouse Gas Emissions Analysis Technical Report and Heritage Ridge Project Pre-Construction Export Scenarios Air Quality and Greenhouse Gas Emissions Assessment Memorandum*, and are included as Appendix B.

4.6.1 Setting

a. Climate Change and Greenhouse Gases. Climate change, as defined by the Intergovernmental Panel on Climate Change (IPCC), refers to a change in the state of the climate that can be identified (e.g. using statistical tests) by changes in the mean and/or the variability of its properties, and that persists for an extended period, typically decades or longer. It refers to any change in climate over time, whether due to natural variability or as a result of human activity. This usage differs from that in the United Nations Framework Convention on Climate Change (UNFCCC), where climate change refers to a change of climate that is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and that is in addition to natural climate variability observed over comparable time periods. The term “climate change” is often used interchangeably with the term “global warming,” but “climate change” is preferred to “global warming” because it helps convey that there are other changes in addition to rising temperatures. The baseline against which these changes are measured originates in historical records identifying temperature changes that have occurred in the past, such as during previous ice ages. The global climate is continuously changing, as evidenced by repeated episodes of substantial warming and cooling documented in the geologic and other records. The rate of change has typically been incremental, with warming or cooling trends occurring over the course of thousands of years. The past 10,000 years have been marked by a period of incremental warming. One example being glaciers have steadily retreated across the globe during this period. However, scientists have observed acceleration in the rate of warming during the past 150 years. Per the United Nations Intergovernmental Panel on Climate Change (IPCC, 2014), the understanding of anthropogenic warming (i.e., warming that can be attributed to human activity) and cooling influences on climate has led to a high confidence (95 percent or greater chance) that the global average net effect of human activities has been the dominant cause of warming since the mid-20th century (IPCC, 2014).

Gases that absorb and re-emit infrared radiation in the atmosphere are called greenhouse gases (GHGs). The gases that are widely seen as the principal contributors to human-induced climate change include carbon dioxide (CO2), methane (CH4), nitrous oxides (N2O), fluorinated gases such as hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), and sulfur hexafluoride (SF6). Water vapor is excluded from the list of GHGs because it is short-lived in the atmosphere and its atmospheric concentrations are largely determined by natural processes, such as oceanic evaporation.

GHGs are emitted by both natural processes and human activities. Of these gases, CO2 and CH4 are emitted in the greatest quantities from human activities. Emissions of CO2 are largely by-products of fossil fuel combustion, whereas CH4 results from off-gassing associated with agricultural practices and landfills. Each IPCC assessment has used new projections of future climate change that have become more detailed as the models have become more advanced.
Man-made GHGs, many of which have greater heat-absorption potential than \(\text{CO}_2 \), include fluorinated gases and sulfur hexafluoride (SF\(_6\)) (California Environmental Protection Agency [U.S. EPA], 2015). Different types of GHGs have varying global warming potentials (GWPs). The GWP of a GHG is the potential of a gas or aerosol to trap heat in the atmosphere over a specified timescale (generally, 100 years). Because GHGs absorb different amounts of heat, a common reference gas (\(\text{CO}_2 \)) is used to relate the amount of heat absorbed to the amount of the gas emissions, referred to as “carbon dioxide equivalent” (\(\text{CO}_2 \text{e} \)), and is the amount of a GHG emitted multiplied by its GWP. Carbon dioxide has a 100-year GWP of one. By contrast, methane has a GWP of 25, meaning its global warming effect is 25 times greater than carbon dioxide on a molecule per molecule basis (IPCC, 2007).

The accumulation of GHGs in the atmosphere regulates the Earth’s temperature. Without the natural heat trapping effect of GHGs, Earth’s surface would be about 34°C cooler (U.S EPA, 2015). However, it is believed that emissions from human activities, particularly the consumption of fossil fuels for electricity production and transportation, have elevated the concentration of these gases in the atmosphere beyond the level of naturally occurring concentrations. The following discusses the primary GHGs of concern.

Greenhouse Gases.

Carbon Dioxide. The global carbon cycle is made up of large carbon flows and reservoirs. Billions of tons of carbon in the form of \(\text{CO}_2 \) are absorbed by oceans and living biomass (aka, carbon sinks) and are emitted to the atmosphere through natural sources. When in equilibrium, carbon fluxes among these various reservoirs are roughly balanced (United States Environmental Protection Agency [U.S. EPA], April 2014). \(\text{CO}_2 \) was the first GHG demonstrated to be increasing in atmospheric concentration, with the first conclusive measurements being made in the second half of the 20\(^{th} \) century. Concentrations of \(\text{CO}_2 \) in the atmosphere have risen approximately 40 percent since the industrial revolution. The global atmospheric concentration of \(\text{CO}_2 \) has increased from a pre-industrial value of about 280 parts per million (ppm) to 391 ppm in 2011 (IPCC, 2007; Oceanic and Atmospheric Administration [NOAA], 2010). The average annual \(\text{CO}_2 \) concentration growth rate was larger between 1995 and 2005 (average: 1.9 ppm per year) than it has been since the beginning of continuous direct atmospheric measurements (1960–2005 average: 1.4 ppm per year), although there is year-to-year variability in growth rates (NOAA, 2010). Currently, \(\text{CO}_2 \) represents an estimated 74 percent of total GHG emissions (IPCC, 2007). The largest source of \(\text{CO}_2 \) emissions, and of overall GHG emissions, is fossil fuel combustion.

Methane. Methane (\(\text{CH}_4 \)) is an effective absorber of radiation, though its atmospheric concentration is less than that of \(\text{CO}_2 \) and its lifetime in the atmosphere is limited to 10 to 12 years. It has a GWP approximately 25 times that of \(\text{CO}_2 \). Over the last 250 years, the concentration of \(\text{CH}_4 \) in the atmosphere has increased by 148 percent (IPCC, 2007), although emissions have declined from 1990 levels. Anthropogenic sources of \(\text{CH}_4 \) include enteric fermentation associated with domestic livestock, landfills, natural gas and petroleum systems, agricultural activities, coal mining, wastewater treatment, stationary and mobile combustion, and certain industrial processes (U.S. EPA, 2014).

Nitrous Oxide. Concentrations of nitrous oxide (\(\text{N}_2\text{O} \)) began to rise at the beginning of the industrial revolution and continue to increase at a relatively uniform growth rate (NOAA, 2014). \(\text{N}_2\text{O} \) is produced by microbial processes in soil and water, including those reactions that occur in fertilizers that contain nitrogen, fossil fuel combustion, and other chemical processes. Use of these fertilizers has increased over the last century. Agricultural soil management and mobile source fossil fuel combustion are the major sources of \(\text{N}_2\text{O} \) emissions. The GWP of nitrous oxide is approximately 298 times that of \(\text{CO}_2 \) (IPCC, 2007).
Fluorinated Gases (HFCS, PFCS, and SF₆). Fluorinated gases, such as hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfurhexafluoride (SF₆), are powerful GHGs that are emitted from a variety of industrial processes. Fluorinated gases are used as substitutes for ozone-depleting substances such as chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and halons, which have been regulated since the mid-1980s because of their ozone-destroying potential and are phased out under the Montreal Protocol (1987) and Clean Air Act Amendments of 1990. Electrical transmission and distribution systems account for most SF₆ emissions, while PFC emissions result from semiconductor manufacturing and as a by-product of primary aluminum production. Fluorinated gases are typically emitted in smaller quantities than CO₂, CH₄, and N₂O, but these compounds have much higher GWPs. SF₆ is the most potent GHG the IPCC has evaluated.

Greenhouse Gas Emissions Inventory. Worldwide anthropogenic emissions of GHGs were approximately 46,000 million metric tons (MMT, or gigatonne) CO₂e in 2010 (IPCC, 2014). CO₂ emissions from fossil fuel combustion and industrial processes contributed about 65 percent of total emissions in 2010. Of anthropogenic GHGs, CO₂ is the most abundant, accounting for 76 percent of total 2010 emissions. CH₄ emissions account for 16 percent of the 2010 total, while N₂O and fluorinated gases account for 6 and 2 percent respectively (IPCC, 2014).

Total U.S. GHG emissions were 6,525.6 MMT CO₂e in 2012 (U.S. EPA, 2014). Total U.S. emissions have increased by 4.7 percent since 1990; emissions decreased by 3.4 percent from 2011 to 2012 (U.S. EPA, 2014). The decrease from 2011 to 2012 was due to a decrease in the carbon intensity of fuels consumed to generate electricity due to a decrease in coal consumption, with increased natural gas consumption. Additionally, relatively mild winter conditions, especially in regions of the United States where electricity is important for heating, resulted in an overall decrease in electricity demand in most sectors. Since 1990, U.S. emissions have increased at an average annual rate of 0.2 percent. In 2012, the transportation and industrial end-use sectors accounted for 28.2 percent and 27.9 percent of CO₂ emissions (with electricity-related emissions distributed), respectively. Meanwhile, the residential and commercial end-use sectors accounted for 16.3 percent and 16.4 percent of CO₂ emissions, respectively (U.S. EPA, 2014).

Based upon the California Air Resources Board (ARB) California Greenhouse Gas Inventory for 2000-2012 (ARB, 2014), California produced 459 MMT CO₂e in 2012. The major source of GHG in California is transportation, contributing 36 percent of the state’s total GHG emissions. Electric power is the second largest source, contributing 21 percent of the state’s GHG emissions (ARB, 2014). The industrial sector accounted for approximately 19 percent of the total emissions. California emissions are due in part to its large size and large population compared to other states. However, a factor that reduces California’s per capita fuel use and GHG emissions, as compared to other states, is its relatively mild climate. The ARB has projected statewide unregulated GHG emissions for the year 2020 will be 507 MMT CO₂e (ARB, 2013). These projections represent the emissions that would be expected to occur in the absence of any GHG reduction actions.

Potential Effects of Climate Change. Globally, climate change has the potential to affect numerous environmental resources through potential impacts related to future air temperatures and precipitation patterns. Scientific modeling predicts that continued GHG emissions at or above current rates would induce more extreme climate changes during the 21st century than were observed during the 20th century. Long-term trends have found that each of the past three decades has been warmer than all the previous decades in the instrumental record, and the decade from 2000 through 2010 has been the warmest. The global combined land and ocean temperature data show an increase of about 0.89°C (0.69°C–1.08°C) over the period 1901–2012 and about 0.72°C (0.49°C–0.89°C) over the period 1951–
2012 when described by a linear trend. Several independently analyzed data records of global and regional Land-Surface Air Temperature (LSAT) obtained from station observations are in agreement that LSAT as well as sea surface temperatures have increased. In addition to these findings, there are identifiable signs that global warming is currently taking place, including substantial ice loss in the Arctic over the past two decades (IPCC, 2014).

According to the CalEPA’s 2010 Climate Action Team Biennial Report, potential impacts of climate change in California may include loss in snow pack, sea level rise, more extreme heat days per year, more high ozone days, more large forest fires, and more drought years (CalEPA, 2010). Below is a summary of some of the potential effects that could be experienced in California as a result of climate change.

Sea Level Rise. According to The Impacts of Sea-Level Rise on the California Coast, prepared by the California Climate Change Center (CCCC) (May 2009), climate change has the potential to induce substantial sea level rise in the coming century. The rising sea level increases the likelihood and risk of flooding. Sea levels are rising faster now than in the previous two millennia, and the rise is expected to accelerate, even with robust GHG emission control measures. The most recent IPCC report (2014) predicts a mean sea–level rise of 11-38 inches by 2100. This prediction is more than 50 percent higher than earlier projections of 7-23 inches, when comparing the same emissions scenarios and time periods. The previous IPCC report (2007) identified a sea level rise on the California coast over the past century of approximately eight inches. Based on the results of various climate change models, sea level rise is expected to continue. The California Climate Adaptation Strategy (December 2009) estimates a sea level rise of up to 55 inches by the end of this century.

Air Quality. Higher temperatures, which are conducive to air pollution formation, could worsen air quality in California. Climate change may increase the concentration of ground-level ozone, but the magnitude of the effect, and therefore its indirect effects, are uncertain. If higher temperatures are accompanied by drier conditions, the potential for large wildfires could increase, which, in turn, would further worsen air quality. However, if higher temperatures are accompanied by wetter, rather than drier conditions, the rains would tend to temporarily clear the air of particulate pollution and reduce the incidence of large wildfires, thereby ameliorating the pollution associated with wildfires. Additionally, severe heat accompanied by drier conditions and poor air quality could increase the number of heat-related deaths, illnesses, and asthma attacks throughout the state (California Energy Commission [CEC], March, 2009).

Water Supply. Analysis of paleoclimatic data (such as tree-ring reconstructions of stream flow and precipitation) indicates a history of naturally and widely varying hydrologic conditions in California and the west, including a pattern of recurring and extended droughts. Uncertainty remains with respect to the overall impact of climate change on future water supplies in California. However, the average early spring snowpack in the Sierra Nevada decreased by about 10 percent during the last century, a loss of 1.5 million acre-feet of snowpack storage. During the same period, sea level rose eight inches along California’s coast. California’s temperature has risen 1°F, mostly at night and during the winter, with higher elevations experiencing the highest increase. Many Southern California cities have experienced their lowest recorded annual precipitation twice within the past decade. In a span of only two years, Los Angeles experienced both its driest and wettest years on record (California Department of Water Resources [DWR], 2008; CCCC, May 2009).
This uncertainty complicates the analysis of future water demand, especially where the relationship between climate change and its potential effect on water demand is not well understood. The Sierra snowpack provides the majority of California’s water supply by accumulating snow during the state’s wet winters and releasing it slowly during the state’s dry springs and summers. Based upon historical data and modeling DWR projects that the Sierra snowpack will experience a 25 to 40 percent reduction from its historic average by 2050. Climate change is also anticipated to bring warmer storms that result in less snowfall at lower elevations, reducing the total snowpack (DWR, 2008).

Hydrology. As discussed above, climate change could potentially affect: the amount of snowfall, rainfall, and snow pack; the intensity and frequency of storms; flood hydrographs (flash floods, rain or snow events, coincident high tide and high runoff events); sea level rise and coastal flooding; coastal erosion; and the potential for salt water intrusion. The rate of increase of global mean sea levels over the 2001-2010 decade, as observed by satellites, ocean buoys and land gauges, was approximately 3.2 mm per year, which is double the observed 20th century trend of 1.6 mm per year (World Meteorological Organization [WMO], 2013). As a result, sea levels averaged over the last decade were about 8 inches higher than those of 1880 (WMO, 2013). Sea level rise may be a product of climate change through two main processes: expansion of sea water as the oceans warm and melting of ice over land. A rise in sea levels could result in coastal flooding and erosion and could jeopardize California’s water supply due to salt water intrusion. Increased CO₂ emissions can cause oceans to acidify due to the carbonic acid it forms. Increased storm intensity and frequency could affect the ability of flood-control facilities, including levees, to handle storm events.

Agriculture. California has a $30 billion annual agricultural industry that produces half of the country’s fruits and vegetables. Higher CO₂ levels can stimulate plant production and increase plant water-use efficiency. However, if temperatures rise and drier conditions prevail, water demand could increase; crop-yield could be threatened by a less reliable water supply; and greater air pollution could render plants more susceptible to pest and disease outbreaks. In addition, temperature increases could change the time of year certain crops, such as wine grapes, bloom or ripen, and thereby affect their quality (CCCC, 2006).

Ecosystems and Wildlife. Climate change and the potential resulting changes in weather patterns could have ecological effects on a global and local scale. Increasing concentrations of GHGs are likely to accelerate the rate of climate change. Scientists project that the average global surface temperature could rise by 1.0-4.5°F (0.6-2.5°C) in the next 50 years, and 2.2-10°F (1.4-5.8°C) in the next century, with substantial regional variation. Soil moisture is likely to decline in many regions, and intense rainstorms are likely to become more frequent. Rising temperatures could have four major impacts on plants and animals: (1) timing of ecological events; (2) geographic range; (3) species’ composition within communities; and (4) ecosystem processes, such as carbon cycling and storage (Parmesan, August 2006).

According to the Center for Ocean Solutions, potential impacts from sea level rise on coastal communities, such as those in Santa Barbara County, include: coastal erosion, coastal inundation, the intrusion of salt water into fresh water, and increased frequency and intensity of storms and waves. Unlike flooding events that can be short lived, erosion can cause greater and potentially permanent damage. Coastal erosion will increase as global sea levels continue to rise. Higher sea levels will allow waves and tides to travel farther inland, exposing beaches, cliffs and coastal dunes to more persistent erosion forces. Erosion is not a new issue in California but rising sea levels threaten to increase the severity and frequency of erosion damage to coastal infrastructure and property.
b. Regulatory Setting. The following regulations address climate change and GHG emissions.

International Regulations. The United States is, and has been, a participant in the United Nations Framework Convention on Climate Change (UNFCCC) since it was produced in 1992. The UNFCCC is an international environmental treaty with the objective of, “stabilization of GHG concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system.” This is generally understood to be achieved by stabilizing global GHG concentrations between 350 and 400 ppm, in order to limit the global average temperature increases between 2 and 2.4°C above pre-industrial levels (IPCC, 2007). The UNFCCC itself does not set limits on GHG emissions for individual countries or enforcement mechanisms. Instead, the treaty provides for updates, called “protocols,” that would identify mandatory emissions limits.

Five years later, the UNFCCC brought nations together again to draft the Kyoto Protocol (1997). The Kyoto Protocol established commitments for industrialized nations to reduce their collective emissions of six GHGs (CO₂, CH₄, N₂O, SF₆, HFCs, and PFCs) to 5.2 percent below 1990 levels by 2012. The United States is a signatory of the Kyoto Protocol, but Congress has not ratified it and the United States has not bound itself to the Protocol’s commitments (UNFCCC, 2007). The first commitment period of the Kyoto Protocol ended in 2012. Governments, including 38 industrialized countries, agreed to a second commitment period of the Kyoto Protocol beginning January 1, 2013 and ending either on December 31, 2017 or December 31, 2020, to be decided by the Ad Hoc Working Group on Further Commitments for Annex I Parties under the Kyoto Protocol at its seventeenth session (UNFCCC, November 2011).

In Durban (17th session of the Conference of the Parties in Durban, South Africa, 2011), governments decided to adopt a universal legal agreement on climate change. Work began on that task immediately under a new group called the Ad Hoc Working Group on the Durban Platform for Enhanced Action. Progress was also made regarding the creation of a Green Climate Fund (GCF) for which a management framework was adopted (UNFCCC, 2011; United Nations, 2011).

In December 2015, the 21st session of the Conference of the Parties (COP21) adopted the Paris Agreement. The deal requires all countries that ratify it to commit to cutting greenhouse gas emissions, with the goal of peaking greenhouse gas emissions “as soon as possible” (Worland, 2015). The agreement includes commitments to (1) achieve a balance between sources and sinks of greenhouse gases in the second half of this century; (2) to keep global temperature increase “well below” 2 degrees Celsius (C) or 3.6 degrees Fahrenheit (F) and to pursue efforts to limit it to 1.5 C; (3) to review progress every five years; and (4) to spend $100 billion a year in climate finance for developing countries by 2020 (UNFCCC, 2015). The agreement includes both legally binding measures, like reporting requirements, as well as voluntary or non-binding measures while, such as the setting of emissions targets for any individual country (Worland, 2015).

Federal Regulations. The United States Supreme Court in Massachusetts et al. v. Environmental Protection Agency et al. ([2007] 549 U.S. 05-1120) held that the U.S. EPA has the authority to regulate motor-vehicle GHG emissions under the federal Clean Air Act.

The U.S. EPA issued a Final Rule for mandatory reporting of GHG emissions in October 2009. This Final Rule applies to fossil fuel suppliers, industrial gas suppliers, direct GHG emitters, and manufacturers of heavy-duty and off-road vehicles and vehicle engines, and requires annual reporting of emissions. The first annual reports for these sources were due in March 2011.
On May 13, 2010, the U.S. EPA issued a Final Rule that took effect on January 2, 2011, setting a threshold of 75,000 tons CO₂e per year for GHG emissions. New and existing industrial facilities that meet or exceed that threshold will require a permit after that date. On November 10, 2010, the U.S. EPA published the “PSD and Title V Permitting Guidance for Greenhouse Gases.” The U.S. EPA’s guidance document is directed at state agencies responsible for air pollution permits under the Federal Clean Air Act to help them understand how to implement GHG reduction requirements while mitigating costs for industry. It is expected that most states will use the U.S. EPA’s new guidelines when processing new air pollution permits for power plants, oil refineries, cement manufacturing, and other large pollution point sources.

On January 2, 2011, the U.S. EPA implemented the first phase of the Tailoring Rule for GHG emissions Title V Permitting. Under the first phase of the Tailoring Rule, all new sources of emissions are subject to GHG Title V permitting if they are otherwise subject to Title V for another air pollutant and they emit at least 75,000 tons CO₂e per year. Under Phase 1, no sources were required to obtain a Title V permit solely due to GHG emissions. Phase 2 of the Tailoring Rule went into effect July 1, 2011. At that time new sources were subject to GHG Title V permitting if the source emits 100,000 tons CO₂e per year, or they are otherwise subject to Title V permitting for another pollutant and emit at least 75,000 tons CO₂e per year.

On July 3, 2012, the U.S. EPA issued the final rule that retains the GHG permitting thresholds that were established in Phases 1 and 2 of the GHG Tailoring Rule. These emission thresholds determine when Clean Air Act permits under the New Source Review Prevention of Significant Deterioration (PSD) and Title V Operating Permit programs are required for new and existing industrial facilities.

California Regulations. California Air Resources Board (ARB) is responsible for the coordination and oversight of State and local air pollution control programs in California. California has a numerous regulations aimed at reducing the state’s GHG emissions. These initiatives are summarized below.

Assembly Bill (AB) 1493 (2002), California’s Advanced Clean Cars program (referred to as “Pavley”), requires ARB to develop and adopt regulations to achieve “the maximum feasible and cost-effective reduction of GHG emissions from motor vehicles.” On June 30, 2009, U.S. EPA granted the waiver of Clean Air Act preemption to California for its GHG emission standards for motor vehicles beginning with the 2009 model year. Pavley I took effect for model years starting in 2009 to 2016 and Pavley II, which is now referred to as “LEV (Low Emission Vehicle) III GHG” will cover 2017 to 2025. Fleet average emission standards would reach 22 percent reduction from 2009 levels by 2012 and 30 percent by 2016. The Advanced Clean Cars program coordinates the goals of the Low Emissions Vehicles (LEV), Zero Emissions Vehicles (ZEV), and Clean Fuels Outlet programs and would provide major reductions in GHG emissions. By 2025, when the rules will be fully implemented, new automobiles will emit 34 percent fewer GHGs and 75 percent fewer smog-forming emissions from their model year 2016 levels (ARB, 2011).

In 2005, Executive Order (EO) S-3-05 established statewide GHG emissions reduction targets. EO S-3-05 provides that by 2010, emissions shall be reduced to 2000 levels; by 2020, emissions shall be reduced to 1990 levels; and by 2050, emissions shall be reduced to 80 percent below 1990 levels (CalEPA, 2006). In response to EO S-3-05, CalEPA created the Climate Action Team (CAT), which in March 2006 published the Climate Action Team Report (the “2006 CAT Report”) (CalEPA, 2006). The 2006 CAT Report identified a recommended list of strategies that the state could pursue to reduce GHG emissions. These are strategies that could be implemented by various state agencies to ensure that the emission reduction targets in EO S-3-05 are met and can be met with existing authority of the state agencies. The strategies
include the reduction of passenger and light duty truck emissions, the reduction of idling times for diesel trucks, an overhaul of shipping technology/infrastructure, increased use of alternative fuels, increased recycling, and landfill methane capture, etc. In April 2015 Governor Brown issued EO B-30-15, calling for a new target of 40 percent below 1990 levels by 2030.

California’s major initiative for reducing GHG emissions is outlined in Assembly Bill 32 (AB 32), the “California Global Warming Solutions Act of 2006,” signed into law in 2006. AB 32 codifies the statewide goal of reducing GHG emissions to 1990 levels by 2020 (essentially a 15 percent reduction below 2005 emission levels; the same requirement as under S-3-05), and requires ARB to prepare a Scoping Plan that outlines the main State strategies for reducing GHGs to meet the 2020 deadline. In addition, AB 32 requires ARB to adopt regulations to require reporting and verification of statewide GHG emissions.

After completing a comprehensive review and update process, ARB approved a 1990 statewide GHG level and 2020 limit of 427 MMT CO₂e. The Scoping Plan was approved by ARB on December 11, 2008, and included measures to address GHG emission reduction strategies related to energy efficiency, water use, and recycling and solid waste, among other measures. Many of the GHG reduction measures included in the Scoping Plan (e.g., Low Carbon Fuel Standard, Advanced Clean Car standards, and Cap-and-Trade) have been adopted over the last five years. Implementation activities are ongoing and ARB is currently the process of updating the Scoping Plan.

In May 2014, ARB approved the first update to the AB 32 Scoping Plan. The 2013 Scoping Plan update defines ARB’s climate change priorities for the next five years and sets the groundwork to reach post-2020 goals set forth in EO S-3-05. The update highlights California’s progress toward meeting the “near-term” 2020 GHG emission reduction goals defined in the original Scoping Plan. It also evaluates how to align the State’s longer-term GHG reduction strategies with other State policy priorities, such as for water, waste, natural resources, clean energy and transportation, and land use (ARB, 2015).

Senate Bill (SB) 97, signed in August 2007, acknowledges that climate change is an environmental issue that requires analysis in CEQA documents. In March 2010, the California Resources Agency (Resources Agency) adopted amendments to the State CEQA Guidelines for the feasible mitigation of GHG emissions or the effects of GHG emissions. The adopted guidelines give lead agencies the discretion to set quantitative or qualitative thresholds for the assessment and mitigation of GHGs and climate change impacts.

ARB Resolution 07-54 establishes 25,000 MT of GHG emissions as the threshold for identifying the largest stationary emission sources in California for purposes of requiring the annual reporting of emissions. This threshold is just over 0.005 percent of California’s total inventory of GHG emissions for 2004.

Senate Bill (SB) 375, signed in August 2008, enhances the state’s ability to reach AB 32 goals by directing ARB to develop regional GHG emission reduction targets to be achieved from vehicles for 2020 and 2035. In addition, SB 375 directs each of the state’s 18 major Metropolitan Planning Organizations (MPO) to prepare a “sustainable communities strategy” (SCS) that contains a growth strategy to meet these emission targets for inclusion in the Regional Transportation Plan (RTP). On September 23, 2010, ARB adopted final regional targets for reducing GHG emissions from 2005 levels by 2020 and 2035. The Santa Barbara County Association of Governments (SBCAG) was assigned targets of zero net growth in per capita emissions from passenger vehicles in the 2020 and 2035 target years. The SBCAG 2040 Regional Transportation Plan and Sustainable Communities Strategy (August 15, 2013) demonstrated
that the SBCAG region would achieve its regional emissions reduction targets for the 2020 and 2035 target years.

In April 2011, Governor Brown signed SB 2X requiring California to generate 33 percent of its electricity from renewable energy by 2020.

For more information on the Senate and Assembly Bills, Executive Orders, and reports discussed above, and to view reports and research referenced above, please refer to the following websites: www.climatechange.ca.gov and www.arb.ca.gov/cc/cc.htm.

California Environmental Quality Act. Pursuant to the requirements of SB 97, the Resources Agency has adopted amendments to the State CEQA Guidelines for the feasible mitigation of GHG emissions or the effects of GHG emissions. The adopted CEQA Guidelines provide general regulatory guidance on the analysis and mitigation of GHG emissions in CEQA documents, while giving lead agencies the discretion to set quantitative or qualitative thresholds for the assessment and mitigation of GHGs and climate change impacts. To date, the Bay Area Air Quality Management District (BAAQMD), the South Coast Air Quality Management District (SCAQMD), the San Luis Obispo Air Pollution Control District (SLOAPCD), and the San Joaquin Air Pollution Control District (SJVAPCD) have adopted quantitative significance thresholds for GHGs.

Local Regulations. In July 2014, the City of Goleta adopted a Final Climate Action Plan (CAP) to assist the City with reducing GHG emissions consistent with AB 32. The CAP identified emission reduction measures (measures) that would enable the City to meet the GHG reduction target for 2020. The CAP is a strategic document which outlines a framework to reduce community GHG emissions by 2020 and 2030 in a manner that meets the intent of CE-1A-5 and is supportive of AB 32 and Executive Order S-3-05, and serves as a Qualified GHG Reduction Strategy consistent with State CEQA Guidelines. The CAP does not, however, include quantitative significance thresholds for area sources. Instead, it outlines a programmatic approach to review new development. Any project-specific environmental document that relies on the CAP for its cumulative impacts analysis must identify specific measures applicable to the project and demonstrate the project’s incorporation of the measures. The CAP includes the following reduction categories of GHG sources and associated reduction measures:

- The Building Energy measures aim to reduce GHG emissions by improving the energy efficiency of both new and existing residential and commercial buildings, planting new trees in the City through the Urban Forest Management Plan, and improving communitywide understanding of energy management;
- The Renewable Energy measures aim to increase the use of renewable energy to power both new and existing residential and commercial buildings, encourage solar-ready buildings, and pursue a community choice aggregation program;
- The On-Road Transportation and Land Use measures focus on reducing emissions by reducing vehicle miles traveled (VMT) through multimodal transportation options, and reducing emissions by supporting design guidelines that will result in more compact, walkable, and transit accessible neighborhoods;
- The Water Consumption measure aims to reduce water demand and conserve water, whereby saving energy and avoiding associated emissions under the water energy nexus;
The Off-Road Transportation and Equipment measure aims to increase the use of alternative fuels in construction and landscaping off-road equipment and vehicles and reduce the consumption of fossil fuels; The Solid Waste measure focuses on reducing emissions by diverting waste from landfills, and supports continual improvement in equipment and operations for landfill management (SBCAG, 2012); and Municipal measures aim to reduce GHG emissions by improving City operations.

4.6.2 Impact Analysis

a. Methodology and Significance Thresholds. This section describes how the potential for Project-generated greenhouse gas impacts were determined. Air quality model results and calculations are based on calculations completed by Dudek as part of the Air Quality and Greenhouse Gas Emissions Analysis Technical Report and Heritage Ridge Project Pre-Construction Export Scenarios Air Quality and Greenhouse Gas Emissions Assessment Memorandum, and are included as Appendix B.

Significance Thresholds. Based on Appendix G of the State CEQA Guidelines, impacts related to GHG emissions from the Project would be significant if the Project would:

1. Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment; and/or
2. Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases.

The vast majority of individual projects do not generate sufficient GHG emissions to create a project-specific impact through a direct influence to climate change; therefore, the issue of climate change typically involves an analysis of whether a project’s contribution towards an impact is cumulatively considerable. “Cumulatively considerable” means that the incremental effects of an individual project are significant when viewed in connection with the effects of past projects, other current projects, and probable future projects (State CEQA Guidelines, Section 15355).

The significance of GHG emissions may be evaluated based on locally adopted quantitative thresholds, or consistency with a regional GHG reduction plan (such as a Climate Action Plan). Neither the SBCAPCD nor the City of Goleta has adopted quantitative GHG emissions thresholds for area sources; however, as discussed in Section 4.6.1(b), the City recently adopted a CAP that identified measures that would enable the City to meet the GHG reduction target for 2020 consistent with AB 32. Therefore, the Project is analyzed for consistency with the adopted CAP. In addition, in order to provide a quantitative evaluation of the significance from anticipated GHG emissions associated with the Project, the anticipated GHG emissions from the Project are also compared to the San Luis Obispo Air Pollution Control District (SLOAPCD) Greenhouse Gas Thresholds, as adopted in 2012. The SLOAPCD GHG thresholds are the most recently adopted quantitative thresholds for area sources in the SCCAB, and as such, are an appropriate comparison for the Project.
Based on the adopted SLOPACD methodology, three thresholds can be used to evaluate the level of significance of GHG emissions impacts for residential and commercial projects. The three thresholds are summarized in Table 4.6-1.

Table 4.6-1
SLOPCD GHG Significance Determination Criteria

<table>
<thead>
<tr>
<th>GHG Emission Source Category</th>
<th>Operational Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial and Residential Projects</td>
<td>Compliance with Qualified GHG Reduction Strategy</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Bright-Line Threshold of 1,150 MT of CO2e/yr</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Efficiency Threshold of 4.9 MT CO2e/SP^3/yr</td>
</tr>
</tbody>
</table>

1. SP = Service Population (residents + employees)

A per-service population threshold is intended to avoid penalizing large projects that incorporate GHG-reduction measures such that they may have high total annual GHG emissions, but would be relatively efficient, as compared to projects of similar scale. This guideline is most appropriately used for residential or commercial projects that would generate a large service population (defined as the sum of new residents and new employees that would result from a project). The Project is a 360-unit residential development. As such, the per-service population threshold is most applicable to the Project. Therefore, the Project would have a potentially significant contribution to GHG emissions if it would result in greater than 4.9 MT of CO2e/year per service population.

Study Methodology. Calculations of CO2, CH4, and N2O emissions are provided to identify the magnitude of potential project effects. The analysis focuses on CO2, CH4, and N2O because these make up 98.9 percent of all GHG emissions by volume (IPCC, 2007) and are the GHG emissions that the Project would emit in the largest quantities. Fluorinated gases, such as HFCs, PFCs, and SF6, were also considered for the analysis. However, because the Project is a residential development, the quantity of fluorinated gases would not be significant since fluorinated gases are primarily associated with industrial processes. Emissions of all GHGs are converted into their equivalent weight in CO2 (CO2e). Minimal amounts of other main GHGs (such as chlorofluorocarbons [CFCs]) would be emitted, but these other GHG emissions would not substantially add to the calculated CO2e amounts. Calculations are based on the methodologies discussed in the California Air Pollution Control Officers Association (CAPCOA) CEQA and Climate Change white paper (January 2008) and included the use of the California Climate Action Registry (CCAR) General Reporting Protocol (January 2009).

On-Site Operational Emissions. Operational emissions from energy use (electricity and natural gas use) for the Specific Plan area were estimated using the California Emissions Estimator Model (CalEEMod) computer program (Dudek, 2014; see Appendix B for calculations). The default values included in the CalEEMod computer program are based on the California Energy Commission (CEC) sponsored California Commercial End Use Survey (CEUS) and Residential Appliance Saturation Survey (RASS) studies. CalEEMod provides operational emissions of CO2, N2O, and CH4. This methodology is considered reasonable and reliable for use, as it has been subjected to peer review by numerous public and private stakeholders, and in particular by the CEC. It is also recommended by CAPCOA (January 2008).
Emissions associated with area sources, including consumer products, landscape maintenance, and architectural coating were calculated in CalEEMod based on standard emission rates from CARB, USEPA, and district supplied emission factor values (CalEEMod User Guide, 2011).

Emissions from waste generation were also calculated in CalEEMod and are based on the IPCC’s methods for quantifying GHG emissions from solid waste using the degradable organic content of waste (CalEEMod User Guide, 2011). Waste disposal rates by land use and overall composition of municipal solid waste in California was primarily based on data provided by the California Department of Resources Recycling and Recovery (CalRecycle).

Emissions from water and wastewater usage calculated in CalEEMod were based on the default electricity intensity from the CEC’s 2006 Refining Estimates of Water-Related Energy Use in California using the average values for Northern and Southern California.

Direct Emissions from Mobile Combustion. Emissions of CO₂ and CH₄ from transportation sources were quantified using CalEEMod (Dudek, 2014). Because CalEEMod does not calculate N₂O emissions from mobile sources, N₂O emissions were quantified by Rincon Consultants outside of the Air Quality and Greenhouse Gas Emissions Analysis Technical Report and Heritage Ridge Project Pre-Construction Export Scenarios Air Quality and Greenhouse Gas Emissions Assessment Memorandum prepared by Dudek, using the California Climate Action Registry General Reporting Protocol (January 2009) direct emissions factors for mobile combustion (see Appendix B for calculations). The estimate of total daily trips associated with the Project area was based on the Traffic, Circulation, and Parking Study prepared for the Project by Associated Transportation Engineers (ATE, 2014). The traffic analysis developed trip generation estimates using rates contained in the ninth edition of the Institute of Transportation Engineers (ITE) Trip Generation report and traffic counts conducted at the existing nearby Willow Springs I apartment complex. For the senior housing, the trip generation was based on the ITE rates for Senior Adult Housing (ITE Land Use Code 252), which is 3.44 trips per unit per day. For the workforce housing, the trip generation was based on the ITE Apartment rates (ITE Land Use Code 220), which is 6.65 trips per unit per day. For the neighborhood park, the CalEEMod default trip rate for a City Park was assumed, which is 1.59 trips per acre per day. Emission rates for N₂O emissions were calculated based on the vehicle mix output generated by CalEEMod and the emission factors found in the California Climate Action Registry General Reporting Protocol.

Construction Emissions. Although construction activity is addressed in this analysis, CAPCOA does not discuss whether any of the suggested threshold approaches (as discussed below in GHG Cumulative Significance) adequately address impacts from temporary construction activity. As stated in the CEQA and Climate Change white paper, “more study is needed to make this assessment or to develop separate thresholds for construction activity” (CAPCOA, 2008). Nevertheless, air districts such as the SCAQMD (2011) have recommended amortizing construction-related emissions over a 30-year period in conjunction with the Project’s operational emissions.

Construction of the Project would generate temporary GHG emissions primarily associated with the use of off-road construction equipment, on-road hauling and vendor (material delivery) trucks, and worker vehicles. Site preparation and grading typically generate the greatest amount of emissions due to the use of grading equipment and soil hauling. Emissions associated with the construction period were estimated using CalEEMod, based on the projected maximum amount of equipment that would be used on-site at one time. Complete results from CalEEMod and assumptions can be viewed in Appendix B.
For the purpose of this analysis, construction activity was assumed to occur in two phases; the first phase would include pre-construction export of excess soil over 24-27 weeks, and the second phase would include construction of the Project which would occur over a period of approximately 30 months. Soil is currently stockpiled in two locations on the site and is estimated to total 115,000 cubic yards (CY). The excess soil would be transported off-site prior to construction by haul trucks ranging in capacity from 9 to 20 CY. These unique scenarios were modeled in the Heritage Ridge Project Pre-Construction Export Scenarios Air Quality and Greenhouse Gas Emissions Assessment that was completed for the Project (Dudek, 2015). Vehicle trips were based on the trip rates provided in the North Willow Springs Project Traffic, Circulation, and Parking Study (ATE, 2014). The Project has an increased density of 22.2 dwelling units/acre, based on the combined proposed 360 units in eight buildings. In addition, the Project would use water-efficient irrigation systems on-site (Dudek, 2014). All other values utilized in the modeling were based on applicable SBCAPCD defaults for the SCCAB.

b. Project Impacts and Mitigation Measures.

Impact GHG-1 The Project would generate temporary as well as operational GHG emissions, which would incrementally contribute to climate change. However, combined annual GHG emissions from the Project would not exceed applicable thresholds of significance. Impacts would be Class III, less than significant [Threshold 1].

Construction Emissions. For the purpose of this analysis, construction activity is assumed to occur over a period of approximately 30 months. The construction analysis also includes a discussion of pre-construction soil export activity, which would occur prior to the main construction phase, to remove excess stockpiled soil and prepare the site for construction of the Project. Pre-construction export is outlined in two separate Scenarios (Scenario 1 and 2) as described in Section 4.2, Air Quality. Scenario 1 assumes that the existing stockpiled material would be removed using 9-CY trucks, which would require a total of 25,556 one-way haul truck trips; under Scenario 2, it is assumed that 20-CY trucks would be used to haul the material, resulting in approximately 11,500 one-way haul truck trips.

As shown in Table 4.6-2, construction activity for the Project would generate an estimated 1,661 MT CO\textsubscript{2}e under Scenario 1 or 1,482 MT CO\textsubscript{2}e under Scenario 2. Following the SLOAPCD’s recommended methodology to amortize emissions over a 50-year period (the assumed life of the Project), construction of the Project would generate an estimated 33 MT of CO\textsubscript{2}e per year under Scenario 1 or 30 MT of CO\textsubscript{2}e per year under Scenario 2.
Table 4.6-2
Estimated Construction Emissions of Greenhouse Gases

<table>
<thead>
<tr>
<th>Year</th>
<th>MT CO₂</th>
<th>MT CH₄</th>
<th>MT N₂O¹</th>
<th>MT CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Construction Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>326</td>
<td><0.1</td>
<td><0.1</td>
<td>328</td>
</tr>
<tr>
<td>Year 2</td>
<td>461</td>
<td><0.1</td>
<td><0.1</td>
<td>463</td>
</tr>
<tr>
<td>Year 3</td>
<td>231</td>
<td><0.1</td>
<td><0.1</td>
<td>232</td>
</tr>
<tr>
<td>Subtotal</td>
<td>1,018</td>
<td><0.2</td>
<td><0.1</td>
<td>1,023</td>
</tr>
<tr>
<td>Pre-construction Export Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scenario 1</td>
<td>638</td>
<td><0.1</td>
<td>7.9</td>
<td>646</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>458</td>
<td><0.1</td>
<td>3.6</td>
<td>462</td>
</tr>
<tr>
<td>Scenario 1 Combined Total</td>
<td>1,656</td>
<td><0.2</td>
<td>7.9</td>
<td>1,661</td>
</tr>
<tr>
<td>Amortized over 50 Years</td>
<td>33</td>
<td><0.1</td>
<td>0.2</td>
<td>33</td>
</tr>
<tr>
<td>Scenario 2 Combined Total</td>
<td>1,476</td>
<td><0.2</td>
<td>3.6</td>
<td>1,482</td>
</tr>
<tr>
<td>Amortized over 50 Years</td>
<td>30</td>
<td><0.1</td>
<td><0.1</td>
<td>30</td>
</tr>
</tbody>
</table>

¹ The estimated N₂O emissions for Scenario 1 and 2 were calculated by Rincon and are included in the final emissions totals, and therefore may not match the Dudek Air Quality and Greenhouse Gas Emissions Analysis Technical Report.

Operational Indirect and Stationary Direct Emissions. Long-term emissions relate to area sources, energy use, solid waste, water use, and transportation. Each of these sources are discussed below, and associated GHG emissions were estimated using CalEEMod. Project sustainable design features described in Section 2.0, Project Description, would reduce GHG emissions associated with operational emissions. The sustainable design features associated with this project that have quantifiable reductions include:

- **Improved energy efficiency:** project design would comply with updated 2013 Title 24 standards, which exceed CalEEMod default 2008 Title 24 standards by 25 percent (CEC, 2012);
- **Minor reductions to motor vehicle emissions associated with the Project improvement of the pedestrian network and provision of traffic calming measures;**
- **Improved pedestrian network by connecting the Project and surrounding neighborhoods with pedestrian facilities contiguous with the Project site;**
- **Use of low VOC paint for residential interior and exterior; and**
- **Use of water-efficient irrigation systems.**

A full list of the Project sustainable design features can be found in Appendix B, the Dudek Air Quality and Greenhouse Gas Analysis for the Heritage Ridge Project Report.
Area Source Emissions. Direct sources of air emissions located at the Project site include consumer product use and landscape maintenance equipment. Area source emissions would be approximately 4 MT of CO$_2$e per year.

Energy Use. Operation of on-site development would consume both electricity and natural gas. The generation of electricity through combustion of fossil fuels typically yields CO$_2$, and to a smaller extent, N$_2$O and CH$_4$. As discussed above, annual electricity and natural gas emissions can be calculated using default values from the CEC sponsored CEUS and RASS studies which are built into CalEEMod. Electricity consumption associated with the Project would generate approximately 421 MT of CO$_2$e per year and natural gas use would generate approximately 172 MT of CO$_2$e per year (see Appendix B for full results and calculations). Thus, overall energy use at the Project site would generate approximately 593 MT of CO$_2$e per year.

Solid Waste Emissions. In accordance with AB 939, the CalEEMod emissions estimate assumes by default that the Project would achieve at least a 50 percent diversion rate of recyclable materials. Based on this estimate, solid waste associated with the Project would generate approximately 75 MT of CO$_2$e per year.

Water Use Emissions. Based on the amount of electricity used to supply and convey water for the Project, the Project would generate approximately 67 metric tons of CO$_2$e per year.

Transportation Emissions. Mobile source GHG emissions were estimated using the average daily trips for the Project according to the Project traffic study (see Appendix I). The Project would generate approximately 4,625,127 annual VMT. As noted above, CalEEMod does not calculate N$_2$O emissions related to mobile sources. Rincon estimated N$_2$O emissions and included these in the overall emissions total, based on the Project’s VMT using calculation methods provided by the California Climate Action Registry General Reporting Protocol (January 2009). The Project would generate a total of approximately 1,857 MT CO$_2$e, associated with mobile emissions.

Combined Construction, Stationary, and Mobile Source Emissions. Table 4.6-3 shows the combined construction, operational indirect, and stationary direct GHG emissions associated with development of the Project.
Table 4.6-3

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>Annual Emissions (metric tons CO₂e)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scenario 1</td>
</tr>
<tr>
<td>Project Construction</td>
<td>33</td>
</tr>
<tr>
<td>Project Operational Area Energy</td>
<td>4</td>
</tr>
<tr>
<td>Project Operational Solid Waste</td>
<td>75</td>
</tr>
<tr>
<td>Project Operational Water</td>
<td>1,756</td>
</tr>
<tr>
<td>Project Mobile N₂O</td>
<td>1,756</td>
</tr>
<tr>
<td>Total Emissions from Project</td>
<td>2,629 metric tons CO₂e</td>
</tr>
<tr>
<td>Per Service Population Emissions</td>
<td>3.4 metric tons CO₂e/SP</td>
</tr>
</tbody>
</table>

Sources: See Appendix B for calculations and for GHG emission factor assumptions.
1. Operational N₂O emissions were not calculated in the Air Quality and Greenhouse Gas Emissions Analysis Technical Report for the Heritage Ridge Project. Calculation sheets for N₂O mobile emissions are included in Appendix B.
2. SP = Service Population, defined as residents + employees. The Project would have approximately 776 residents.

As shown in Table 4.6-3, estimated annual operational indirect and stationary direct emissions, would be approximately 2,596 MT CO₂e per year. As described in Section 4.6.2(a), the service population is the sum of Project residents and employees. The service population for the workforce housing would be 629 persons based on the Department of Finance per-household figure of 2.76 persons per dwelling unit. The service population for the senior housing would be 147 persons, based on the Heritage Ridge Occupant/Unit Ratio Analysis Study conducted by The Towbes Group, Inc. which determined 1.11 persons per senior dwelling unit (The Towbes Group, Inc., 2014). The proposed residential development would not create substantial new employment, and potential employees associated with the rental office were not included in this analysis to provide a conservative population estimate (Dudek, 2014). The total service population for the Project would therefore be 776 persons. This equates to approximately 3.4 MT CO₂e/SP/year. GHG emissions associated with the Project would not exceed the 4.9 MT CO₂e/SP/year threshold of significance. Therefore, this impact would be less than significant.

Mitigation Measures. Mitigation is not required as emissions would not exceed significance thresholds.

Residual Impacts. Impacts would be less than significant without mitigation.

Impact GHG-2 The Project is consistent with the City of Goleta Climate Action Plan. Impacts would be Class III, less than significant [Threshold 2].

As discussed under in Section 4.6.2(a), Methodology and Significance Thresholds, in July 2014, the City of Goleta adopted a CAP, which serves as a Qualified GHG Reduction Strategy consistent with State CEQA Guidelines. The CAP outlines a programmatic approach to review the potential from GHG-related impacts associated with new development. Any project-specific environmental document that relies on...
the CAP for its cumulative impacts analysis must identify specific measures applicable to the project and
demonstrate the project’s incorporation of the measures. Table 4.6-4 describes the Project’s consistency
with applicable CAP measures.

Table 4.6-4
Project Consistency with Applicable Climate Action Plan Measures

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Project Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Energy Efficiency</td>
<td></td>
</tr>
<tr>
<td>BEE-1</td>
<td>Consistent</td>
</tr>
<tr>
<td>Renewable Energy</td>
<td></td>
</tr>
<tr>
<td>RE-1</td>
<td>Consistent</td>
</tr>
<tr>
<td>Continue Implementation of Ordinance Requiring Construction of Solar-Ready Buildings.</td>
<td>The Project would comply with the Green Building Ordinance (CALGreen+), and would therefore be solar-ready.</td>
</tr>
<tr>
<td>RE-4</td>
<td>Consistent</td>
</tr>
<tr>
<td>Encourage Solar Installation in New Residential.</td>
<td>Buildings 4–6 are oriented primarily on an east–west axis to take advantage of solar orientation, thus encouraging solar installation in new residential buildings.</td>
</tr>
<tr>
<td>On-Road Transportation and Land Use</td>
<td></td>
</tr>
<tr>
<td>T-1</td>
<td>Consistent</td>
</tr>
<tr>
<td>Develop Design Guidelines for Increased Density for New Developments.</td>
<td>The Project is an increased density apartment complex development near U.S. 101, adjacent to South Los Carneros Road.</td>
</tr>
<tr>
<td>T-2</td>
<td>Consistent</td>
</tr>
<tr>
<td>Implement General Plan Policy TE 11: Bikeways Plan.</td>
<td>The Project would implement General Plan Policy TE 11 by encouraging increased bicycle use through the installation of trails connecting the site to surrounding neighborhoods. In addition, bicycle parking would be provided on-site to encourage bicycle use.</td>
</tr>
<tr>
<td>T-8</td>
<td>Consistent</td>
</tr>
<tr>
<td>Encourage Bicycle Parking through Development of Design Guidelines and Policies.</td>
<td>Bicycle parking would be provided on-site to encourage bicycle use and active transportation.</td>
</tr>
<tr>
<td>Off-road Transportation and Equipment</td>
<td></td>
</tr>
<tr>
<td>WR-1</td>
<td>Consistent</td>
</tr>
<tr>
<td>Continue Compliance with SB X7-7: Reduce Per Capita Urban Water Use</td>
<td>The Project would include incorporation of an efficient irrigation system, water-wise and California native landscaping, minimal recreational turf, and rainwater capture systems to assist the City with compliance with SB X7-7.</td>
</tr>
</tbody>
</table>

As indicated in Tables 4.6-4, the Project would be consistent with applicable CAP Strategies. The Project would not conflict with any applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs, and would therefore be consistent with the objectives of AB 32, EO S-3-05, SB 375, and SB 97. This impact would be less than significant.

Mitigation Measures. Mitigation is not required since the Project impact related to GHGs is less than significant.

Residual Impacts. Impacts would be less than significant without mitigation.
Cumulative Impacts. As shown in Tables 3-1 and 3-2 in Section 3.0, Related Projects, 1,511 residential units and more than 1.8 million square feet of non-residential development are approved or pending in and around Goleta. Such development would increase overall GHG emissions generated within Goleta. Similar to the Project, planned and pending projects in the City would be required to comply with applicable strategies contained in the Goleta CAP. As indicated in Impact GHG-1, GHG emissions associated with the Project were found to be less than significant. Analysis of GHG-related impacts is cumulative in nature as climate change is related to the accumulation of GHGs in the global atmosphere. Although cumulative increases in atmospheric GHGs may be significant, the Project’s contribution to cumulative levels of GHGs is not cumulatively considerable since emissions associated with the Project would not exceed quantitative thresholds and the Project is consistent with all applicable plans and policies pertaining to GHG reduction.
4.7 HAZARDOUS MATERIALS/RISK OF UPSET

This section addresses a number of issues, including: the potential presence of and risk of exposure to hazardous materials at the project site and potential risk of upset associated with the Project’s location adjacent to the Union Pacific Railroad (UPRR) right-of-way (ROW), U.S. 101, nearby businesses using hazardous materials and a high pressure natural gas line. The information presented in this section pertaining to hazardous materials at the site is based in part on a Phase I Environmental Site Assessment (ESA) prepared by Property Solutions, Inc. (September 2014). This report is provided in Appendix F. The findings of a health risk assessment that evaluates potential long-term impacts related to exposure of site residents to emissions from the adjacent UPRR and U.S. 101 are addressed in Section 4.2, Air Quality.

The risk of upset associated with various potential sources of upset hazards, including nearby businesses, U.S. 101, the UPRR, and a high pressure natural gas line have been consolidated into a single impact (Impact HAZ-2) to better reflect the overall level of risk to which the Project would be subject.

4.7.1 Setting

a. Overview. The Goleta General Plan/Coastal and Land Use Plan Final EIR, 2006, analyzed potential safety hazards caused by the presence, use, manufacture or transport or hazardous materials within the City. The risk of upset focused on humans and assessed potential impacts from accidents, explosions and other releases. The General Plan/Coastal and Land Use Plan Final EIR identified a Class I impact for transportation of hazardous materials on the UPRR rail line and U.S. 101. At certification of the FEIR, the former City Council made a statement of overriding considerations.

The project site is an 17.36-gross acre property that is bounded on its north by the Union Pacific Railroad (adjacent to the project site) and U.S. 101 (approximately 250 to 300 feet north of the project site), on the west by S. Los Carneros Road with an approved residential development currently under construction (Village at Los Carneros) beyond, on the south by Camino Vista Road and the Willow Springs residential development, and on the east by Aero Camino Road and industrial uses.

Historically, the project site and vicinity were in agricultural production. In 1986, a mass grading plan for the entire site was submitted, approved, and initiated (Mac Design Associates, 1997). Initial grading on-site consisted of clearing and grubbing of orchard trees and root structures. Surface material was scraped and placed in windrows. Investigations of prehistoric cultural resources were undertaken and grading resumed outside of fenced sensitive archaeological areas (Mac Design Associates, 1997). The project site was used as a staging area for fill during the Los Carneros Road/U.S. 101 interchange construction from approximately 1998 to 2014 (Mac Design Associates, 1997). Currently, the project site consists of 13 undeveloped lots located between developed commercial and industrial uses to the east and undeveloped land to the west (site of the Villages at Los Carneros). There is no structural development on site; however, construction equipment and containers are stored on site.

The following describes the potential for presence of hazardous materials (at the project site) and the potential risks associated with UPRR, U.S. 101, nearby businesses using hazardous materials, and a natural gas line (off-site).

Hazardous Materials and Substances. The term “hazardous material” refers to both hazardous substances and hazardous waste. A material is identified as “hazardous” if it appears on a list of
hazardous materials prepared by a Federal, State, or local regulatory agency or if it has characteristics
defined as hazardous by such an agency. A “hazardous waste” is a “solid waste” that exhibits toxic or
hazardous characteristics. The United States Environmental Protection Agency (U.S. EPA) defines the
term “solid waste” to include many types of discarded materials including any gaseous, liquid, semi-
liquid, or solid material, which is discarded or has served its intended purpose, unless the material is
specifically excluded from regulation. Such materials are considered waste whether they are discarded,
reused, recycled, or reclaimed. U.S. EPA classifies a material as hazardous if it has one or more of the
following characteristics at specific thresholds: ignitability, corrosivity, reactivity, and/or toxicity.

As part of the Phase I ESA (Property Solutions Incorporated 2014; refer to Appendix F), a site
reconnaissance was conducted in order to observe existing site conditions and to obtain information
indicating the possible presence of recognized environmental conditions (REC) in connection with the
project site. During the site reconnaissance, Property Solutions did not observe any of the following on-
site: aboveground storage tanks (ASTs) or evidence of underground storage tanks (USTs): transformers,
capacitors or large switch gear equipment; evidence of fuel release; evidence of hazardous waste
generation, storage, or disposal; wells, sumps, pits, or floor drains; surface water bodies (e.g. springs or
swamps); lagoons, ponds, septic systems, or separators; stressed vegetation, staining, or odors;
superficial disturbances; dry cleaning operations; buildings; wetland areas; or major air emission
sources. On the central portion of the Project site, the Phase I ESA noted that it was occupied by several
temporary trailers and stored equipment associated with the recent construction of the apartment
complex to the south-southeast. Chemicals stored on the Project site are minimal quantities of domestic
cleaning chemicals and paints. No hazardous materials were observed within the temporary
construction site at the northwest property corner, and approximately 30 five-gallon paint containers
and two 5-gallon containers of caulk were observed stored near the trailers at the center of the site. A
portable diesel-fired emergency generator was also present. Although some minor paint spillage was
observed, no evidence of a fuel release was observed.

In addition to the site reconnaissance, Property Solutions contracted with Environmental Data
Resources, Inc. (EDR) to search public databases of sites that generate, store, treat, or dispose of
hazardous materials or sites for which a release or incident has occurred. The EDR search was conducted
for the Project site and included data from surrounding sites within a one mile radius of the property.
Table 4.7-1 displays the database information, which is divided into two columns. The first column lists
sites identified within one mile of the Project site. These sites are described further in the text below.
Table 4.7-1 also includes observations on the Project site, as described in the above paragraph. These
observations are identified as Project site in the Search Distance column.

Although the exact locations of the orphan sites are frequently unknown, the Phase I ESA attempts to
evaluate the potential adverse environmental impact that these sites may have on the Project site. The
orphan sites included in the following table are those the Phase I ESA identified as potentially located
within the identified search distance.
Table 4.7-1
Environmental Database Summary

<table>
<thead>
<tr>
<th>Database</th>
<th>Search Distance</th>
<th>Plottable</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Priorities List</td>
<td>1 Mile</td>
<td>0</td>
</tr>
<tr>
<td>State/Tribal Hazardous Waste Sites</td>
<td>1 Mile</td>
<td>6</td>
</tr>
<tr>
<td>RCRA Corrective Action Treatment/Storage/Disposal (TSD) Facilities (CORRACTS)</td>
<td>1 Mile</td>
<td>2</td>
</tr>
<tr>
<td>Delisted National Priorities List</td>
<td>½ Mile</td>
<td>0</td>
</tr>
<tr>
<td>CERCLIS Sites</td>
<td>½ Mile</td>
<td>0</td>
</tr>
<tr>
<td>CERCLIS No Further Remedial Action Planned (NFRAP) Sites</td>
<td>½ Mile</td>
<td>2</td>
</tr>
<tr>
<td>RCRA Non-Corrective Action TSD Facilities</td>
<td>½ Mile</td>
<td>2</td>
</tr>
<tr>
<td>State/Tribal Voluntary Cleanup Sites</td>
<td>½ mile</td>
<td>0</td>
</tr>
<tr>
<td>State/Tribal Brownfield Sites/CERCLIS Equivalent</td>
<td>½ mile</td>
<td>0</td>
</tr>
<tr>
<td>State/Tribal Leaking Registered Storage Tank Sites</td>
<td>½ Mile</td>
<td>19</td>
</tr>
<tr>
<td>State/Tribal Solid Waste Landfill Sites/Facilities</td>
<td>½ Mile</td>
<td>0</td>
</tr>
<tr>
<td>Historic Landfills</td>
<td>½ Mile</td>
<td>0</td>
</tr>
<tr>
<td>Federal/State/Tribal Engineering Controls Registries</td>
<td>½ Mile</td>
<td>0</td>
</tr>
<tr>
<td>Federal/State/Tribal Institutional Controls Registries</td>
<td>½ Mile</td>
<td>0</td>
</tr>
<tr>
<td>RCRA Large Quantity Generators</td>
<td>Project site and Adjoining Properties</td>
<td>0</td>
</tr>
<tr>
<td>RCRA Small Quantity Generators</td>
<td>Project site and Adjoining Properties</td>
<td>0</td>
</tr>
<tr>
<td>State/Tribal Registered Storage Tank Sites</td>
<td>Project site and Adjoining Properties</td>
<td>0</td>
</tr>
<tr>
<td>Manifest</td>
<td>Project site</td>
<td>0</td>
</tr>
<tr>
<td>Spill/Release Sites</td>
<td>Project site</td>
<td>10</td>
</tr>
<tr>
<td>Facility Index System (FINDS)</td>
<td>Project site</td>
<td>0</td>
</tr>
<tr>
<td>Emergency Response Notification System</td>
<td>Project site</td>
<td>0</td>
</tr>
</tbody>
</table>

1: Identifies the number of sites with location information. These are in contrast with “orphan sites, which potentially lie within the search distance but could not be located by EDR due to incomplete and/or inaccurate address information in the U.S. EPA/ State databases. No orphan sites were identified in the EDR search.

Source: Phase I Environmental Assessment, Property Solutions, Inc., Sept. 2014; Environmental Database used was dated July 29, 2014.

As a follow-up to the database search and the site reconnaissance, the Phase I ESA reviewed the following reports and correspondence related to historical import and export of fill material to and from the Project site.

- **Phase I Environmental Site Assessment** report prepared by Dames & Moore on April 2, 1999 – This report noted the presence of large piles of fill soil on the Project site. The source of the fill was not identified. No discolored soil was noted. Dames & Moore did not identify the fill as a recognized environmental condition, and made no recommendations for further action.
- **Report of Soil Removal** prepared by Earth Systems Pacific on August 12, 2004 – This report documents the removal of approximately 130 cubic yards of hydrocarbon-contaminated soil (diesel fuel or fuel oil) that had been deposited on the Project site. The removal action included the collection and analysis of post-excavation soil samples in order to evaluate the adequacy of the remedial action. A total of 400...
cubic yards of soil was transported for off-property disposal. Earth Systems Pacific concluded that the remedial action was adequate.

- **Soils Material Report** prepared by Earth Systems Pacific on July 20, 2010 – This report noted a “slight hydrocarbon odor” in the logs for all five soil borings advanced on the southwestern arm of the Project site for geotechnical engineering purposes. Earth Systems Pacific’s A-A’ cross section, which extends for more than 600 feet from northeast to southwest across the investigated area, identifies a “slight hydrocarbon odor” from an upper depth of 10 to 15 feet below ground extending to a lower depth of 16 to 25 feet below ground surface. Earth Systems Pacific’s B-B’ cross section, which extends for more than 800 feet from north to south across the investigated area, also identifies a “slight hydrocarbon odor” from an upper depth of 10 to 15 feet below ground extending to a lower depth of 16 to 25 feet below ground surface.

- **Soil and Groundwater Investigation Report** prepared by Geosyntec Consultants in June 2012 – This report noted that concentrations of detected pesticides were below California Human Health Screening Levels for residential land use, and concentrations of arsenic were below the Department of Toxic Substances Control’s background standard for Southern California. No further mitigation was recommended.

- **Geotechnical Engineering Report** prepared by Earth Systems Pacific on July 8, 2014 – This report noted that groundwater on the Project site occurred at depths as shallow as 22.5 feet below ground surface.

- **Results of Soil Analysis, Northwest Stockpile** prepared by Earth Systems Pacific on August 1, 2014 – This report noted the presence of stained and odorous soils, which, in their estimation, might render the soil undesirable for use at a property that is to be developed as a school, hospital, or residence. After laboratory analysis, Earth Systems Pacific reported that the analysis did not identify concentrations of target compounds that would preclude the use of the soils for fill at properties proposed for other uses (note: these soils are proposed to be exported from the site as part of the project).

Aerial photographs of the site over time were also analyzed as part of the Phase I ESA. The photos and maps reviewed demonstrate that the portions of the site were in use as orchards and citrus groves from at least 1928 through 1973. After 1973, the entire site existed as undeveloped land until possible fill and the current access road were added between 1994 and 2005. According to the California Department of Toxic Substances Control’s (DTSC’s), Interim Guidance for Sampling Agricultural Properties, organochlorine pesticides (OCPs) were first introduced into California agriculture in 1944 and reached peak usage in the 1960s. DDT was banned from agricultural use in 1974, and the remaining OCPs in California agriculture were subsequently banned. Data gathered by DTSC from sites where agricultural use ended before to 1950 indicates that OCPs were not identified as chemicals of potential concern. In those cases, where OCPs were identified, the source appears to have been the application to structures on the property, and not the agricultural crops grown prior to 1950. Various areas of the Project site have experienced the delivery and removal of OCP contaminated soils over a period of years, and hydrocarbon-impacted soils remain. The use of lead arsenate and petroleum-based pesticides on fruit trees in California dates to the 1930s. The original ground surface from that time has been covered by fill, which mitigates the potential for direct contact under present conditions. Based on samples collected on the southerly contiguous non-subject Willow Springs II property that historically had the same orchards on site, pesticide and arsenic residues in soil on the project site would have
concentrations below residential and background standards as identified on the Willow Springs II property and reported in the Phase I ESA prepared by Property Solutions, Inc.

The Phase I ESA found no evidence of recognized environmental conditions in connection with the Project site. This conclusion indicates that the presence or likely presence of any hazardous substances or petroleum products in, on, or at a property was not found beyond a de minimis (negligible) condition. However, the project site is located immediately south of U.S. 101, the Union Pacific Railroad, a high-pressure natural gas line on Hollister Avenue, and near a number of industrial businesses to the east, all of which would potentially be the source of accidental releases of hazardous materials. The General Plan EIR identifies these risks as unavoidably significant impacts.

Radon Gas. Radon is an odorless and tasteless, naturally occurring gas that has been linked to lung cancer. Radon exists in all soils throughout the United States and is produced from the breakdown of naturally occurring radium and uranium within the ground.

Radon gas studies performed by the California Bureau of Mines and Geology and the Department of Health Services (DHS) through 1995 indicate that Santa Barbara County falls within the Zone 1 designation, which suggests that there is a low to moderate potential for exposure to radon gas at or above the EPA recommended level of 4.0 pico curies per liter (pCi/L) (City of Goleta, 2007). The Radon Zone Map for Santa Barbara County produced by the Bureau of Mines and Geology indicates that the Project site falls within the low potential area for indoor radon levels above 4.0 pCi/L (California Bureau of Mines and Geology 1995).

Proximity to the Union Pacific Railroad. The Project site is located immediately adjacent and to the south of the UPRR right-of-way. The railroad carries passenger cars as well as freight trains. Currently the only through train carrying hazardous materials is a unit train (a train with all cars carrying the same commodity) transporting crude oil in tank cars to refineries in the Los Angeles area that runs one to two days per week (Cuesta Pass Rails, 2015). However, it is possible that additional through trains transporting freight, including hazardous materials, could run in the future as they have in the past. Nothing prevents additional through trains carrying hazardous materials from using the rail lines, and no additional agency approvals would be required for this to occur. In addition, local trains deliver freight, including hazardous materials, to industry in the local area. Approximately four local trains hauling freight pass by the project site weekly (Cuesta Pass Rails, 2015). Issues associated with the site’s proximity to the railroad include the potential for an accident (a derailment in particular) that could result in the release of hazardous material which in turn could result in a toxic and/or flammable gas could, fire, and/or explosion. The associated public health risk depends upon the materials released during an accident, the toxicity of the materials, and the wind direction that may carry the emissions from the release toward any occupied uses.

Proximity to U.S. 101. U.S. 101 is located north of the Project site, separated by the UPRR right-of-way and the on-ramp from S. Los Carneros Rd. Some of the truck traffic on U.S 101 involves transport of hazardous materials. Issues associated with the site’s proximity to U.S 101 include the potential for a truck accident that could result in the release of hazardous material or ignition of a fire. The associated public health risk depends upon the materials released during an accident, the toxicity of the materials, and the wind direction that may carry the emissions from the release toward any occupied uses.

Industrial Businesses. Hazardous Materials Unit (HMU) of the Santa Barbara County Public Health Department is certified by CalEPA as the Certified Unified Program Agency (CUPA) for Santa
Barbara County. The CUPA regulates businesses that handle hazardous materials, generate or treat hazardous waste or operate aboveground or underground storage tanks.

Proximity to a High Pressure Natural Gas Line. A 16-inch diameter underground Southern California Gas Company high-pressure natural gas pipeline runs along the north side of Hollister Avenue from the west to about half way between S. Los Carneros Road and Cremona Drive where it turns south across Hollister Avenue away from the Project site. This pipeline runs within approximately 1,800 feet of the southwest corner of the property. This pipeline transports flammable, non-toxic natural gas. Issues associated with the site’s proximity to the pipeline involve the potential for an accident that could result in the release and ignition of flammable gas. Because of the 1,800 feet separation distance, this pipeline does not present a hazard to the Project and therefore, is not addressed further in this study.

b. Hazardous Material Regulation. The management of hazardous materials and hazardous wastes is regulated at federal, State, and local levels through programs administered by U.S. EPA, agencies within the California Environmental Protection Agency (CalEPA) such as the Department of Toxic Substances Control (DTSC) and the Regional Water Quality Control Board (RWQCB), U.S. Department of Transportation (DOT), California Highway Patrol, federal and State Occupational Safety and Health agencies (OSHA), and Office of Emergency Services (OES). An overview of the regulation of hazardous materials is provided below. A more detailed discussion of hazardous material regulation can be found in Appendix F.

In California, the U.S. EPA has granted most enforcement authority over federal hazardous materials regulations to the Cal EPA. In California, regional agencies are responsible for programs regulating emissions to the air, surface water, and groundwater. At the project site, the Santa Barbara County Air Pollution Control District has oversight over air emissions, the Central Coast Regional Water Quality Control Board (Central Coast RWQCB) has jurisdiction over the City and regulates discharges and releases to surface and groundwater, and the County of Santa Barbara Hazardous Material Unit overseas programs involving storage and handling of hazardous materials. Oversight for investigation and remediation of sites affected by hazardous materials releases can be performed by state or local agencies, such as the DTSC, the State Water Resource Control Board, or the County Public Health Department. The Resource Conservation and Recovery Act (RCRA) is the United States’ primary law governing the handling and disposal of hazardous waste. The RCRA, adopted in 1976, set out to ensure that wastes are managed in an environmentally sound manner.

Some businesses located near the Project site store and use hazardous materials. The owners of these facilities are required by law to prepare a Hazardous Materials Business Plan that lists the hazardous materials stored and their volumes and locations and submit the Plan to the Santa Barbara County Public Health Department when beginning to store such materials. This information is then provided to emergency response agencies so they are aware of the type of materials stored on site when responding to an emergency at that location. Therefore, a list of the current hazardous materials stored and used at these businesses is available to the public. However, businesses can change or add to the hazardous materials (except for “acutely hazardous”\(^1\) materials in quantities above prescribed thresholds) that they store.

\(^1\) 40 CFR §261.11.(a)-(2) allows the EPA administrator to classify hazardous waste, in part as follows: “It has been found to be fatal to humans in low doses, or in the absence of data on human toxicity, it has been shown in studies to have an oral LD 50 toxicity (rat) if less than 50 milligrams per kilogram, an inhalation LC 50 toxicity (rat)of less than 2 milligrams per liter, or a dermal LD 50 toxicity of less than 200 milligrams per kilogram or is otherwise capable of causing or significantly contributing to an increase in serious irreversible, incapacitating reversible, illness. (Waste listed in accordance with these criteria will be designated Acute Hazardous Waste.)”
store and use without additional regulatory review or approval as long as they comply with the applicable laws and regulations. In addition, new businesses could replace existing businesses without the need for any additional regulatory review or approval as long as they comply with the applicable laws and regulations, including the preparation of a Business Plan if they plan to handle hazardous materials. Additional building and fire department permits are required if additional tanks are to be constructed to store hazardous materials. Additional approval/update to a Hazardous Materials Business Plan is only required to allow for the storage of acutely hazardous materials above the prescribed threshold. A business must prepare and submit a Risk Management Plan (RMP) under the California Accidental Release Prevention (CalARP) Program to Santa Barbara County Hazardous Materials Unit for review and approval before such materials can be delivered to the site.

The County of Santa Barbara administers a number of federal and State laws and regulations at the local level. In addition, the California Fire Code and California Building Code include requirements pertaining to hazardous materials and hazardous wastes, which are monitored and enforced at the local level.

As discussed in the Section 4.7.1(a), the Santa Barbara County HMU regulates businesses that handle hazardous materials, generate or treat hazardous waste, or operate storage tanks with hazardous materials. As the County CUPA, the HMU regulates businesses that handle hazardous materials, generate or treat hazardous waste or operate aboveground or underground storage tanks. The primary goal of the CUPA Program is to protect public health and the environment by promoting compliance with applicable laws and regulations. All inspectors in the County of Santa Barbara CUPA Program are trained Hazardous Materials Specialists who take part in continuous education program to ensure consistency and uniformity during inspections.

The overall CUPA requirements are found in Health & Safety Code (HSC) Chapter 6.11 and California Code of Regulations (CCR), Title 27, Division 1, Subdivision 4, Chapter 1. The County of Santa Barbara CUPA is responsible for the following six consolidated environmental programs:

- **Hazardous Materials Release Response Plans & Inventory (“Business Plan”)** - Authority: HSC Chapter 6.95, Article 1 & Title 19 CCR Chapter 4;
- **Underground Storage Tanks (UST)** - Authority: HSC Chapter 6.7 & Title 23 CCR, Division 3, Chapters 16 & 17;
- **Hazardous Waste Generators** - Authority: HSC Chapter 6.5 & Title 22 CCR Division 4;
- **Onsite Hazardous Waste Treatment (“Tiered Permit”)** - Authority: HSC Chapter 6.5 & Title 22 CCR Division 4.5;
- **Aboveground Petroleum Storage Act (APSA)** - Authority: HSC Chapter 6.67;
- **California Accidental Release Prevention (“CalARP”)** - Authority: HSC Chapter 6.95, Article 2 & Title 19 CCR Chapter 4.5

Each of these programs is discussed in detail in Appendix F.

Transportation of Hazardous Materials. The transportation of hazardous materials is regulated by the Federal Department of Transportation (DOT) and the California Department of Transportation (Caltrans). These regulations are discussed in Appendix F.

Storage and Handling of Hazardous Materials. The storage and handling of hazardous materials is regulated by a number of agencies, including federal OSHA, federal DOT, California OSHA, and Santa
Barbara County. Federal OSHA regulates the storage and handling of hazardous materials, including container specifications, safety release devices, inspection requirements, and handling requirements. Federal DOT regulations require that shippers of hazardous materials use appropriate containers and label the contents as required by law. California OSHA, under General Industry Safety Orders, specifies requirements for hazardous materials storage and handling and references both federal OSHA requirements and industry recommendations. The Santa Barbara County Fire Department periodically inspects facilities to ensure that they are storing hazardous materials correctly and have proper safety measures in place.

Hazardous Materials Business Plan. The Business Plan Program requires businesses that handle hazardous materials in quantities in excess of specified quantities to submit inventories of those materials to the CUPA, and to develop appropriate employee training and emergency procedures. The thresholds are:

- 55 gallons for a liquid
- 500 pounds for a solid
- 200 cubic feet (at standard temperature and pressure) for a gas

The CUPA maintains the inventory and emergency contact information submitted from businesses in a computerized data management system. The CUPA, in turn provides this information to emergency response agencies.

4.7.2 Impact Analysis

a. Methodology and Significance Thresholds. The City of Goleta’s Environmental Thresholds and Guidelines Manual contains thresholds for assessing the significance of impacts to public safety resulting from the involuntary exposure to hazardous materials. The manual establishes categories for identifying potential significant impacts to public safety including transportation of hazardous materials, as well as potentially significant impacts to non-hazardous land uses proposed in proximity to existing hazardous facilities. The manual specifically identifies a potentially significant impact to all development proposed in proximity to one or more existing hazardous facilities.

CEQA Guidelines Section 15126.2(a) provides guidance regarding consideration and discussion of significant environmental impacts related to hazards:

- The EIR shall also analyze any significant environmental effects the project might cause by bringing development and people into the affected area.
- The EIR should evaluate any potentially significant impacts of locating development in areas susceptible to hazardous conditions as identified in authoritative hazard maps, risk assessments or land use plans addressing such hazards.

Appendix G of the CEQA Guidelines contains a checklist of environmental factors to be assessed to determine the potential for significant impacts. Based on this checklist, the Project’s impact would be significant if it exceeds the following thresholds.

1. The Project would create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials.
2. The Project would create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment.

3. The Project would be located on a site that is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would create a significant hazard to the public or the environment.

Impacts related to airport safety and emergency evacuation would not be significant and are addressed in Section 4.15, Effects Found Not to be Significant. Wildland fire issues are discussed in Section 4.11, Public Services. Potential impacts associated with hazardous emissions are discussed in Section 4.2, Air Quality.

b. Project Impacts and Mitigation Measures.

Impact HAZ-1 Hazardous materials may be present in the soils on the Project site and adjoining properties. However, due to the depth of potentially contaminated soils and required compliance with local and regional regulations, impacts would be Class III, less than significant [Threshold 1 and Threshold 3].

As discussed in Section 4.7.1, Setting, as part of the Phase I ESA conducted for the Project site, a database search of public lists of sites that generate, store, treat, or dispose of hazardous materials or sites for which a release or incident has occurred was conducted for the Project site and included data from surrounding sites within a one mile radius of the property. The Project site and adjoining properties were not listed in any of the databases searched by EDR. Based on standard sources reviewed and site observations, releases of chemicals of concern may have occurred on the Project site and has occurred on adjacent properties. However, contaminated soils are at a depth that eliminates potential impacts (Property Solutions Inc., 2014). In addition, the location of contaminated soils has been identified and these soils are proposed to be exported prior to Project construction, as described in Section 2.0, Project Description.

The documentation reviewed as part of the Phase I ESA concluded that various areas of the Project site have experienced the delivery and removal of contaminated soils over a period of years. The following provides a summary of documentation reviewed and action taken for imported fill on the Project Site:

- In its Phase I Environmental Site Assessment report dated April 2, 1999, Dames & Moore noted the presence of large piles of fill soil on the Project site. The source of the fill was not identified and no discolored soil was noted. Dames & Moore did not identify the fill as a recognized environmental condition, and made no recommendations for further action.
- In its Report of Soil Removal dated August 12, 2004, Earth Systems Pacific documented the removal of approximately 130 cubic yards of hydrocarbon-contaminated soil (diesel fuel or fuel oil) that had mistakenly been deposited on the Project site. The removal action included the collection and analysis of post-excavation soil samples in order to evaluate the adequacy of the remedial action. A total of 400 cubic yards of soil was transported for off-property disposal. Earth Systems Pacific concluded that the remedial action was adequate.
• In its Soils Material Report dated July 20, 2010, Earth Systems Pacific noted a “slight hydrocarbon odor” in the logs for all five soil borings advanced on the southwestern arm of the Project site for geotechnical engineering purposes. Earth Systems Pacific’s A-A’ cross section, which extends for more than 600 feet from northeast to southwest across the investigated area, identifies a “slight hydrocarbon odor” from an upper depth of 10 to 15 feet below ground extending to a lower depth of 16 to 25 feet below ground surface. Earth Systems Pacific’s B-B’ cross section, which extends for more than 800 feet from north to south across the investigated area, also identifies a “slight hydrocarbon odor” from an upper depth of 10 to 15 feet below ground extending to a lower depth of 16 to 25 feet below ground surface. As described above, this was determined to be a de minimis finding (negligible impact) in the Phase I ESA (September 2014).

• In its Geotechnical Engineering Report dated July 8, 2014, Earth Systems Pacific noted that groundwater on the subject property occurred at depths as shallow as 22.5 feet below ground surface.

• In its Results of Soil Analysis, Northwest Stockpile dated August 1, 2014, Earth Systems Pacific noted the presence of stained and odorous soils, which, in their estimation, might render this soil (proposed to be exported) undesirable for use at a property that is to be developed as a school, hospital, or residence. Earth Systems Pacific reported that laboratory analysis did not identify concentrations of target compounds that would preclude the use of the soils for fill at properties proposed for other uses less sensitive than uses such as a school, hospital, or residence.

On the basis of the documentation reviewed, Property Solutions concluded that because of its depth, the soil that was noted with a “slight hydrocarbon odor,” appears to be de minimis (negligible) in its potential impact. This soil generally does not present a threat to human health or the environment and typically would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies. In addition, the location of contaminated soils has been identified and these soils are proposed to be exported prior to Project construction, as described in Section 2.0, Project Description. The management of the imported soils documented on the Project site is ongoing and would be subject to regulatory requirements of the City of Goleta (grading permits) and the Regional Water Quality Control Board (RWQCB), including the preparation of an associated Soil Management Plan that includes controls on the use and placement of the exported soils to reduce potential risks from exposure to potential contaminants in the soil. Compliance with these regulatory requirements (grading permit and RWQCB permit including a Soil Management Plan) would ensure that potential impacts related to contaminated soils would remain less than significant.

Mitigation Measures. Mitigation would not be required because no significant impacts have been identified.

Residual Impact. Impacts would be less than significant without mitigation.
Impact HAZ-2 Implementation of the Project would place residential structures and persons in proximity to existing businesses that use, store, and transport hazardous chemicals, as well as transport of hazardous materials on the existing UPRR railroad tracks and U.S. 101. Onsite residents would therefore be exposed to a potential risk of upset associated with chemical leaks and fire from nearby businesses, derailed trains, and truck accidents. Although the probability of such incidents would be low, this impact would be Class I, significant and unavoidable [Threshold 2].

Proposed residential structures and future residents on the project site would be located in proximity to several types of facilities in which hazardous materials are used, stored, or transported: nearby businesses, the UPRR railroad tracks, and the U.S. 101 freeway. Each type of facility is discussed below.

Nearby Businesses

A mix of commercial and industrial businesses is located directly east of the Project site in the General Industrial zone district. Specific types of businesses in this area include software development, electric parts supplier, hardware store, property management, and automotive repair. Types of hazardous materials stored and used in these facilities consist mainly of oils and other lubricants, as identified in the Phase I report for the project site by Property Solutions, Inc.

As discussed in the Section 4.7.1(a), the Santa Barbara County HMU regulates businesses that handle hazardous materials, generate or treat hazardous waste, or operate storage tanks with hazardous materials. As the County CUPA, the HMU promotes compliance with applicable hazardous material laws and regulations.

The HMU’s Business Plan Program requires businesses handling hazardous materials in quantities in excess of specified amounts to submit inventories of those materials and to develop appropriate employee training and emergency procedures. For such businesses, including those in close proximity to the Project site, the HMU requires preparation and filing of a Business Plan and Emergency Response Plan that ensures that all nearby hazardous materials are handled appropriately to minimize potential health and environmental effects. The HMU also maintains the inventory and emergency contact information submitted from businesses in a computerized data management system and, in turn, provides this information to emergency response agencies.

In April 2016, the HMU provided an updated list of businesses located within 1/4-mile of the project site that use potentially hazardous chemicals. As shown in Table 4.7-2, a number of light-industrial and commercial uses in the vicinity of the project site use hazardous chemicals in the course of operation.
Table 4.7-2

<table>
<thead>
<tr>
<th>Business Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Automotive</td>
<td>74 Aero Camino B</td>
</tr>
<tr>
<td>AT&T Mobility</td>
<td>6485 Calle Real</td>
</tr>
<tr>
<td>California Highway Patrol</td>
<td>6465 Calle Real</td>
</tr>
<tr>
<td>Channel Island Marine</td>
<td>74 Aero Camino</td>
</tr>
<tr>
<td>Delta Welding and Fabrication, Inc.</td>
<td>36 Aero Camino</td>
</tr>
<tr>
<td>Enerpro, Inc.</td>
<td>99 Aero Camino</td>
</tr>
<tr>
<td>Get Real Performance</td>
<td>92 Aero Camino</td>
</tr>
<tr>
<td>Goleta Transmission</td>
<td>74 Aero Camino</td>
</tr>
<tr>
<td>Goleta, City of</td>
<td>130 Cremona Drive B</td>
</tr>
<tr>
<td>M3 Precision/Sornesen Precision</td>
<td>57 Aero Camino</td>
</tr>
<tr>
<td>Santa Barbara Motorsports</td>
<td>6466 Hollister Avenue</td>
</tr>
<tr>
<td>Viscarra’s Refinishing</td>
<td>6485 Calle Real G</td>
</tr>
</tbody>
</table>

Source: Santa Barbara County Environmental Health Department, April 2016.

The requirement that businesses prepare and submit Business Plans to Santa Barbara County means that the HMU and the Fire Department is aware of the hazardous materials that are stored at these businesses, where they are stored, and in what quantities. Fire Department personnel periodically visit the facilities to become more familiar with them. All businesses submitting Business Plans are also required to prepare and submit emergency/contingency response plans. Hence, all businesses are required to be prepared to take immediate action in the event of an incident. Fire Department personnel are required to also be prepared to take action based on the Business Plan. Businesses are required to update their Business Plans whenever major changes occur such as the addition of another hazardous material. In addition, a business would be required to apply for permits if a storage tank is to be added. Such an application would be reviewed by the building and fire departments before a permit would be issued. This would ensure that all codes are met and that additional mitigation measures are implemented as deemed necessary.

The laws and regulations in place mitigate the potential to the maximum extent feasible. In addition, in the event of an accident, the requirement for pre-planning and emergency response plans reduces the potential consequences of the accident. Nevertheless, it is not possible to completely eliminate the potential for accidents and there remains a low probability for a future hazardous material release at any of the nearby facilities that store and use hazardous materials. Such a release could potentially affect the project site and site residents due to exposure to toxic fumes, explosions, or fire.

UPRR Rail Line

As discussed in Section 4.7.1, a unit train transporting crude oil travels along the UPRR adjacent to the project site one to two times per week. In addition, local trains deliver freight, including hazardous materials to businesses located in the area. These trains operate in the Goleta area approximately four times per week. Trains hauling empty auto cars and container cars travel south along the route approximately once per day and a train hauling empty oil tank cars travels north one to two times per week (Cuesta Pass Rails, 2015). However, it is possible that additional through trains transporting freight, including hazardous materials, could run in the future as they have in the past. Nothing
prevents additional through trains carrying hazardous materials from using the rail lines, and no additional agency approvals would be required for this to occur. The public health risk posed by an accidental release would depend upon the materials involved, their toxicity, and the wind direction that could carry emissions from the release. The prevailing weather pattern at the time of release would affect the rate of dilution and the direction of transport of any gaseous or volatilized materials.

Upset may also result from the explosion of highly volatile materials within the train cars or during a derailment. Because the project site is adjacent to the rail line, explosion and fire could pose a health risk in addition to that which could result from inhalation of volatile chemicals and fumes.

The potential impact can be evaluated only in terms of probabilities. The possibility of impact is determined by a combination of the probability of an accident, the probability that the released cargo is hazardous, and the probability that winds are blowing from the spill or release into the air toward occupied receptor sites. An analysis of the potential for a rail accident resulting in the release of hazardous material was recently completed on two projects located adjacent to the UPRR and approximately ¾ and 1 ½ miles west of the project site (Envicom, 2011 and Rincon, 2014). The methodology used in these reports has been used to estimate the potential risk of local freight train accidents to the Project. Statistical data contained in two oil transportation studies, Washington State 2014 Marine and Rail Transportation Study (State of Washington, 2015) and U.S. Rail Transportation of Crude Oil: Background and Issues for Congress (Frittelli, et. al. 2014) were used to estimate the potential risk from the crude oil train to the Project.

Approximately six percent of total freight movement by rail in the United States in 2007 (the most current data available from the Office of Freight Management and Operations) consisted of hazardous materials (Office of Freight Management and Operations, 2012). The probability of a freight train accident over the 9-year period 2006 through 2014 was 1.6×10^{-5} (16 in one million) per mile of travel (Federal Railroad Administration Office of Safety Analysis 2015). The probability of a hazardous materials release given an accident during this time period was 2.0×10^{-3} (two in one thousand). Approximately four local freight trains per day operate on the tracks adjacent to the Project site. The risk of a rail accident with release of hazardous material within this one mile segment is calculated as follows:

\[
\text{4 trains per week x 52 weeks x 1 mile traveled near the Project site x } 1.6 \times 10^{-5} \left(\text{probability of accident per mile}\right) \times 2.0 \times 10^{-3} \left(\text{probability of a hazardous materials release given an accident}\right) = 6.6 \times 10^{-6} \left(\text{once every 150,000 years}\right)
\]

Injuries or fatalities may be somewhat less than the calculated probability of an accident. People located inside their apartments may be shielded from the impacts of a fire. Buildings and walls may also provide protection from the radiant heat from a fire (Orange County, 2013).

The probability of a crude oil unit train accident is estimated to be between 0.81 and 2.08 accidents per billion ton-miles transported (State of Washington, 2015). A typical unit train carries approximately three million gallons. Assuming 1.5 unit trains per week, this equates to 234 million gallons of crude oil transported past the Project site annually. The weight of crude oil varies depending on the type, but crude oil generally weighs less than water. Assuming a conservative average weight of 7.5 pounds per gallon means that approximately 880,000 tons of oil are transported past the Project site annually. Assuming an accident rate of 2 accidents per billion ton-miles transported results in an annual probability of crude oil unit train accident with release within a half mile of the Project site (one mile
segment) of 3.6×10^{-6} or once every 275,000 years. Such an accident could result in a spill, a fire, and/or an explosion. A fire or explosion could impact the health and safety of people at the Project.

Based on this analysis, the risk of derailment with or without hazardous material release is statistically low. However, according to the Goleta General Plan FEIR (3.7-2 Transport), this potential impact cannot be mitigated to a less than significant level and remains significant with respect to rail traffic along the UPRR ROW, where the project site is located. The FEIR states that the potential impact “remains significant” and no feasible mitigation measures are available to reduce the level of significance. The City Council adopted a statement of overriding considerations with respect to this impact as part of its action in certifying the FEIR for the General Plan.

U.S. 101 Freeway

The annual average daily truck traffic (AADT) on U.S 101 at Los Carneros Road in 2014 was 5,922 (Caltrans 2015). This represented 9.0 percent of the total AADT. About half of these (49 percent) were trucks with five or more axles. In 2007, trucks transported the largest volume of hazardous materials through the nation’s transportation system, moving 1.2 out of 2.2 billion tons of hazardous materials. Approximately 13.7 percent of materials transported by truck were classified as hazardous (Bureau of Transportation Statistics, 2011). Table 4.7-3 shows the breakdown of hazardous materials shipped in trucks by hazard class.

The accident rate for trucks transporting hazardous materials is estimated to be 3.2×10^{-7} per mile (0.32 in one million) (Battelle, 2001). The vast majority of incidents involving truck releases will not impact resources located more than a few thousand feet from the place of the accident (see discussion below on the potential hazards from the various types of hazardous materials. To be conservative, the analysis has assumed that accidents that occur with a half mile of the project site (one mile segment) have the potential to impact the site. Thus, the probability of an accident involving a truck on U.S 101 within a one-mile segment adjacent to the Project is calculated as follows:

- $5,922 \text{ (truck AADT)} \times 365 \text{ (days per year)} \times 0.077 \text{ (percent trucks with hazardous materials)} \times 3.2 \times 10^{-7} \text{ (accident rate per mile assumed for U.S 101)} = 0.053 \text{ or one accident every 19 years}$
<table>
<thead>
<tr>
<th>Hazard Class and Description</th>
<th>Tons (thousands)</th>
<th>% Total Tons</th>
<th>Ton-miles (millions)</th>
<th>Average miles per shipment</th>
<th>Probability of Release</th>
</tr>
</thead>
</table>
| Class 1, Explosives | 3,047 | 0.14% | 911 | 738 | 1.4×10^{-5}
 (once every 71,400 yrs) |
| Class 2, Gases | 250,506 | 11.23% | 55,260 | 51 | 1.1×10^{-3}
 (once every 890 yrs) |
| Class 3, Flammable liquids | 1,752,814 | 78.56% | 181,615 | 91 | 7.9×10^{-3}
 (once every 130 yrs) |
| Class 4, Flammable solids | 20,408 | 0.91% | 5,547 | 309 | 9.1×10^{-5}
 (once every 11,000 yrs) |
| Class 5, Oxidizers and organic peroxides | 14,959 | 0.67% | 7,024 | 361 | 6.7×10^{-5}
 (once every 14,900 yrs) |
| Class 6, Toxic (poison) | 11,270 | 0.51% | 5,667 | 467 | 5.1×10^{-5}
 (once every 19,600 yrs) |
| Class 7, Radioactive materials | 515 | 0.02% | 37 | 5 | 1.0×10^{-6}
 (once every 500,000 yrs) |
| Class 8, Corrosive materials | 114,441 | 5.13% | 44,395 | 208 | 5.1×10^{-7}
 (once every 1,950 yrs) |
| Class 9, Miscellaneous dangerous goods | 63,173 | 2.83% | 23,002 | 484 | 2.8×10^{-7}
 (once every 3,500 yrs) |
| Total | 2,231,133 | 100.00% | 323,457 | 96 | 0.01
 (once every 100 yrs) |

The probability of release for each class of hazardous materials is calculated by multiplying the total probability of release (0.01) by the % total tons for each class. For example, the probability of release for Class 1 is calculated by multiplying 0.01 times 0.0014 (0.14%) which equals 0.000014 (1.4×10^{-5}).

It should be noted that an accident involving a truck carrying hazardous material does not always result in the release of the material. The Federal Emergency Management Agency’s (FEMA) Handbook of Chemical Hazard Analysis Procedures (1989) estimates that approximately half of accidents result in a release, including very minor valve and fitting leaks. Omitting minor release accidents, a spill may result from an accident about 15 percent to 20 percent of the time (FEMA, 1989). After applying the more conservative assumption of 20 percent, the probability of a truck accident releasing hazardous material on U.S 101 within one half mile of the project is 0.053 x 0.2 = 0.01, or once every 100 years.

The Project site is approximately 250 feet and 300 feet south of the southbound lane of the freeway at the eastern and western sides of the site, respectively. The potential impact from a truck accident with release would be dependent of the type and amount of material released. Table 4.7-3 presents the probability of release by cargo type. As can be seen from Table 4.7-3, the sum of the probabilities of the individual hazard classes presented below is 0.01 or once every 100 years. The consequence of each type is discussed below.

Class 1, Explosives. An event involving explosives could cause property damage on the Project site as well as injury and or death. The probability of a release of explosive material is 1.4×10^{-5} or once every 71,400 years (see Table 4.7-3).
Class 2, Gases. The probability of a release of a gas is 1.1×10^3, or once every 890 years (see Table 4.7-3). For a gas release to impact the Project, the wind would have to be blowing from the north. In addition, the gas would either have to be flammable or toxic and enough material would have to be released to generate a hazardous cloud that could reach the site. If a flammable cloud were to be ignited immediately at the source of the release, then there would be no impact to the Project site. FEMA (1989) estimates that 63 percent of the gases transported are flammable. Assuming a probability of the wind blowing from the north at 50 percent, the probability of a release possibly reaching the Project site is 3.5×10^{-5} or once in 2,890 years. Even if a gas cloud were to reach the property, a person would not necessarily be impacted. A non-toxic flammable gas would not pose a hazard unless it becomes ignited. The impact from a toxic gas cloud would depend on the type of material, concentration, and sensitivity of the person to that material. One effective way of responding to a release of a toxic gas is to shelter in place. Buildings provide shelter against contaminants by three methods: condensation of vapors on exterior walls, passive filtering by the building material and structure, and providing a physical barrier to vapor/gas intrusion. In addition to providing a physical barrier and causing vapors to condense, building exteriors provide a “filter” for contaminants as surfaces, cracks and pores absorb the contaminants before they enter the building. Once those vapors/gases enter the building they are diluted by the uncontaminated air already in the building. In addition, since a structure slows the rate of vapor/gas infiltration the effects of fluctuations in concentration are reduced. This reduces the indoor concentration relative to the outdoor concentration (Governor’s Office of Emergency Services, 2014).

Class 3, Flammable liquids. The majority of materials transported by trucks are classified as flammable liquids. This class includes materials that are either flammable or combustible. The probability of a release of a Class 3 liquid is estimated to be 7.9×10^{-3} or once every 130 years (see Table 4.7-3). There are two potential hazards from a release of a flammable liquid: a fire at the release point creating radiant heat that can produce burns and, if not ignited, a flammable gas cloud that can move with the wind and become ignited someplace else. A pool fire at the point of the accident produces radiant heat that can cause burns. The intensity of the heat is dependent on the material on fire and the size of the area on fire. The intensity of the radiant heat decreases as a function of distance. The California Department of Education (CDE, 2007) estimates that the hazard zone that could begin causing second degree burns on exposed skin after 30 seconds exposure from a gasoline fire with a diameter of 100 feet (7,800 square feet) would extend to 200 feet. People located indoors or behind structures would be afforded some protection from the heat. People outdoors would feel the heat and naturally move away from it. Based on CDE estimates (2007) for a flammable gas cloud from a gasoline release to reach the Project site, the diameter of the release would have to be greater than 460 feet (166,200 square feet). A combustible material does not produce a flammable gas cloud because it does not produce enough flammable vapors at ambient temperature to become ignited (e.g., its flash point is high).

Class 4, Flammable Solids. The probability of a release of a flammable solid is 9.1×10^{-5} or once every 11,000 years (see Table 4.7-3). Flammable solids are normally more difficult to ignite than flammable liquids. In addition, because flammable solids do not spread like a liquid when released, if they become ignited the surface area on fire is relatively contained. Therefore, the radiant heat produced is normally lower than that of a flammable liquid and the area potentially impacted is lower.

Class 5, Oxidizers and Organic Peroxides. An oxidizer is a liquid or solid material that may, generally by yielding oxygen, cause or enhance the combustion of other materials. An organic peroxide is any organic compound containing oxygen (O) in the bivalent -O-O- structure. If an oxidizer or organic
peroxide is also explosive, flammable, or a gas it is classified as such and not as an oxidizer or organic peroxide. Thus, a release of such material can exacerbate the consequences of an accident involving other hazardous materials but a release without an explosive, flammable, or gas classification would not pose a hazard to the Project site. The probability of a release of a Class 5 material is 6.7×10^{-5} or once every 14,500 years (see Table 4.7-3).

Class 6, Toxic (poison). These are poisonous materials other than gases. The probability of a release of a Class 6 material is 5.1×10^{-5} or once every 19,500 years (see Table 4.7-3). Because these materials are not gases, they would only be a hazard if someone comes in contact with them or is very near them. A release of a Class 6 material should not impact the Project site.

Class 7, Radioactive Materials. Very little radioactive material is transported by truck (see Table 4.7-3). The probability of a release of a Class 7 material is 1.0×10^{-6} or once every 500,000 years. Therefore, the probability of an event involving radioactive materials would be one in one million.

Class 8, Corrosive Materials. These materials are considered to be hazardous because they corrode other materials that they may come in contact with. Because the freeway is located over 250 feet north of the Project site, on the far side of the railroad ROW, it is unlikely that the Project site would come into contact with corrosive materials in the event of a truck accident, and such materials do not present a hazard to the Project site.

Class 9, Miscellaneous Dangerous Materials. These are hazardous substances that do not fall into the other categories and include materials such as asbestos, air-bag inflators, self-inflating life rafts, and dry ice. The probability of a release of a Class 9 material is 2.8×10^{-4} or once every 3,500 years (see Table 4.7-3). Based on the type of materials in this class, a release is unlikely to impact the project site.

Based on this analysis, the risk of exposure to upset conditions from U.S. 101 is statistically low. Nevertheless, an accident involving hazardous materials on U.S. 101 could impact the surrounding population. According to the General Plan FEIR (3.7-2 Transport), this potential impact cannot be mitigated to a less than significant level by any of the General Plan policies and remains significant with respect to trucking, particularly along the U.S. 101 corridor, where the project site is located. The FEIR states that the potential impact “remains significant” and no feasible mitigation measures are available to reduce the level of significance. Therefore, the potential hazard represented by trucking on the adjacent U.S. 101 corridor is significant and unavoidable for future residents on-site. The City Council adopted a statement of overriding consideration with respect to this impact as part of its action in certifying the FEIR for the General Plan.

Risk of Upset Impact Summary

Based on the above discussion, the potential for a hazardous material release from area businesses, U.S. 101, and the UPRR is low. However, the potential consequences of such a release could be catastrophic, resulting in injury or death to project site residents. Based on the potentially catastrophic consequences of a release and consistent with the findings of the City’s General Plan FEIR, potential impacts related to the exposure of site residents to a hazardous material release are considered significant and unavoidable.

Mitigation Measures. As stated in the General Plan FEIR, mitigation is not available to address the risk of upset associated with train derailment on the UPRR ROW and truck accidents on U.S. 101. The project site is also potentially subject to hazardous material releases from nearby businesses.
Beyond existing regulations enforced by the County’s Environmental Health Department, measures are not available to mitigate the risk of upset from these sources.

Residual Impact. Risk of upset impacts would remain significant and unavoidable due to the risks of a hazardous material release. To proceed with the Project, the City Council would need to adopt a statement of overriding considerations. Although mitigation is not available, the following conditions of approval are recommended regarding risk of upset.

- **The Applicant must develop a mitigation plan for evacuation procedures in the event of accident/release of hazardous materials.** This plan must be approved by the Director of Planning and Environmental Review or designee before the City issues a building permit.

- **The Applicant must develop and provide leases for apartment units that provide notification of hazards associated with the Project’s location, including UPRR, SU 101, and nearby businesses.** Clauses for the leases must be approved as to form by the City Attorney and by the Director of Planning and Environmental Review, or designee, before the City issues a building permit.

- **The Applicant must develop a notice to future property owners regarding the potential risks of upset to be reviewed and approved by the Director of Planning and Environmental Review and the City Attorney, and then recorded either as part of the Final Map or before the City issues a building permit.**

c. Cumulative Impacts. The General Plan Final EIR identifies a significant and unavoidable cumulative hazards and hazardous materials risk of upset/exposure impact resulting from the inherent risk associated with the transport of hazardous materials along major transportation routes (including U.S. 101, and the Union Pacific railroad tracks). Significant hazards include the risk of a trucking or rail accident and subsequent release of hazardous materials.

Other hazards, including potential hazardous material releases from businesses, represent a significant and unavoidable impact on residents and have been identified in this EIR. The overall risk associated with the handling, storage, and transport of hazardous materials would be expected to increase following build-out of the General Plan as additional development is introduced in close proximity to major transportation routes and hazardous material users. The potential for exposure to hazards and hazardous materials as a result of an accidental release would be statistically low or very low. Nevertheless, the cumulative risk of such exposure associated with the introduction of additional population in close proximity to U.S. 101, the UPRR railroad tracks, and businesses that store and use hazardous materials, is considered significant and unavoidable and the Project’s contribution would be considered cumulatively considerable (Class I).

Cumulative projects proposed in and around Goleta would have the potential to expose future area residents, employees, and visitors to hazards by developing and redeveloping areas that may have previously been contaminated. The magnitude of hazards for individual projects would depend upon the location, type, and size of development and the specific hazards associated with individual sites. If lead-based paint and/or asbestos containing materials are found to be present in buildings planned for demolition or renovation, or in the case that soil and groundwater contamination are found to be present on sites of planned and future development, these conditions would be required to comply with
existing applicable local, state and federal regulations. Hazard evaluations would be completed on a case-by-case basis for future development. Compliance with applicable regulations and implementation of appropriate mitigation measures, including remedial action on contaminated sites, would address impacts related to these hazards and hazardous materials associated with future development in the City. Cumulative impacts related to soil and/or groundwater contamination would be less than significant and the Project’s contribution would not be considerable. Given the scope of planned and pending projects as listed on Table 3-1 in Section 3.0, Related Projects, the majority of which are residential properties that do not utilize hazardous materials, significant cumulative public health or safety hazards are not anticipated with regard to contaminated sites.
This page intentionally left blank.
4.8 HYDROLOGY AND WATER QUALITY

This section analyzes the Project’s potential to adversely affect hydrology and water quality. Issues discussed in this section include water quality, stormwater flows, flooding hazards, and site drainage. Potential impacts to wetlands downstream of the Project are discussed in Section 4.3, Biological Resources. Potential impacts on water supply are discussed in Section 4.14, Utilities and Services Systems.

This section draws from two reports: the Preliminary Stormwater Control Plan for Heritage Ridge, dated February 2, 2016 and the Preliminary Hydraulic Report for North Willow Springs, dated August 27, 2014. These reports were peer-reviewed for accuracy and revised based upon that review. These reports are contained in their entirety in Appendix G. This section also refers to Figure 2-6 in Section 2.0, Project Description, which shows the preliminary Grading and Drainage Plan, including the locations of storm drains, drainage inlets, subterranean drainage retardation, and other features related to hydrology.

4.8.1 Setting

a. Existing Conditions. The 17.36-gross acre Project site is currently made up of 13 undeveloped lots adjacent to the previously developed Willow Springs I and Willow Springs II which is currently under construction. Currently there are two large soils stockpiles onsite with an unpaved access road. One stockpile is located on the west side of the Project site near Calle Koral and another stockpile runs along the north and east property lines. The central portion of the site is an archaeologically sensitive area, and is currently fenced and undisturbed (Preliminary Stormwater Control Plan for Heritage Ridge, refer to Appendix G).

Site Surface Drainage. Existing vegetation on the Project site consists of very sparse to moderate growth of weeds and brush. The site soils are classified primarily as Goleta Fine Sandy Loam, Milpitas-Positas Fine Sandy Loam, and Xerorthents, which have relatively high rates of infiltration. The center portion of the Project site has the highest elevations on the site and forms a ridge that divides the site drainage, with approximately half the site draining in a westerly direction and half the site draining in an easterly direction. Ultimately, all runoff from the site drains through existing storm drains and into a 7.25-acre treatment wetland located on the adjacent Willow Springs property. Runoff entering the treatment wetland drains across 500 feet (storm drain “A”) and 950 feet (storm drain “C”) of wetland vegetation before leaving the property at Hollister Avenue. Vegetative cover on the property is highly variable and dependent upon the activity of the stockpile. The hydrologic soils group is mapped as both soil type B and soil type D (Preliminary Stormwater Control Plan for Heritage Ridge, refer to Appendix G).

Surface Runoff Quantity. Retention basin calculations for the treatment wetland were performed as part of the approved Final Willow Springs I Hydraulic Report (2002) and accounted for developed runoff from North Willow Springs (the Project site) and Willow Springs II (which has since been constructed). The outflow from the retention basin is controlled through use of a trapezoidal weir.

Post-development hydrographs for the 10-, 25-, 50-, and 100-year rainfall events were routed through the retention basin using the Santa Barbara County Flood Control Urban Hydrograph method (SBUH) and compared with the pre-development hydrographs. Pre-development calculations routed through the retention basin are summarized in Table 4.8-1 (Preliminary Hydraulic Report for North Willow Springs, refer to Appendix G).
Table 4.8-1

Pre- and Post-Development Runoff Rates for the Retention Basin

<table>
<thead>
<tr>
<th>Return Period</th>
<th>Pre-Development Runoff, cfs</th>
<th>Post-Development Runoff, cfs</th>
<th>Difference, cfs</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>95.3</td>
<td>90</td>
<td>-5.3</td>
</tr>
<tr>
<td>50</td>
<td>83.0</td>
<td>80</td>
<td>-3.0</td>
</tr>
<tr>
<td>25</td>
<td>70.8</td>
<td>69</td>
<td>-1.8</td>
</tr>
<tr>
<td>10</td>
<td>56.3</td>
<td>56</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: Preliminary Hydraulic Report for North Willow Springs, Appendix G.

Surface Water Quality. Tecolotito Creek flows southward from the retention basin to its confluence with Los Carneros Creek south of Hollister Avenue and ultimately flows into the Goleta Slough (Slough). Tecolotito Creek and Los Carneros Creek are considered the primary sources of fresh water for the Slough. These waterways are shown in the context of Goleta’s major hydrological features in Figure 4.8-1.

According to California’s 2010 Integrated Report, which is developed by the State Water Resources Control Board (SWRCB) pursuant to the Clean Water Act, both Tecolotito Creek and the Goleta Slough are designated as impaired waterways (SWRCB, 2011). Tecolotito Creek is listed as impaired due to the following pollutants:

- Chloride
- Sodium

Los Carneros Creek is listed as impaired due to the following pollutants:

- Nitrates
- Escherichia coli (E. coli)
- pH
- Enterococcus
- Electrical Conductivity

The Goleta Slough is listed as an impaired estuary due to pathogens from unknown sources, urban runoff/storm sewers, and natural sources, and due to “priority organics” from non-point sources.

Flood Hazard. The Federal Emergency Management Agency (FEMA) defines 100-year flood hazard areas through the publication of Flood Insurance Rate Maps (FIRM). As shown by Figure 4.8-2, the FIRM for the Project site (Map ID 06083C1362G) shows that the site is not within the 100-year flood zone of any nearby waterways. Low-lying shoreline areas, and areas adjacent to sloughs and coastal streams, are most susceptible to tsunami hazards in Goleta (Goleta, GP/CLUP, Safety Element, 2006). Figure 5-2 in the City of Goleta General Plan shows that the Project site is outside of the potential tsunami run-up area. The City-designated potential run-up area includes anticipated effects from potential earthquake sources and hypothetical extreme landslide sources, generally following the 12-meter (approximately 40 feet) topographic contour. The Tsunami Inundation Map for Emergency Planning developed by California Emergency Management Agency (CalEMA) does not include the Project site within the State-designated Tsunami Inundation Area (CalEMA, 2009).
Major Hydrological Features in the City of Goleta

Figure 4.8-1

Source: City of Goleta, May 2004.
FEMA Flood Map of the Project Location

Figure 4.8-2

City of Goleta
Lake Los Carneros is located north of the Project site, just north of U.S. Highway 101 (U.S. 101). In the event of dam failure at Lake Los Carneros, inundation flows would occur along the same path of the Los Carneros Creek which flows generally north to south through the City toward the Goleta Slough. The creek runs parallel to the U.S. 101/Union Pacific Railroad (UPRR) right-of-way, north of the project site, and south through a concrete channel in the Aero Camino industrial area, east of the site. It then runs westerly parallel to Hollister Avenue to the areas south of the Project site and then on toward the Goleta Slough. Figure 4.3.6-A, Dam Location and Inundation Map, prepared for the Santa Barbara County Hazard Mitigation Plan shows that the Project site is outside of the Lake Los Carneros dam inundation area (County of Santa Barbara, 2006).

b. Regulatory Setting.

Federal.

Clean Water Act. The primary goals of the Federal Clean Water Act, 33 USC §§ 1251, et seq. (CWA) are to restore and maintain the chemical, physical, and biological integrity of the nation’s waters and to make all surface waters fishable and swimmable. The CWA forms the underlying national regulations for managing water quality and the control of pollutant discharges. The CWA objectives include regulating pollutant and toxic pollutant discharges; providing for water quality which protects and fosters the propagation of fish, shellfish and wildlife; developing waste treatment management plans; and developing and implementing programs for the control of non-point sources pollution.

The CWA provides the legal framework for several water quality regulations including the National Pollutant Discharge Elimination System (NPDES), effluent limitations, water quality standards, pretreatment standards, anti-degradation policy, non-point source discharge programs, and wetlands protection.

Section 303(d) of the CWA (33 U.S.C. § 1313) requires identification and listing of water-quality limited or “impaired” water bodies where water quality standards or receiving water beneficial uses are not met. Once a water body is listed as “impaired,” total maximum daily loads (TMDLs) must be established for the pollutants or flows causing the impairment. Once established, the TMDL allocates the loads among current and future pollutant sources to the water body. In general, where urban runoff is identified as a significant source of pollutants causing the impairments and is subject to load allocating, the implementation of and compliance with the TMDL total maximum daily loads requirements is administered through a combination of individual Industrial Stormwater Permits, the General Industrial and General Construction Stormwater Permits, and the City of Goleta’s municipal stormwater NPDES program. The Environmental Protection Agency (EPA) has delegated the responsibility for administration of portions of the CWA to state and regional agencies, including the State of California. Accordingly, the primary regulations resulting from the CWA (e.g., the NPDES program) are discussed in the state and local regulation discussions that follow.

The CWA regulates the discharge of dredged or fill material into water of the United States, including wetlands. A 404 permit is required before dredged or fill material may be discharged into waters of the United States and must be reviewed by the U.S. Army Corps of Engineers. A 404 permit was issued to the property owner of Willow Springs I to maintain a riparian area/ wetland adjacent to the development. This permit was issued for stormwater runoff from the Willow Springs II and III.
Federal Antidegradation Policy. The CWA’s antidegradation policy requires individual states to develop statewide antidegradation policies and identify methods for implementing them. Pursuant to 40 C.F.R. § 131.12, state anti-degradation policies and implementation methods must, at a minimum, protect and maintain: (1) existing in-stream water uses; (2) existing water quality where the quality of the waters exceeds levels necessary to support existing beneficial uses, unless the state finds that allowing lower water quality is necessary to accommodate economic and social development in the area; and (3) water quality in waters considered an outstanding national resource. State permitting actions must be consistent with the federal antidegradation policy (40 C.F.R. § 131.12).

State.

Porter-Cologne Water Quality Control Act (California Water Code). The State of California is authorized to administer federal law or state-enacted laws regulating water pollution within California. The Porter-Cologne Water Quality Control Act (Water Code §§ 13000, et seq.) includes regulations to implement the CWA. These provisions include NPDES permitting, dredge and fill programs, and civil and administrative penalties. The Porter-Cologne Act is broad in scope and addresses issues relating to the conservation, control, and utilization of the water resources of the State. Additionally, the Porter-Cologne Act states that the quality of all the waters of the State (including groundwater and surface water) must be protected for the use and enjoyment by the people of the State (Water Code § 13000).

The SWRCB and its nine Regional Water Quality Control Boards (RWQCBs) are agencies within the umbrella structure of the California Environmental Protection Agency (CalEPA). The SWRCB has the principle responsibility for the development and implementation of California water quality policy and must develop programmatic water quality control procedures to be followed by the RWQCBs. The Central Coast RWQCB is the region that regulates water quality permitting in the City of Goleta. The Central Coast RWQCB adopted a Revised Water Quality Control Plan (Basin Plan) on September 8, 1994. The Basin Plan designates beneficial uses and establishes water quality objectives for groundwater and surface water within the Central Coast Region.

Water Code § 13050 defines what is considered pollution, contamination, or nuisance. Pollution means an alteration of water quality such that it unreasonably affects the beneficial uses of water (which may be for drinking, agricultural supply, or industrial uses). Contamination means an impairment of water quality to the degree that it creates a hazard to the public health. Nuisance is defined as anything that is injurious to health, is offensive to the senses, or is an obstruction to property use, and which affects a considerable number of people.

Discharge Permits. On August 19, 1999, the SWRCB reissued the General Construction Storm Water Permit (Water Quality Order 99-08-DWQ). On December 8, 1999 the State Water Board amended Order 99-08-DWQ to apply to sites as small as one acre. The SWRCB issued a new statewide NPDES General Permit for stormwater discharges associated with construction activities (Order No. 2009-0009-DWQ, amended by 2010-0014-DWQ and 2012-0006-DWQ). To obtain coverage under the most recent General Permit, any project that disturbs an area equal to or greater than one acre requires electronic filing of all permit-related compliance documents and fees. The necessary documents include, but are not limited to, a Notice of Intent (NOI), a Stormwater Pollution Prevention Plan (SWPPP), annual reports, a Notice of Termination (NOT), and numeric action level (NAL) exceedance reports. As the stormwater program develops, the Regional Water Boards may issue General Permits or Individual Permits that contain more specific permit provisions. When this occurs, the SWRCB General Permit no longer regulates those dischargers that obtain coverage under Individual Permits.
The Central Coast RWQCB issues combined NPDES Permits under the CWA and California Water Code to all point source dischargers of waste to surface waters. To ensure protection of water quality, NPDES Permits may contain effluent limitations for pollutants of concern, pollutant monitoring frequencies, reporting requirements, schedules of compliance (when necessary), mandates for operating conditions, BMPs, and administrative requirements. NPDES Permits apply to publicly owned treatment works (POTWs) discharges, industrial wastewater discharges, and municipal, industrial, and construction site stormwater discharges.

State Antidegradation Policy. The SWRCB adopted Resolution No. 68-16 (October 28, 1968), “Statement of Policy with Respect to Maintaining High Quality Waters in California” (more commonly referred to as the “State Antidegradation Policy”), which restricts the degradation of surface waters of the State and protects bodies of water where the existing water quality is higher than necessary for the protection of present and anticipated designated beneficial uses. This State policy is generally consistent with the subsequently adopted Federal Antidegradation Policy discussed previously. The State Antidegradation Policy is implemented by the Central Coast RWQCB.

Local.

Stormwater Technical Guide for Low Impact Development. Effective March 6, 2014, new and redevelopment in the City of Goleta must be designed to prevent water quality impacts from occurring, during both the construction phase, as well as throughout the life of the project, by implementing the Central Coast RWQCB’s Post-Construction Stormwater Management Requirements for Development Projects in the Central Coast Region. To assist project applicants in meeting these requirements, the City of Goleta has adopted the Santa Barbara County Stormwater Technical Guide for Low Impact Development (Guide) (February 2014). The Guide is designed to ensure City compliance with post-construction requirements, facilitate review of applications, and promote integrated Low Impact Development (LID) design. The Guide interprets, clarifies, and adds to the post-construction requirements.

The purpose of the Guide is to implement and enforce a program designed to reduce the discharge of pollutants to the “maximum extent practicable” (MEP) to protect water quality. According to the Phase II Small MS4 General Permit Order 2013-0001-WQ, effective July 1, 2013, the MEP standard is an ever-evolving, flexible, and advancing concept, which considers technical and economic feasibility. Since knowledge about controlling urban runoff continues to evolve, so does the mitigation, which constitutes the MEP. Reducing the discharge of stormwater pollutants to the MEP in order to protect beneficial uses requires review and improvement, which includes seeking new opportunities. To do this, the City must conduct and document an evaluation and assessment of each relevant element of its program and revise, as necessary, activities, control measures, BMPs, and measurable goals to meet the MEP.

Project Clean Water. Project Clean Water (PCW) is the County of Santa Barbara’s stormwater quality program initiated in 1998 to improve water quality in local creeks and the ocean by implementing many of the aspects of NPDES BMPs. This program also includes watershed planning and restoration as well as pilot treatment control BMPs and monitoring. PCW is managed and staffed by the Santa Barbara County Water Agency and the Environmental Health Services Division (EHS) of the Public Health Department, who are available to work closely with the City of Goleta as needed for access to water quality information.
General Plan/Coastal Land Use Plan. Goleta’s General Plan addresses water resource issues and conditions within the City. The Conservation Element of the General Plan established policies that the City will implement with regard to its operations, including regulation of new development. These Conservation Element policies and the objectives that relate to water resources are as follows:

CE 2: Protection of Creeks and Riparian Areas
Objective: Enhance, maintain, and restore the biological integrity of creek courses and their associated wetlands and riparian habitats as important natural features of Goleta’s landscape.

CE 3: Protection of Wetlands
Objective: To preserve, protect, and enhance the functions and values of Goleta’s wetlands.

CE 10: Watershed Management and Water Quality
Objective: To prevent the degradation of the quality of groundwater basins and surface waters in and adjacent to Goleta.

CE 15: Water Conservation and Materials Recycling
Objective: To conserve scarce water supply resources and to encourage reduction in the generation of waste materials at the source and recycling of waste materials.

As discussed further Under Impact HWQ-2, the Central Coast RWQCB has adopted new stormwater quality standards as part of Order R3-2013-0032, which took effect in March 2014. This order creates new specific standards for development projects in the Central Coast region. These standards, termed Post-Construction Stormwater Management Requirements, replace the City’s Interim Low Impact Development (LID) Criteria, which had been in effect since 2009.

4.8.2 Impact Analysis

a. Methodology and Significance Thresholds. Impacts to surface drainage were evaluated by a comparison of pre-development drainage, under current site conditions, and calculations of runoff flow rates after development of the Project. Water quality impacts were evaluated based on the expected discharge of pollutants to impaired waterways in the Project vicinity. Lastly, flood hazards were assessed according to FEMA flood maps and estimates of tsunami run-up in the Goleta General Plan and CalEMA tsunami inundation maps.

Based on the CEQA Guidelines, a significant impact related to hydrology and water quality could occur, if the Project would:

1. Violate any water quality standards or waste discharge requirements?
2. Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)? (Addressed in Section 4.14, Utilities and Services Systems)
3. Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?

4. Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?

5. Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?

6. Otherwise substantially degrade water quality?

7. Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map? (Addressed in Section 4.15, Effects Found Not to be Significant)

8. Place within a 100-year flood hazard area structures which would impede or redirect flood flows? (Addressed in Section 4.15, Effects Found Not to be Significant)

9. Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam? (Addressed in Section 4.15, Effects Found Not to be Significant)

10. Inundation by seiche, tsunami, or mudflow?

The City of Goleta's Environmental Thresholds and Guidelines Manual (2002) specifies the following significance thresholds (these thresholds have been organized according to the topics addressed in this section).

Hydrology and Drainage. The Project would result in a significant impact related to surface drainage if it would:

- Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate of amount of surface runoff in a manner that would result in flooding, increased erosion, or increased sedimentation on-site or off-site [Thresholds 3 and 4]; or
- Create or contribute runoff water that would exceed the capacity of existing or planned stormwater drainage systems or increase runoff into naturally drained areas without storm drains [Threshold 5].

Surface Water and Groundwater Quality. The Project would result in a significant surface water or groundwater impacts if its construction or operation results in:

- Disturbance of one (1) or more acres of land if the project is located within an urbanized area of the County and the project construction or redevelopment individually or as a part of a larger common plan of development [Threshold 6];
- An increase in the amount of impervious surfaces on a site by 25 percent or more [Thresholds 4 and 5];
- Channelization or relocation of a natural drainage channel [Thresholds 3 and 4];
• Discharge of pollutants that exceed the water quality standards set forth in the applicable NPDES permit, the Basin Plan or otherwise impairs the beneficial uses of a receiving waterbody [Thresholds 1 and 5];
• Results in a discharge of pollutants into an “impaired” waterbody that has been designated as such by the SWRCB or the RWQCB under Section 303 (d) of the CWA [Threshold 1];
• Results in a discharge of pollutants of concern to a receiving water body, as identified in by the RWQCB [Threshold 1];
• Substantial degradation of groundwater quality [Threshold 1]; or
• If a project does not comply with the City’s Stormwater Program [Thresholds 1 and 5].

Due to the site’s relatively flat topography and the minimal slopes on adjoining parcels, the threat of mudslides and other similar hazards related to hydrology is considered non-existent. Furthermore, the Project site is not subject to any hazard posed by a future failure of any upstream levee or dam. Therefore, impacts related to housing within a 100-year flood hazard area (Thresholds 7 and 8) and exposure of people to a risk of loss, injury, or death involving flooding (Threshold 9) would be less than significant and are not discussed further in this section (refer to Section 4.15, Effects Found Not to be Significant).

b. Project Impacts and Mitigation Measures.

Impact HWQ-1 During grading and construction of the Project, the soil surface would be subject to erosion and downstream watersheds could be subject to temporary sedimentation and discharges of various pollutants. Compliance with discharge requirements during grading and construction would ensure that hydrologic impacts from construction would be Class III, less than significant [Threshold 1].

The Project would involve construction of 360 residential units and associated landscaping and hardscape. Estimated preliminary Project grading would include approximately 178,000-cubic yards of cut and 15,500-cubic yards of fill with approximately 115,000-cubic yards of export material, as described in Section 2.3.3. Excavation and grading could result in erosion of soils and sedimentation, which could cause temporary impacts to surface water quality and therefore violate water quality standards or contribute additional sources of polluted runoff. Project development would likely require temporary on-site storage of excavated soils (stockpiling). During grading and soil storage, there is the potential for soil migration offsite via wind entrainment and/or water erosion. In addition, there is potential for erosion caused by the tires of vehicles and equipment throughout the construction period.

Impacts would be minimized during all phases of Project construction through compliance with the Construction General Permit (this permit is described above in Section 4.8.1(a), Existing Conditions, under the headings Regulatory Setting, State Regulations, and Discharge Permits) and with City grading regulations. To comply with these regulations, the applicant would be required to prepare and implement a SWPPP, which must include erosion and sediment control BMPs that would meet or exceed measures required by the Construction General Permit, as well as BMPs that control other potential construction-related pollutants. Erosion control BMPs are designed to prevent erosion, whereas sediment controls are designed to trap sediment once it has been mobilized. Examples of BMPs that may be implemented during construction include the use of geotextiles and mats, temporary drains
and swales, silt fences and sediments traps. Erosion control practices may include the use of drainage controls such as down drains, detention ponds, filter berms, or infiltration pits; removal of any sediment tracked offsite within the same day that it is tracked; containment of polluted runoff onsite; use of plastic covering to minimize erosion from exposed areas; and restrictions on the washing of construction equipment.

The Construction General Permit requires the SWPPP to include a menu of BMPs to be selected and implemented based on the phase of construction and the weather conditions to effectively control erosion and sediment using the Best Available Technology Economically Achievable and Best Conventional Pollutant Control Technology (BAT/BCT) and to protect water quality. These construction site management BMPs would be implemented for the Project during the dry season and wet season as necessary depending upon the phase of construction and weather conditions. These BMPs would help ensure effective control of not only sediment discharge, but also of pollutants associated with sediments, including but not limited to nutrients, heavy metals, and certain pesticides or herbicides. Because the development and implementation of a SWPPP is a standard requirement that would apply to this Project, hydrologic impacts from construction would be less than significant.

Mitigation Measures. Hydrologic impacts from construction would be less than significant with implementation of standard requirements. No mitigation is required to further reduce impacts.

Residual Impact. Impacts from construction would be less than significant without mitigation.

Impact HWQ-2 The Project would alter on-site drainage patterns and increase impermeable surfaces. Preparation of a maintenance agreement is required to ensure long-term protection and maintenance of drainage facilities. Impacts on site drainage would be Class II, significant but mitigable [Thresholds 3 and 4].

The Project would involve a Vesting Tentative Map to merge the existing 13 lots on the Project site into two lots for residential use and one lot for a 2-acre public park, resulting in a substantial increase in impervious surface on the site. The proposed on-site building coverage would total 3.1 acres (representing 17 percent of the 17.36-gross acre site). Accounting for these buildings as well as the proposed driveways, carports, and parking areas, impervious surfaces would cover approximately 6 acres (35 percent) of the Project site. The remainder of site coverage would consist of a 0.6-acre bioretention basin, a 2-acre park, and 7.2 acres of common open space. Total impervious surface area is estimated to be about 37 percent after completion of the Project. The substantial increase in impervious surface would result in reduced infiltration and increased sheetflow on the site. In addition, grading would affect site drainage by reducing the grade differential across the site; however, existing drainage patterns would not be substantially altered because major natural drainage features are not present onsite.

To accommodate changes to the onsite movement of water during operation of the Project, LID design strategies would be incorporated into the Project. Uncovered parking stalls throughout the Project would be constructed with permeable pavers set on a gravel base. Some walkways and patio area would also be constructed with permeable pavers. Runoff from roof areas would be directed to landscape areas where possible. In addition, bioretention basins, vegetated swales, permeable pavers set on a gravel reservoir, and a subsurface ADS Stormtech Chamber system, would be used as Stormwater Control Measures. The detention system also incorporates components that act as stormwater filtration...
units at each point of stormwater conveyance into the subsurface system. The bioretention areas and storm drainage storage system are proposed to achieve compliance with the Central Coast RWQCB’s Order R3-2013-0032 and City of Goleta flood control and water quality requirements.

The City of Goleta has adopted the Santa Barbara County Stormwater Technical Guide for Low Impact Development. The bioretention basins have been designed using the calculation spreadsheet provided by the stormwater Guide. According to City of Goleta Standard Conditions for Project Plan Approval – Water Quality BMPs, the water quality design volume for stormwater detention on the Project site would be 24,508 cf. The volume of the Project’s proposed detention facility is 30,000 cf, thus exceeding the water quality design volume requirement.

Based on these post-development conditions, the Preliminary Hydraulic Report for North Willow Springs (refer to Appendix G) estimates overall runoff volumes from the Project site into the City’s storm drain system. Total post-development peak flows subject to the proposed drainage control infrastructure are estimated at 56 cfs for the 10-year storm event, 69 cfs for the 25-year storm event, 80 cfs for the 50-year storm event, and 90 cfs for the 100-year storm event. Results of the pre- and post-development calculations routed through the retention basin are summarized in Table 4.8-1 above (Preliminary Hydraulic Report for North Willow Springs, refer to Appendix G).

As shown in Table 4.8-1, post-development peak runoff rates would be equal or less than the expected runoff rates for the same return periods from the pre-development peak runoff rates.

Central Coast RWQCB Order R3-2013-0032, which took effect in March 2014, creates new Post-Construction Stormwater Management Requirements (Post-Construction Requirements) for development projects in the Central Coast region. These replace the City’s Interim LID Criteria, which had been in effect since 2009. The primary objective of the Post-Construction Requirements is to ensure that Project applicant reduce pollutant discharges to the maximum extent practicable and prevent stormwater discharges from causing or contributing to a violation of receiving water quality standards. The Post-Construction Requirements emphasize protecting and, where degraded, restoring key watershed processes to create and sustain linkages between hydrology, channel geomorphology, and biological health necessary for healthy watersheds. The Post-Construction Requirements include specific standards related to:

- Site design and runoff reduction;
- Water quality treatment;
- Runoff retention; and
- Management of peak runoff levels.

The applicant would be required to submit a comprehensive Hydrology and Hydraulic Analysis signed by a registered Civil Engineer that details the pre- and post-development conditions of the Project site. As described in Section 4.3, Biological Resources, the Project would not result in a reduction in runoff that would result in any hydrological interruption to in Los Carneros Wetland or affect the existing hydrological process. Consistent with the Post-Construction Requirements, this report would identify drainage control improvements that would be integrated into the Project design. The submitted final Hydrology and Hydraulic Analysis would be reviewed and approved by City staff before approval of any Land Use Permit for the Project.
The preliminary design of stormwater treatment facilities and other stormwater pollution control measures in this plan are in accordance with the current edition of the Santa Barbara County Project Clean Water’s Stormwater Technical Guide. Drainage infrastructure would be constructed as proposed and maintained over the life of the Project. Failure to either construct as proposed and/or maintain the system over the life of the Project could result in failure of these facilities and post-development stormwater flows exceeding pre-development flows causing substantial increases in bank/channel erosion or siltation at this discharge point in local surface waters.

Without a Stormwater Control Plan, the Project would have a potentially significant impact on site drainage.

Mitigation Measures. To reduce impacts to site drainage, the Project would be required to submit a Stormwater Control Plan.

HWQ-2 Maintenance Agreement and Stormwater Control Plan. The applicant must execute a maintenance agreement and Stormwater Control Plan with the City, in a form approved by the City Attorney, that implements maintenance requirements for all improvements associated with all BMPs described in the final approved Hydrology and Hydraulic Analysis and Storm Water Control Plan. The agreement must be executed before the City issues any final certificate of occupancy.

Plan Requirements and Timing: At a minimum, the maintenance agreement and Stormwater Control Plan between the applicant and City must include requirements that all inline storm drain filters must be inspected, repaired, and cleaned per manufacture specifications and at a minimum before September 30th of each year. Additional inspections, repairs, and maintenance must be performed after storm events as needed throughout the rainy season (November 1st to April 15th) and/or per manufacture specifications. Any necessary major repairs must be completed before the next rainy season. Before September 30th of each year, the applicant must submit to Public Works for review and approval a report summarizing all inspections, repairs, and maintenance work done during the prior year.

Monitoring: City Planning and Environmental Review staff must verify compliance before approval of any occupancy permit for the Project. City Planning and Environmental Review staff must verify compliance with the provisions of the agreement periodically and respond to instances of non-compliance with the agreement.

Residual Impact. With preparation of maintenance agreement identified in the Hydrology and Hydraulic Analysis and Storm Water Control Plan, impacts on site drainage would be reduced to a less than significant level.
Impact HWQ-3 New sources of pollution associated with operation of the proposed residential development have the potential to affect impaired waterways in Goleta. However, compliance with State and local requirements would ensure that impacts from water pollutants would remain Class III, less than significant [Thresholds 5 and 6].

The new residential units associated with the Project would introduce a variety of pollutants typical of residential development to a site that is currently vacant and undeveloped. Waste in the form of leftover paints, solvents, cleaning and automotive products, or pool chemicals associated with recreational facilities, could be spilled or dumped into the storm drain system. Nutrients from fertilizers and animal waste along walking trails, including nitrogen and phosphorous, can result in excessive or accelerated growth of vegetation or algae, resulting in oxygen depletion and additional impaired uses of water. Heavy metals such as lead, cadmium, and copper are the most common metals found in urban storm water runoff. These metals can be toxic to aquatic organisms, and have the potential to contaminate drinking water supplies. Furthermore, impermeable surfaces such as driveways would accumulate deposits of oil, grease, and other vehicle fluids and hydrocarbons (which can be toxic to aquatic organisms at low concentrations), while preventing infiltration of polluted runoff during storm events and facilitating the off-site transport of pollutants.

Residential development on the Project site would incrementally increase the amount of pollutants that could be contained in the first flush of runoff from the area associated with residents and associated uses (car washing, chemical cleaners, pets, trash, etc.). The increase in impervious surface to more than 37 percent of the Project site would incrementally increase peak flows from the site to offsite drainages (refer to Table 4.8.1). As discussed in the Section 4.8.1, stormwater runoff from the Project site would generally flow to detention basins before being discharged and eventually flowing into Tecolotito Creek, Los Carneros Creek, and the Goleta Slough.

Project features such as landscaping and permeable paving would mitigate the discharge of polluted runoff. In addition, installation of mutt-mitt dispensers and refuse receptacles along walking paths, and in park or open areas would reduce pollution from animal waste. As discussed in the preliminary drainage analysis for the Project (refer to Appendix G), the proposed drainage infrastructure would provide infiltratable features onsite to remove stormwater pollutants prior to discharge off-site. As downspouts on the proposed buildings convey runoff from rooftops, it would be discharged to landscaped common areas. A portion of runoff on the site would infiltrate the pervious surface in landscaped areas and percolate through the soil, reducing the transport of pollutants off-site. In addition, the proposed use of permeable pavers within the parking areas onsite, would enable infiltration of surface water during storm events. Nevertheless, the potential remains for pollutants from operation of the project to be discharged into Tecolotito Creek, Los Carneros Creek, and the Goleta Slough, all of which are listed as impaired waterways based on Central Coast RWQCB criteria. To address the potential for pollutant discharges into these impaired water bodies, the Project would be required to comply with the Post-Construction Stormwater Management Requirements of Order R3-2013-0032, as described under Impact HWQ-2.

By increasing the amount of effective impervious surface onsite by 37 percent, the Project would be subject to the most stringent criteria under Post-Construction Requirements. Based on the proposed site design, the Project would meet the performance measure for water quality (treatment of stormwater runoff up to the 85th percentile).
The applicant would be required to apply for a National Pollutant Discharge Elimination System (NPDES) Storm Water Permit from the California RWQCB. Implementation of the NPDES-required Storm Water Permit would ensure that 100 percent of rainfall from the site would flow either into/onto the source control BMPs or onto areas of undisturbed natural vegetation, and would reduce impacts that could occur from pollutants on-site or increase in storm flows on or off-site. Furthermore, as part of the comprehensive drainage report discussed under Impact HWQ-2, the applicant would be required to incorporate BMPs for stormwater quality into the Project’s design, consistent with the requirements of the Central Coast RWQCB’s Post-Construction Requirements.

With compliance with the Post-Construction Requirements, the Project would have a less than significant impact on water quality.

Mitigation Measures. Impacts related to water quality would be less than significant. No mitigation is necessary to further reduce impacts.

Residual Impact. Impacts would be less than significant without mitigation.

Impact HWQ-4
The Project site is located outside of a FEMA-mapped flood area. Impacts related to flood hazards would be Class III, less than significant [Threshold 10].

As discussed in Section 4.8.1(a), *Existing Conditions*, the Project site is outside of any flood hazard area as mapped by FEMA. Given the property’s relatively flat topography and the minimal slopes on adjoining parcels, the threat of mudslides and other similar hazards is considered non-existent. The Project site is not subject to any hazard posed by a future failure of any upstream levee or dam as it is located outside of any dam inundation area mapped by the County of Santa Barbara (2006). The Project site is not within the General Plan potential tsunami run-up area, and is outside of the Tsunami Inundation Line mapped by CalEMA (2009). Therefore, the Project would have less than significant impacts related to flood hazards.

Mitigation Measures. Mitigation is not required as impacts would be less than significant.

Residual Impact. Impacts would be less than significant without mitigation.

c. **Cumulative Impacts.** Cumulative projects in the Goleta area, including those that are pending, approved, or under construction, would add 1,511 residential units and more than 1.8 million square feet of commercial and retail space. Collectively, these projects would add new sources of water pollution and would increase the amount of impervious surface in the Goleta area, contributing to existing impairments of waterways such as Tecolotito Creek, Los Carneros Creek, and the Goleta Slough. In particular, the Project could contribute to cumulative stormwater flows; sedimentation and siltation of surface water bodies; and water pollution from bacteria, metals and other sources. Given that Tecolotito Creek, Los Carneros Creek, and the Goleta Slough are currently impacted, cumulative impacts to water quality would be potentially significant.

Nevertheless, the Project would be subject to implementation of appropriate Best Management Practices in accordance with City, State, and Federal requirements. Furthermore, all qualifying projects are subject to the requirements of the NPDES Permit, which is specifically designed to develop, achieve, and implement a timely, comprehensive, and cost-effective storm water pollution control program. As
with the Project, cumulative projects that disturb more than one acre of soil would be required to compile and implement a SWPPP, which would include appropriate BMPs. Moreover, the Project would be expected to meet the applicable water quality standards and sufficiently reduce its incremental contribution to cumulative water quality impacts to a less than significant level. The Project, with incorporation of the proposed on-site detention systems, implementation of storm water standards/regulations, and implementation of mitigation measures included in this EIR would meet requirements for stormwater discharge during construction and operation of the Project. Therefore, the Project would not contribute significantly to cumulative impacts to regional water quality and hydrology.
4.9 LAND USE AND PLANNING

This section analyzes the Project’s land use compatibility with existing land uses and consistency with applicable City land use policies. Additional impacts that can affect the Project’s compatibility with adjacent and nearby land uses are discussed in the following sections: Section 4.1, Aesthetics; Section 4.2, Air Quality; Section 4.7, Hazardous Materials/Risk of Upset; Section 4.10, Noise; and Section 4.13, Transportation and Circulation. The purpose of this discussion is to identify whether or not the Project would conflict with City land use policies and thereby result in an environmental impact, policy inconsistency or prevent mitigation of environmental effects intended by the policy. This discussion is provided for environmental analysis and does not affect the City Council’s determinations regarding the Project. Pursuant to CEQA, and for purposes of this analysis, an action, program or project is consistent with the General Plan if, considering all of its aspects, it will further the goals, objectives and policies of the overall Plan.

4.9.1 Setting

a. Regional Land Use. Goleta encompasses approximately eight square miles and is located in the South Coast of Santa Barbara County. The City is situated along U.S. 101, the major coastal highway linking northern and southern portions of the state. A portion of the City, including its two-mile Pacific shoreline, is within the California Coastal Zone. The Santa Barbara Municipal Airport, which is within the corporate boundaries of the City of Santa Barbara, lies near the geographical center of Goleta. The land use pattern in Goleta today is primarily a result of a transition over many decades from rural and agricultural land uses to a suburban community (Goleta General Plan/Coastal Land Use Plan FEIR, 2006). The predominant land use in Goleta is residential, though the City also includes a variety of commercial, industrial, and institutional land uses as well as agricultural land.

b. Site and Surrounding Land Uses. Historically, the Project site was used for grazing and agriculture (including row crops and orchards). The Project site is currently undeveloped and sparsely vegetated with weeds and shrubs. There are also a number of rock piles, pieces of construction machinery and storage containers that are stored on-site. The Project site is surrounded by existing development as described below.

To the north of the Project site, the Union Pacific Railroad tracks are located approximately 50 feet from the site’s northern property line. The U.S. 101 southbound freeway on-ramp from S. Los Carneros Road is immediately north of the railroad tracks, which is approximately 160 feet from the sites’ northern property line. U.S. 101 is located north of the on-ramp, approximately 250 feet from the northern property line. S. Los Carneros Road is located directly west of the Project site. A residential development with 465 residential units is currently under construction on a formerly vacant site west of S. Los Carneros Road. To the east of the Project site, industrial businesses are located along Aero Camino Road. Across Camino Vista Road to the south of the Project site are 335 multi-family residential units (Willow Springs I and II) previously constructed and currently managed by the Project applicant. Surrounding land uses are labeled on the aerial view of the Project site shown on Figures 2-3 and 2-4.

c. Regulatory Setting. Goleta General Plan/Coastal Land Use Plan (“General Plan”) is a comprehensive statement of goals, objectives, and policies relating to the development of the community, the management of potential hazards, and the protection of natural and cultural resources within its boundaries. The General Plan is the primary means for guiding future change in Goleta and provides a guide for decision-making. The General Plan was adopted in 2006 and amended and
republished in 2009. It includes the following elements: Land Use, Open Space, Conservation, Safety, Visual and Historic Resources, Transportation, Public Facilities, Noise, and Housing.

As discussed in Section 2.0, Project Description, the Project site has a General Plan land use designation of Medium-Density Residential (R-MD) and is located in the “Central Hollister Residential Development Area” with a corresponding designation as an Affordable Housing Opportunity Site. This designation requires a minimum residential density of 20 units per acre and a maximum density of 25 units per acre. The Inland Zoning Ordinance designation of Design Residential (DR-20) permits up to a maximum of 20 units per acre. Figure 2-3 identifies the General Plan land use designations for the Project site and surrounding properties. Figure 2-4 provides the zoning designations for the Project site and the surrounding properties. Table 2-1 provides site and surrounding land use information.

The Project site is also located within the City’s Central Hollister Residential Development Area. According to the General Plan the objective of this area is to “promote coordinated planning and development of designated medium-density residential uses in the Central Hollister area in order to create quality, livable environment with appropriate design and amenities for future residents of this new residential neighborhood.”

The Project includes an application for a General Plan Amendment involving a correction to Figure 4-1 of the Conservation Element and Figure 3-5 of the Open Space Element of the General Plan as amended. These figures indicate the existence of coastal sage scrub Environmentally Sensitive Habitat Area (ESHA) on the property. Because no ESHA was found on-site during recent biological surveys, the current designation on the General Plan maps will be removed. This action is not considered a project pursuant to CEQA.

4.9.2 Impact Analysis

a. Methodology and Significance Thresholds. Land use impacts were assessed based upon the level of physical impact anticipated for the various issues that can affect compatibility (air quality, noise, human health and safety, aesthetics), as well as consistency with adopted plans, policies, and regulations.

Based on Appendix G of the CEQA Guidelines, the effects of the Project on land use would be significant if the Project would:

1. Physically divide an established community;
2. Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including but not limited to the general plan, specific plan, local coastal program, clean air plan, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect; or
3. Conflict with any applicable habitat conservation plan or natural community conservation plan.

As discussed above, the Project site is located within the City’s Central Hollister Residential Development Area and development of the Project site would contribute to the objectives established for this area. The Project would not divide an established community and there are no habitat conservation plans or natural community conservation plans applicable to the Project site; therefore the Project would have no impact with respect to Threshold 1 or Threshold 3. These thresholds are
discussed in Section 4.15, Effects Found Not to be Significant. The Project’s compatibility with applicable land use plans and policies is analyzed in Impact LU-1 and Table 4.9-1.

Although the City’s Environmental Thresholds and Guidelines Manual (1992) does not have “Land Use” thresholds of significance, it provides guidelines related to “Quality of Life.” According to the Manual, Quality of Life is broadly defined as the aggregate effect of all impacts on individuals, families, communities, and other social groupings and on the way those groups function. Quality of Life issues, while difficult to quantify, are often primary concerns to the community affected by a project. Examples of such issues include the following:

- Loss of privacy
- Neighborhood incompatibility
- Nuisance noise levels (not exceeding noise thresholds)
- Increased traffic in quiet neighborhoods (not exceeding traffic thresholds)
- Loss of sunlight/solar access

The elements comprising “Quality of Life” are to be considered on a case-by-case basis. For this analysis, the Project would result in a significant impact if it would:

4. Result in a substantial physical impact to the quality of the human environment.

These elements are augmented by the information contained in Section 4.1, Aesthetics; Section 4.2, Air Quality; Section 4.7, Hazardous Materials/Risk of Upset; Section 4.10, Noise; and Section 4.13, Transportation and Circulation, which are issues that relate directly to the Project’s land use compatibility. Specifically, Section 4.1, Aesthetics, discusses impacts to scenic views and the visual character of the site; Section 4.2, Air Quality, discusses impacts to local air quality; Section 4.7, Hazardous Materials/Risk of Upset, addresses the impacts of placing the Project in an area subject to risks of upset; Section 4.10, Noise, addresses the impacts of new sources of noise on surrounding uses; and Section 4.13, Transportation and Circulation, discusses the impact of increased traffic in the adjacent residential neighborhoods.

The Project could also be considered a positive factor in “Quality of Life” as it would provide needed housing to assist in balancing the City’s jobs/housing imbalance. Area employees may choose to live in the Project’s residential units to reduce long commutes and thereby strengthen community and family ties. This aspect of Quality of Life is consistent with a Project objective to provide workforce housing.

b. Project Impacts and Mitigation Measures.

Impact LU-1 The Project would be consistent with most applicable General Plan policies, but would be inconsistent with several policies related to preservation of views. Impacts would be Class I, significant and unavoidable [Threshold 2].

When the General Plan was adopted in 2006, the City considered the land use and zoning designations for vacant parcels and determined that residential land use/zoning designations, as well as an Affordable Housing Opportunity Site was appropriate for the Project site. The Project site has a General Plan land use designation of Medium-Density Residential (R-MD) (refer to Figure 2-3 in the Project Description for the Project site and the surrounding properties’ land use designations). The R-MD land
use designation allows a maximum of 20 units per acre and a minimum of 15 units per acre. The site is also designated as Affordable Housing Opportunity Site within General Plan Housing Element, which allows for a maximum of 25 units per acre and a minimum of 20 units per acre.

The developable lot area is used to calculate residential density. The net developable acreage is defined pursuant to Land Use Element Policy LU 2.2 as gross acreage minus all acreage containing the following development constraints:

- Environmentally sensitive habitat areas;
- Areas prone to flooding and geologic, slope instability, or other natural hazards;
- Areas with stormwater drainage problems;
- Presence of other significant hazards or hazardous materials;
- Protection of significant public and private views;
- Exposure to exterior noise levels that exceed a Community Noise Exposure Level (CNEL) of 60 dBA (see related NE 1.2);
- Areas with archaeological or cultural resources;
- Deficiencies in the type or level of services necessary for urban development, such as transportation facilities (roadway and pedestrian), sewer and water service, and emergency service response time; and
- Prevailing densities of adjacent developed residential areas.

After removing the development constraints area of 3.12 acres from the 17.36-acre Project site pursuant to LU 2.2, the net developable acreage is 14.24 acres. With the proposed 360 housing units, the density would be 25.4 units per acre. At the 25 units per acre maximum specified by the General Plan for this Central Hollister Housing Opportunity Site, the site is restricted to 356 units and therefore the Project is four units over the density limit without a density bonus. Area A would be a housing development for seniors 55 years and older or 62 years and older, pursuant to California Civil Code section 51.3(a). The senior housing Project would have 132 units, four of which qualify for density bonus units as permitted under the provisions of Government Code sections 65915, which permits a density bonus for up to 20% of a proposed senior development. The Project would use four of the 26 permitted density bonus units. Therefore, the Project would be consistent with the required density for an Affordable Housing Opportunity site pursuant to the Housing Element of the General Plan.

When the General Plan was adopted in 2006, the City Council considered the land use and zoning designations for all vacant parcels in the City and determined that a residential land use/zoning designation with an Affordable Housing Opportunity designation was appropriate for this site. The Project site is located within the City of Goleta’s Central Hollister Residential Development Area. According to the General Plan, the objective of this area is to “promote coordinated planning and development of designated medium-density residential uses in the Central Hollister area in order to create quality, livable environment with appropriate design and amenities for future residents of this new residential neighborhood.” The Project involves medium density residential uses consistent with the General Plan vision for the Central Hollister Residential Development Area. This area is close to such amenities as public transit, local and regional circulation routes, major employment centers, major shopping areas, restaurants, and other commercial services. One of the applicant’s objectives for the Project is to provide workforce housing. Pursuant to the General Plan Housing Element, workforce housing is intended to be occupied by households whose head is in the workforce as well as housing affordable to people the community relies on to supply basic services such as teachers, police, nurses, etc.
Land Use Policies LU 8.5 and LU 8.6 guide development in the Central Hollister area. Consistency with applicable policies in the General Plan for the Central Hollister area and for residential development in general is shown in Table 4.9-1.

As indicated previously, the Project also proposes and amendment to the General Plan that would revise Figure 3-5 of the Open Space Element and Figure 4-1 of the Conservation Element to remove an ESHA designation of Coastal Sage Scrub that does not occur on the property.

Table 4.9-1

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND USE ELEMENT</td>
<td></td>
</tr>
<tr>
<td>LU 1.2: Residential Character. The Land Use Plan map shall ensure that Goleta’s land use pattern remains predominately residential and open, with the majority of nonresidential development concentrated along the primary transportation corridor— east and west along Hollister Avenue and US-101. The intent of the Land Use Plan is to protect and preserve residential neighborhoods by preventing intrusion of nonresidential uses that would be detrimental to the preservation of the existing character of the neighborhoods.</td>
<td>Consistent. The Project is a residential development and is located between Hollister Avenue and U.S. 101. The Project does not involve nonresidential uses that would intrude in an existing residential neighborhood (see Impact LU-4 in this section).</td>
</tr>
<tr>
<td>LU 1.7: New Development and Protection of Environmental Resources. Approvals of all new development shall require adherence to high environmental standards and the preservation and protection of environmental resources, such as environmentally sensitive habitats, consistent with the standards set forth in the Conservation Element and the City’s Zoning Code.</td>
<td>Consistent. Site-specific biological analysis indicates that the Project would not result in an impact to ESHAs or other environmental resources. Although the Project site contains a City of Goleta mapped ESHA, the habitat was not found within the Project boundary or immediately adjacent areas during the biological resources analysis and the Project includes an amendment to the General Plan to remove the ESHA designation of Coastal Sage Scrub. See additional discussion of consistency with Conservation Element policies below.</td>
</tr>
<tr>
<td>LU 1.8: New Development and Neighborhood Compatibility. Approvals of all new development shall require compatibility with the character of existing development in the immediate area, including size, bulk, scale, and height. New development shall not substantially impair or block important viewsheds and scenic vistas, as set forth in the Visual and Historical Resources Element.</td>
<td>Inconsistent. The size, bulk, scale, and height of the Project would fit with the surrounding development, most notably the adjacent Willow Springs Phases I and II residential developments. The proposed design of various project components is intended to blend with the existing Willow Springs Apartments. Additionally, Mitigation measures AES-4(a) and AES-4(b) would be required to reduce potentially significant impacts from the Project’s massing and architectural style and to ensure that building heights remain consistent with adjacent development. With regard to scenic views identified in the General Plan, including Figure 6-1, the Project development will be visible primarily from the Los Carneros Road Overpass, the U.S. 101 Los Carneros southbound on-ramp, and the Los Carneros Road scenic view corridor. As described in Impact AES-1, the three-story buildings in the southwest portion of the site would rise to a level just below the ridgeline of the Santa Ynez Mountains, obstructing scenic views of the bulk of mountains to the northeast from the perspective of northbound motorists on S. Los Carneros Road. Therefore, as discussed in</td>
</tr>
</tbody>
</table>
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>LU 1.9: Quality Design in the Built Environment. The City shall encourage quality site, architectural, and landscape design in all new development proposals. Development proposals shall include coordinated site planning, circulation, and design. Public and/or common open spaces with quality visual environments shall be included to create attractive community gathering areas with a sense of place and scale.</td>
<td>Consistent. The Project would provide an activity trail, benches, barbecue area, picnic tables, bicycle parking, and a level turf play area. See additional discussion for Policies LU 1.7 and LU 1.8.</td>
</tr>
<tr>
<td>LU 1.10: Multifamily Residential Development. The Medium- and High-Density Multifamily designations shall provide appropriate locations for multifamily dwellings as well as allow development standards that enable creativity and diversity in design while protecting health and safety. The use categories differ in terms of maximum permitted densities allowed, but each designation shall permit a range of housing types, including detached units, attached townhouses, and garden apartments. All multifamily developments shall be required to provide or ensure:</td>
<td>Consistent. The Project is a multifamily residential Project within the Medium-Density designation. The Project density is consistent with the R-MD/ Affordable Housing Opportunity designation, with the permitted senior density bonus, while health and safety would be protected through noise and air quality mitigation. The Project includes a range of unit sizes (one to three bedrooms). The Project includes private recreational facilities accessible to residents of the Project, including: a activity trail, benches, barbecue area, picnic tables, bicycle parking, and a level turf play area. As stated in this section and in Section 4.13, Transportation and Circulation, the Project would provide pedestrian and bicycle access as well as bicycle parking, adequate parking, and emergency vehicle access. As discussed in Section 4.14, Utilities and Service Systems, the Project would have adequate utility services and facilities. Mitigation to require a Solid Waste Management Plan is proposed to reduce impacts from solid waste generation.</td>
</tr>
<tr>
<td>a. Adequate open space and recreational facilities, such as parks, open spaces, or bike paths as an integral part of the development; community garden areas are encouraged.</td>
<td></td>
</tr>
<tr>
<td>b. Appropriate amounts of outdoor space for the exclusive use of individual residential units.</td>
<td></td>
</tr>
<tr>
<td>c. Appropriate pedestrian and bicyclist access to commercial or other activity centers and appropriate facilities to encourage use of public transit.</td>
<td></td>
</tr>
<tr>
<td>d. Adequate services and facilities (such as sewer, water, and roadway capacity) concurrent with development.</td>
<td></td>
</tr>
<tr>
<td>e. Adequate off-street parking.</td>
<td></td>
</tr>
<tr>
<td>f. Appropriate access by emergency vehicles.</td>
<td></td>
</tr>
<tr>
<td>LU 1.13: Adequate Infrastructure and Services. For health, safety, and general welfare reasons, approvals of new development shall be subject to a finding that adequate infrastructure and services will be available to serve the proposed development in accordance with the Public Facilities and Transportation Elements.</td>
<td>Consistent. As discussed in Section 4.14, Utilities and Service Systems, the Project would have adequate on-site utility infrastructure and public water and sewer services are available. The Project includes the development of all necessary infrastructure to serve the Project.</td>
</tr>
<tr>
<td>LU 2.2: Residential Use Densities. All proposed residential projects shall be consistent with the recommended standards for density and building intensity set forth in this plan. The recommended densities described in the policies for the residential use categories and in Table 2.1 are maximum permitted densities but are not guaranteed. Density of development allowed on any site shall reflect site constraints, including:</td>
<td>Consistent with Mitigation. The Project meets the General Plan and zoning designations for medium density residential development with a density of 25.4 units per acre, which includes a permitted density bonus over the maximum 25 units per acre. The Project has been designed to primarily avoid disturbance of the on-site archeological resource by adding fill to cover the site and avoid grading at the site. In addition, implementation of required mitigation measures would reduce potential archeological resource impacts to below a level of significance. See Section 4.4, Cultural Resources, for further discussion. Therefore, the Project</td>
</tr>
<tr>
<td>a. Environmentally sensitive habitat areas (ESHA).</td>
<td></td>
</tr>
<tr>
<td>b. Areas prone to flooding and geologic, slope instability, or other natural hazards.</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>c. Areas with stormwater drainage problems.</td>
<td>would be consistent with the required density of 20-25 units/acre, with the permitted senior density bonus, for an AHO site pursuant to the Housing Element of the General Plan.</td>
</tr>
<tr>
<td>d. Presence of other significant hazards or hazardous materials.</td>
<td>The biological assessment prepared for the Project found no ESHA on site. The General Plan maps that show ESHA on this property will be amended to remove the designation. Density is not affected by ESHA.</td>
</tr>
<tr>
<td>e. Protection of significant public and private views.</td>
<td></td>
</tr>
<tr>
<td>f. Exposure to exterior noise levels that exceed a Community Noise Exposure Level (CNEL) of 60 dBA (see related NE 1.2).</td>
<td></td>
</tr>
<tr>
<td>g. Areas with archaeological or cultural resources.</td>
<td></td>
</tr>
<tr>
<td>h. Deficiencies in the type or level of services necessary for urban development, such as transportation facilities (roadway and pedestrian), sewer and water service, and emergency service response time.</td>
<td></td>
</tr>
</tbody>
</table>

LU 2.3: Residential Development Standards. The following standards or criteria shall be applicable to residential development proposals:	Consistent. As discussed under consistency with Policy LU 1.8, the Project would be compatible with the character of the existing development in the immediate area, including the bulk, scale, and height. Additionally, the Project would not block solar access to neighboring units.
a. The privacy of existing residential uses in the immediate area shall be protected in the design of new or expanded structures.	
b. Solar access of residential uses shall be protected in the design of new or expanded structures.	
c. Proposals for construction of new or expanded homes shall be required to have a size, bulk, scale, and height that are compatible with the character of the immediate existing neighborhood.	

| LU 2.6: Medium-Density Residential (R-MD). This use category permits multifamily housing and accessory uses customarily associated with residences. Development may also include attached and detached single-family dwellings and duplex structures. Medium-density areas may also function as a transition between business uses and single-family residential neighborhoods. This designation is intended to provide for development of residential units at densities of up to 20.0 units per acre. In order to achieve efficient use of a limited supply of land designated in this use category, the minimum density permitted shall be 15.0 units per acre, except where site-specific constraints are determined to limit development to fewer units. Central Hollister Housing Opportunity Sites as identified in Housing Element Subpolicy HE 11.6 shall provide for development of residential units at densities ranging from a minimum of 20 to a maximum of 25 units per acre in support of the achievement of affordable housing goals. Assuming an average household size of 2.0 to 3.0 persons, the range of population densities allowed in this use category is between 26.0 persons per acre and 60.0 persons per acre. (See related Policy LU 8 and Subpolicy HE 11.6). | Consistent. The Project site is designated as Medium-Density Residential by the General Plan. On August 18, 2009, the City Council adopted Resolution No. 09-44 (Housing Element Amendments), which increased the density for the Medium Density Residential (R-MD) Central Hollister Affordable Housing Opportunity Sites. The minimum density was increased to 20 units per acre (except where there are site constraints) and the maximum density was increased to 25 units per acre, to ensure the most efficient use of the property. As noted in the Project description, the Project’s density is 25.4 units per acre. This density can be accommodated on-site taking into account site constraints and the permitted senior density bonus. Therefore, the Project density is consistent with the above policies. |

As described in Section 4.2, Air Quality, the service population for the workforce housing was determined based on CalEEMod defaults (2.72 persons per dwelling unit), and the service population for the senior housing was determined based on the Heritage Ridge Occupant/Unit Ratio Analysis study conducted by The Towbes Group, Inc. (2014) (1.11 persons per senior dwelling unit). The service population for the workforce housing is estimated to be 620 persons, and the service population for the senior housing is assumed to be 145 persons for a total of 765 residents. The expected
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy LU 8: Central Hollister Residential Development Area Objective: To promote coordinated planning and development of designated medium-density residential sites in the Central Hollister area in order to create a quality, livable environment with appropriate design and amenities for future residents of this new residential neighborhood.</td>
<td>Consistent. The Central Hollister Residential Development Area promotes coordinated planning and development of residential sites. The Project is a multi-family residential development with 360 units on infill land. The Project residents would have close and easy access to Hollister Avenue, Los Carneros Road, U.S. 101, public transportation, jobs, and shopping. The Project would create a quality, livable environment with appropriate design and amenities for future residents on the site, which meets a goal of the Central Hollister Development Area. On-site amenities would provide residents with passive and active recreation opportunities including an activity trail, benches, barbecue area, picnic tables bicycle parking, level turf play area, and native landscaping. In addition, the Project includes a wide variety of residential unit types, sizes, configurations, and bedroom count, which maximizes the potential for affordability and the ability to appeal to a wider market.</td>
</tr>
<tr>
<td>LU 8.2: Purpose. The intent for this area is to enable new residential development on scale commercial uses that will serve the needs of existing employees and future residents in the immediate area. The nonresidential development should be clustered at a single site or a small number of individual sites west of Los Carneros Way. A related intent is to enable transit-oriented development along the city’s primary transportation corridor so as to efficiently utilize existing infrastructure, reduce future increases in automobile travel, and support use of alternative, less polluting modes of travel.</td>
<td>Consistent. The Project site is not encompassed within a Specific Plan. Compatibility issues are discussed throughout this section. The Project would be located adjacent to existing residential development with similar size, bulk, scale, and height. The Project would be located in the vicinity of existing Business Parks and industrial uses, and would not affect the viability of those uses. The Project provides for a mix of unit sizes, provides an adequate supply of parking, and is integrated with the existing circulation system. According to the Project traffic study (see Appendix I) the three proposed driveways providing site access are expected to operate sufficiently. The Project would provide adequate site access and circulation for vehicles, bicycles, and pedestrians and would not cause any conflicts with traffic flow. Further, the Project would provide adequate parking as required by the City Code (see traffic study in Appendix I). As discussed in Section 4.1, Aesthetics, the visual character of proposed buildings and landscaping would be compatible with that of adjacent multi-family residential development. The proposed landscape design is intended to blend with the existing Willow Springs Apartments by using a similar plant palette and two-rail fence along Camino Vista. Additionally, Mitigation measures AES-4(a) and AES-4(b) would be required to reduce potentially significant impacts from the Project’s massing and architectural style and to ensure that building heights remain consistent with adjacent development. The size, bulk, scale, and height of the Project would fit with the surrounding development, most notably the adjacent Willow Springs Phases I and II residential developments. The Project provides a mix of unit sizes. It would provide a</td>
</tr>
<tr>
<td>LU 8.5: Coordinated Development Plan and Quality Design. In considering proposed projects within the Central Hollister Residential Development Area, emphasis shall be given to coordinated planning and design for the mixed-use area as a whole, including the parcels designated for Business Park uses. This may be accomplished by amendment of the Raytheon Specific Plan for lands within its boundaries and by preparation of a second Specific Plan encompassing lands within the North Willow Springs area. The provisions of the specific plans shall:</td>
<td></td>
</tr>
<tr>
<td>a. Ensure that the various uses are blended in a manner so that each use is compatible with the others on an individual site, as well as uses on adjacent sites.</td>
<td></td>
</tr>
<tr>
<td>b. Ensure that any future residential development will not threaten the continued viability of the existing Business Park uses.</td>
<td></td>
</tr>
<tr>
<td>c. Require that design and location of internal roadways and circulation be integrated with external circulation in a manner that improves overall safety and traffic flow.</td>
<td></td>
</tr>
<tr>
<td>d. Provide for appropriate internal street, bicycle, and pedestrian circulation systems.</td>
<td></td>
</tr>
<tr>
<td>e. Provide an adequate supply of parking within each development, with consideration of shared (or joint) parking between uses where peak parking demand is in the daytime and uses where peak demand is typically in the evening hours.</td>
<td></td>
</tr>
<tr>
<td>f. Require that any future housing development create a living environment that is attractive, with high-quality architectural and landscape design.</td>
<td></td>
</tr>
<tr>
<td>g. Provide for a mix of unit sizes (number of bedrooms) in residential projects.</td>
<td></td>
</tr>
<tr>
<td>h. Ensure that future development will include ample population density of the Project would be 53.7 persons per acre which is within the range.</td>
<td></td>
</tr>
</tbody>
</table>

City of Goleta
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>open space, recreational facilities, and other amenities for employees and residents of the new housing.</td>
<td>mixture of senior and workforce housing through one-, two-, and three-bedroom units with a total of 360 units. The Project includes a preliminary landscaping plan, and the massing and architectural style of the proposed apartment buildings would be compatible with surrounding development. The Project also includes on-site amenities would provide residents with passive and active recreation opportunities including an activity trail, benches, barbecue area, picnic tables, 14 bicycle parking pads throughout the property, level turf play area, and native landscaping. These facilities would be available to Project residents.</td>
</tr>
</tbody>
</table>

LU 8.6: Performance Standards. Performance standards applicable to development within this area shall ensure that:

- The scale and design of uses are compatible with each other and reinforce the character and functions of other uses in the area and surrounding areas.
- The timing of new development will ensure a balance of housing and commercial uses.
- Lighting, noise, odors, and air pollutant emissions from commercial and Business Park uses will not interfere or conflict with residential uses.
- Signage will be controlled and limited to maintain an attractive living environment.
- Curb cuts for driveway access to individual properties will be minimized and sharing of access encouraged.
- Efficient and attractive pedestrian and bicycle connectivity will be provided between uses.
- Pedestrian-oriented outdoor spaces will be provided at strategic locations in the development.
- Adequate and safe motorized and nonmotorized access to each site is provided.

OPEN SPACE ELEMENT

OS 7.2: Open Space for Preservation of Natural Resources. Figure 3.5 designates all ESHAs as protected open space.

Consistent if the General Plan Amendment is approved. The Project includes an amendment to the General Plan that would revise Figure 3-5 of the Open Space Element and Figure 4-1 of the Conservation Element to remove an ESHA designation of Coastal Sage Scrub that does not occur on the Project site. The Project would not impact ESHA. If the proposed General Plan Amendment is not approved, then the project is inconsistent.

OS 7.8: Provision of Open Space in New Development. A minimum open space area shall be required in new development situated in certain land use categories, as set forth in the applicable policies of the Land Use Element. These private open space areas shall be in addition to any public park and open space land that may be required to be dedicated pursuant to the Quimby Act or other state or local statutes.

Although private open space areas may be reserved to protect resources or avoid development in areas subject to hazards, such reservations shall include lands usable for outdoor recreation activities, where feasible.

Consistent. Based on the authority vested in the City by the Quimby Act, Chapter 16.14 of the Goleta Municipal Code requires new development and subdivisions within the City to mitigate their park and recreation facility impacts by constructing, or financing the construction of, the park and recreation facilities needed to serve their projects. Section 16.14.010 of the Goleta Municipal Code requires dedication of 0.0128 acres of property per dwelling unit to neighborhood and community park and recreational purposes, exclusive of and in addition to school lands used cooperatively for recreational purposes. In lieu of dedicating parkland, a developer may pay a fee for the purpose of developing new...
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>or rehabilitating existing park or recreation facilities. For the Project, the applicant would be required to pay in-lieu parks and recreation fees upon the approval of the final subdivision map and development project and prior to the issuance of land use permits, which would be used to fund public park and recreational facilities. With payment of these fees, the Project would comply with City requirements related to provision of park facilities. In addition, the Project exceeds the minimum R-MD open space and landscaped area of 40% by providing 42%.</td>
<td></td>
</tr>
<tr>
<td>OS 8.3: Preservation. The City shall protect and preserve cultural resources from destruction. The preferred method for preserving a recorded archeological site shall be by preservation in place to maintain the relationship between the artifacts and the archaeological context. Preservation in place may be accomplished by deed restriction as a permanent conservation easement, avoidance through site planning and design, or incorporation of sites into other open spaces to prevent any future development or use that might otherwise adversely impact these resources.</td>
<td>Consistent with Mitigation. As discussed in Section 4.4, Cultural Resources, there is a previously recorded intact archaeological resource on the Project site. This resource is proposed to be preserved in place through a Phase 3 Data Recovery Program and design of the Project to avoid disturbance of any intact deposits by adding fill over the deposits and avoiding grading the area. Mitigation Measures CR-1(a) through (f) would ensure that cultural resources are protected.</td>
</tr>
<tr>
<td>OS 8.4: Evaluation of Significance. For any development proposal identified as being located in an area of archaeological sensitivity, a Phase 1 cultural resources inventory shall be conducted by a professional archaeologist or other qualified expert. All sites determined through a Phase 1 investigation to potentially include cultural resources must undergo subsurface investigation to determine the extent, integrity, and significance of the site. Where Native American artifacts have been found or where oral traditions indicate the site was used by Native Americans in the past, research shall be conducted to determine the extent of the archaeological significance of the site.</td>
<td>Consistent with Mitigation. An Archaeological Resources Assessment was prepared for the Project site by Dudek in 2014. This report considers a series of previous cultural resources investigations conducted for the Project site and adjacent properties: an original excavation in 1929, subsequent excavations in 1982, an intensive ground surface collection of artifacts in 1990, Extended Phase 1 excavations in 1996, a Supplemental Phase 2 investigation in 1999, and a Phase 3 Data Recovery Mitigation program in 2014. This report was peer reviewed by Rincon Consultants, Inc. in 2015 as part of this EIR. The reports found a potentially significant impact with respect to archaeological resources and suggest mitigation to reduce impacts. Refer to Section 4.4, Cultural Resources.</td>
</tr>
<tr>
<td>OS 8.5: Mitigation. If research and surface reconnaissance shows that the project area contains a resource of cultural significance that would be adversely impacted by proposed development and avoidance is infeasible, mitigation measures sensitive to the cultural beliefs of the affected population shall be required. Reasonable efforts to leave these resources in an undisturbed state through capping or covering resources with a soil layer prior to development shall be required. If data recovery through excavation is the only feasible mitigation, the City shall confer with the affected Native American nation or most-likely descendants, as well as agencies charged with the responsibility of preserving these resources and organizations having a professional or cultural interest, prior to the removal and disposition of any artifacts.</td>
<td>Consistent with Mitigation. See discussion of OS 8.3 and 8.4.</td>
</tr>
</tbody>
</table>
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS 8.6: Monitoring and Discovery.</td>
<td>Consistent. See discussion of OS 8.3.</td>
</tr>
<tr>
<td>Onsite monitoring by a qualified archaeologist and appropriate Native American observer shall be required for all grading, excavation, and site preparation that involves earth moving operations on sites identified as archaeologically sensitive. If cultural resources of potential importance are uncovered during construction, the following shall occur:</td>
<td></td>
</tr>
<tr>
<td>a. The grading or excavation shall cease and the City shall be notified.</td>
<td></td>
</tr>
<tr>
<td>b. A qualified archeologist shall prepare a report assessing the significance of the find and provide recommendations regarding appropriate disposition.</td>
<td></td>
</tr>
<tr>
<td>c. Disposition will be determined by the City in conjunction with the affected Native American nation.</td>
<td></td>
</tr>
<tr>
<td>OS 8.7: Protection of Paleontological Resources.</td>
<td>Consistent. There is no evidence of paleontological resources on-site. Per the requirements of this policy, all work would stop in the event that unforeseen resources are encountered during site grading.</td>
</tr>
<tr>
<td>Should substantial paleontological resources be encountered during construction activities, all work that could further disturb the find shall be stopped and the City of Goleta shall be notified within 24 hours. The applicant shall retain a qualified consultant to prepare a report to the City that evaluates the significance of the find and, if warranted, identifies recovery measures. Upon review and approval of the report by the City, construction may continue after implementation of any identified recovery measures.</td>
<td></td>
</tr>
<tr>
<td>OS 9.2: Mitigation of Impacts of New Development on Parks and Recreation Facilities.</td>
<td>Consistent. The Project includes more open space than the minimum open space and landscaped area requirement of 40%. The City’s General Plan Open Space Element Figure 3-2 indicates the location of existing and planned public parks, including a two-acre park (denoted as planned future park site “C”) proposed for the Project. The applicant would also be required to pay park and recreation development impact fees to the City that will be used for the acquisition and improvement of public parks, recreation facilities, and open space.</td>
</tr>
<tr>
<td>The following shall apply to approvals of new development projects:</td>
<td></td>
</tr>
<tr>
<td>a. To ensure new development pays a proportionate share of the cost of acquisition and improvement of parks, recreation facilities, and open space, the City shall require a one-time impact fee to offset costs necessary to accommodate the development. These fees shall be used for acquiring and/or developing new or improving/rehabilitating existing park, recreation, or open space facilities.</td>
<td></td>
</tr>
<tr>
<td>b. At its discretion, the City may allow any appropriate park and recreational facilities provided within a development to meet all or part of the mitigation requirement in lieu of payment of a portion of the impact fee only if they are open and accessible to the public.</td>
<td></td>
</tr>
<tr>
<td>c. Within new subdivisions, where the City may allow dedications of land in lieu of payment of fees pursuant to California Government Code Section 66477 (Quimby Act), the land area to be dedicated shall be usable space for active recreation purposes.</td>
<td></td>
</tr>
<tr>
<td>CONSERVATION ELEMENT</td>
<td></td>
</tr>
<tr>
<td>CE 1.2: Designation of Environmentally Sensitive Habitat Areas.</td>
<td>Consistent if the General Plan Amendment is approved. The Project includes an amendment to the General Plan that would revise Figure 3-5 of the Open Space Element and Figure 4-1 of the Conservation Element to remove an ESHA designation of Coastal Sage Scrub that does not occur on the property. The Project would not impact ESHA. If the proposed</td>
</tr>
</tbody>
</table>
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 1.5: Corrections to Map of ESHAs. If a site-specific biological study contains substantial evidence that an area previously shown as an ESHA on Figure 4-1 does not contain habitat that meets the definition of an ESHA for reasons other than that set forth in CE 1.4, the City biologist and the Planning Commission shall review all available information and determine if the area in question should no longer be considered an ESHA and therefore not be subject to the ESHA protection policies of this plan. If the final decision-making body determines that the area is not an ESHA, a map modification shall be included in the next General Plan/Coastal Land Use Plan amendment; however, Local Coastal Program policies and standards for protection of ESHAs shall not apply, and approval of development consistent with all other requirements of this plan may be considered prior to the map revision.</td>
<td>Consistent. Site-specific biological analysis indicates that the Project would not result in an impact to ESHAs. Although the Project site contains a City of Goleta mapped Coastal Sage Scrub ESHA, the habitat is not present within the Project site boundary or immediately adjacent areas. Project site habitat includes 4.74 acres of Bromus grassland, 4.17 acres of quailbush scrub, 3.29 acres of coyote brush scrub, and 4.06 acres of upland mustards that likely provide limited low-quality foraging habitat for raptors. Additionally, there is 8.80 acres of non-native grassland. None of these habitats qualify as ESHA.</td>
</tr>
<tr>
<td>CE 1.6: Protection of ESHAs. ESHAs shall be protected against significant disruption of habitat values, and only uses or development dependent on and compatible with maintaining such resources shall be allowed within ESHAs or their buffers. The following shall apply:</td>
<td>Consistent. Site-specific biological analysis indicates that the Project would not result in an impact to ESHAs. Although the Project site contains a City of Goleta mapped ESHA, the habitat is no longer present within the Project boundary or immediately adjacent areas.</td>
</tr>
<tr>
<td>a. No development, except as otherwise allowed by this element, shall be allowed within ESHAs and/or ESHA buffers.</td>
<td></td>
</tr>
<tr>
<td>b. A setback or buffer separating all permitted development from an adjacent ESHA shall be required and shall have a minimum width as set forth in subsequent policies of this element. The purpose of such setbacks shall be to prevent any degradation of the ecological functions provided by the habitat area.</td>
<td></td>
</tr>
<tr>
<td>c. Public accessways and trails are considered resource-dependent uses and may be located within or adjacent to ESHAs. These uses shall be sited to avoid or minimize impacts on the resource to the maximum extent feasible. Measures—such as signage, placement of boardwalks, and limited fencing or other barriers—shall be implemented as necessary to protect ESHAs.</td>
<td></td>
</tr>
<tr>
<td>d. The following uses and development may be allowed in ESHAs or ESHA buffers only where there are no feasible, less environmentally damaging alternatives and will be subject to requirements for mitigation measures to avoid or lessen impacts to the maximum extent feasible: 1) public road crossings, 2) utility lines, 3) resource restoration and enhancement projects, 4) nature education, 5) biological research, and 6) Public Works projects as identified in the Capital Improvement Plan, only where there are no feasible, less environmentally damaging alternatives.</td>
<td></td>
</tr>
<tr>
<td>e. If the provisions herein would result in any legal parcel created prior to the date of this plan being made unusable in its entirety for any purpose allowed by the</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>land use plan, exceptions to the foregoing may be made to allow a reasonable economic use of the parcel. Alternatively, the City may establish a program to allow transfer of development rights for such parcels to receiving parcels that have areas suitable for and are designated on the Land Use Plan map for the appropriate type of use and development.</td>
<td></td>
</tr>
<tr>
<td>CE 1.7: Mitigation of Impacts to EHSAs. New development shall be sited and designed to avoid impacts to ESHAs. If there is no feasible alternative that can eliminate all impacts, then the alternative that would result in the fewest or least significant impacts shall be selected. Any impacts that cannot be avoided shall be fully mitigated, with priority given to onsite mitigation. Offsite mitigation measures shall only be approved when it is not feasible to fully mitigate impacts on site. If impacts to onsite ESHAs occur in the Coastal Zone, any offsite mitigation area shall also be located within the Coastal Zone. All mitigation sites shall be monitored for a minimum period of 5 years following completion, with changes made as necessary based on annual monitoring reports. Where appropriate, mitigation sites shall be subject to deed restrictions. Mitigation sites shall be subject to the protections set forth in this plan for the habitat type unless the City has made a specific determination that the mitigation is unsuccessful and is to be discontinued.</td>
<td>Consistent. See discussion under policy CE 1.6.</td>
</tr>
</tbody>
</table>
| **CE 1.9: Standards Applicable to Development Projects.** The following standards shall apply to consideration of developments within or adjacent to ESHAs:
 a. Site designs shall preserve wildlife corridors or habitat networks. Corridors shall be of sufficient width to protect habitat and dispersal zones for small mammals, amphibians, reptiles, and birds.
 b. Land divisions for parcels within or adjacent to an ESHA shall only be allowed if each new lot being created, except for open space lots, is capable of being developed without building in any ESHA or ESHA buffer and without any need for impacts to ESHAs related to fuel modification for fire safety purposes.
 c. Site plans and landscaping shall be designed to protect ESHAs. Landscaping, screening, or vegetated buffers shall retain, salvage, and/or reestablish vegetation that supports wildlife habitat whenever feasible. Development within or adjacent to wildlife habitat networks shall incorporate design techniques that protect, support, and enhance wildlife habitat values. Planting of nonnative, invasive species shall not be allowed in ESHAs and buffer areas adjacent to ESHAs.
 d. All new development shall be sited and designed so as to minimize grading, alteration of natural landforms and physical features, and vegetation clearance in order to reduce or avoid soil erosion, creek siltation, increased runoff, and reduced infiltration of stormwater and to prevent net increases in baseline | Consistent. See discussion under policy CE 1.6. |
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>e.</td>
<td>Light and glare from new development shall be controlled and directed away from wildlife habitats. Exterior night lighting shall be minimized, restricted to low intensity fixtures, shielded, and directed away from ESHAs.</td>
</tr>
<tr>
<td>f.</td>
<td>All new development should minimize potentially significant noise impacts on special-status species in adjacent ESHAs.</td>
</tr>
<tr>
<td>g.</td>
<td>All new development shall be sited and designed to minimize the need for fuel modification, or weed abatement, for fire safety in order to preserve native and/or nonnative supporting habitats. Development shall use fire-resistant materials and incorporate alternative measures, such as firewalls and landscaping techniques, that will reduce or avoid fuel modification activities.</td>
</tr>
<tr>
<td>h.</td>
<td>The timing of grading and construction activities shall be controlled to minimize potential disruption of wildlife during critical time periods such as nesting or breeding seasons.</td>
</tr>
<tr>
<td>i.</td>
<td>Grading, earthmoving, and vegetation clearance adjacent to an ESHA shall be prohibited during the rainy season, generally from November 1 to March 31, except as follows: 1) where erosion control measures such as sediment basins, silt fencing, sandbagging, or installation of geofabrics have been incorporated into the project and approved in advance by the City; 2) where necessary to protect or enhance the ESHA itself; or 3) where necessary to remediate hazardous flooding or geologic conditions that endanger public health and safety.</td>
</tr>
<tr>
<td>j.</td>
<td>In areas that are not adjacent to ESHAs, where grading may be allowed during the rainy season, erosion control measures such as sediment basins, silt fencing, sandbagging, and installation of geofabrics shall be implemented prior to and concurrent with all grading operations.</td>
</tr>
</tbody>
</table>

CE 3.3: Site-Specific Wetland Delineations. In considering development proposals where an initial site inventory or reconnaissance indicates the presence or potential for wetland species or indicators, the City shall require the submittal of a detailed biological study of the site, with the addition of a delineation of all wetland areas on the project site. Wetland delineations shall be based on the definitions contained in Section 13577(b) of Title 14 of the California Code of Regulations. A preponderance of hydric soils or a preponderance of wetland indicator species will be considered presumptive evidence of wetland conditions. At a minimum, the delineation report shall contain:

- a. A map at a scale of 1”:200’ or larger showing topographic contours.
- b. An aerial photo base map.
- c. A map at a scale of 1”:200’ or larger with polygons

Consistent. As discussed in Section 4.3, *Biological Resources*, no wetlands are located on site. Rincon Consultants completed a biological evaluation in 2015 and no wetlands were identified on the site.
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>delineating all wetland areas, polygons delineating all areas of vegetation with a preponderance of wetland indicator species, and the locations of sampling points.</td>
<td>Consistent. Vegetation at the Project site consists of coyote brush scrub or ruderal/disturbed areas that consist overwhelmingly of non-native grasses and forbs. Evidence demonstrating that the coyote brush scrub at the site does not meet the definition of an ESHA is provided above under Section 4.3.1.b. The purple needle grass observed within the upland mustard area on-site does not constitute sensitive native grassland pursuant to the City's General Plan and Environmental Review Guidelines and Environmental Thresholds Manual, since it was required to be planted for erosion control following approved 2013 grading. No plant communities within the Project site are considered sensitive. The Project would not affect native grasses.</td>
</tr>
<tr>
<td>d. A description of the survey methods and surface indicators used for delineating the wetland polygons.</td>
<td></td>
</tr>
<tr>
<td>e. A statement of the qualifications of the person preparing the wetland delineation.</td>
<td></td>
</tr>
<tr>
<td>CE 5.2: Protection of Native Grasslands. In addition to the provisions of Policy CE 1, the following standards shall apply:</td>
<td>Consistent with Mitigation. Based on survey results (Rincon 2015), special status plant and wildlife species have a low potential to occur on-site and a low probability of being impacted by the Project. Mitigation would reduce potential impacts to nesting birds, wildlife movement and off-site sensitive communities. See discussion in Section 4.3, Biological Resources.</td>
</tr>
<tr>
<td>a. For purposes of this policy, existing native grasslands are defined as an area where native grassland species comprise 10 percent or more of the total relative plant cover. Native grasslands that are dominated by perennial bunch grasses tend to be patchy. Where a high density of separate small patches occurs in an area, the whole area shall be delineated as native grasslands.</td>
<td></td>
</tr>
<tr>
<td>b. To the maximum extent feasible, development shall avoid impacts to native grasslands that would destroy, isolate, interrupt, or cause a break in continuous habitat that would (1) disrupt associated animal movement patterns and seed dispersal, or (2) increase vulnerability to weed invasions.</td>
<td></td>
</tr>
<tr>
<td>c. Removal or disturbance to a patch of native grasses less than 0.25 acre that is clearly isolated and is not part of a significant native grassland or an integral component of a larger ecosystem may be allowed. Removal or disturbance to restoration areas shall not be allowed.</td>
<td></td>
</tr>
<tr>
<td>d. Impacts to protected native grasslands shall be minimized by providing at least a 10-foot buffer that is restored with native species around the perimeter of the delineated native grassland area.</td>
<td></td>
</tr>
<tr>
<td>e. Removal of nonnative and invasive exotic species shall be allowed; revegetation shall be with plants or seeds collected within the same watershed whenever feasible.</td>
<td></td>
</tr>
<tr>
<td>CE 8.1: ESHA Designation. Requisite habitats for individual occurrences of special-status plants and animals, including candidate species for listing under the state and federal endangered species acts, California species of special concern, California Native Plant Society List 1B plants, and other species protected under provisions of the California Fish and Game Code shall be preserved and protected, and their occurrences, including habitat requirements, shall be designated as ESHAs. These habitats include, but are not limited to, the following:</td>
<td></td>
</tr>
<tr>
<td>a. Special-status plant species such as Santa Barbara honeysuckle (Lonicera subspicata var. subspicata), southern tarplant (Centromadia parryi ssp. australis) and blackflowered figwort (Scrophularia atrata).</td>
<td></td>
</tr>
<tr>
<td>b. Nesting and roosting areas for various species of</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.9-1

Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>raptors such as Cooper’s hawks (Accipiter cooperii), red-tailed hawks (Buteo jamaicensis), white-tailed kites (Elanus leucurus), and turkey vultures (Cathartes aura).</td>
<td></td>
</tr>
<tr>
<td>CE 8.2: Protection of Habitat Areas. All development shall be located, designed, constructed, and managed to avoid disturbance of, or adverse impacts to, special-status species and their habitats, including spawning, nesting, rearing, roosting, foraging, and other elements of the required habitats.</td>
<td>Consistent with Mitigation. See discussion under policy CE 8.1.</td>
</tr>
<tr>
<td>CE 8.3: Site-Specific Biological Resources Study. Any areas not designated on Figure 4-1 that meet the ESHA criteria for the resources specified in CE 8.1 shall be accorded the same protections as if the area were shown on the figure. Proposals for development on sites where ESHAs are shown on the figure, or where there is probable cause to believe that an ESHA may exist, shall be required to provide the City with a site-specific biological study that includes the following information:</td>
<td>Consistent. Biological Resources Assessments were conducted for the Project site by Dudek in 2014 and Rincon Consultants, Inc. in 2015. No ESHAs were found on-site.</td>
</tr>
<tr>
<td>a. A base map that delineates topographic lines, parcel boundaries, and adjacent roads.</td>
<td></td>
</tr>
<tr>
<td>b. A vegetation map that 1) identifies trees or other sites that are existing or historical nests for the species of concern and 2) delineates other elements of the habitat such as roosting sites and foraging areas.</td>
<td></td>
</tr>
<tr>
<td>c. A detailed map that shows the conclusions regarding the boundary, precise location and extent, or current status of the ESHA based on substantial evidence provided in the biological studies.</td>
<td></td>
</tr>
<tr>
<td>d. A written report that summarizes the survey methods, data, observations, findings, and recommendations.</td>
<td></td>
</tr>
<tr>
<td>CE 8.4: Buffer Areas for Special-Status Species. Development shall be designed to provide a 100-foot buffer around active and historical nest sites for protected species of raptors when feasible. In existing developed areas, the width of the buffer may be reduced to correspond to the actual width of the buffer for adjacent development. If the biological study described in Subpolicy CE 8.3 determines that an active raptor nest site exists on the subject property, whenever feasible no vegetation clearing, grading, construction, or other development activity shall be allowed within a 300-foot radius of the nest site during the nesting and fledging season.</td>
<td>Consistent. See discussions under Policies CE 8.1, CE 8.2, and CE 8.3.</td>
</tr>
<tr>
<td>CE 9.1: Definition of Protected Trees. New development shall be sited and designed to preserve the following species of native trees: oaks (Quercus spp.), walnut (Juglans californica), sycamore (Platanus racemosa), cottonwood (Populus spp.), willows (Salix spp.), or other native trees that are not otherwise protected in ESHAs, unless as otherwise allowed in CE 9.</td>
<td>Consistent. No trees are present on the site.</td>
</tr>
</tbody>
</table>
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 9.2: Tree Protection Plan. Applications for new development on sites containing protected native trees shall include a report by a certified arborist or other qualified expert. The report shall include an inventory of native trees and a Tree Protection Plan.</td>
<td>Consistent. No trees are present on the site. No Tree Protection Plan would be required.</td>
</tr>
<tr>
<td>CE 9.4: Tree Protection Standards. The following impacts to native trees and woodlands should be avoided in the design of projects: 1) removal of native trees; 2) fragmentation of habitat; 3) removal of understory; 4) disruption of the canopy, and 5) alteration of drainage patterns. Structures, including roads and driveways, should be sited to prevent any encroachment into the protection zone of any protected tree and to provide an adequate buffer outside of the protection zone of individual native trees in order to allow for future growth. Tree protection standards shall be detailed in the Tree Protection Ordinance called for in CE-IA-4.</td>
<td>Consistent. No trees are present on the site.</td>
</tr>
<tr>
<td>CE 9.5: Mitigation of Impacts to Native Trees. Where the removal of mature native trees cannot be avoided through the implementation of project alternatives or where development encroaches into the protected zone and could threaten the continued viability of the tree(s), mitigation measures shall include, at a minimum, the planting of replacement trees on site, if suitable area exists on the subject site, or offsite if suitable onsite area is unavailable, consistent with the Tree Protection Ordinance (see also CE-IA-4). The Tree Protection Ordinance shall establish the mitigation ratios for replacement trees for every tree removed. Where onsite mitigation is not feasible, offsite mitigation shall be provided by planting of replacement trees at a site within the same watershed. If the tree removal occurs at a site within the Coastal Zone, any offsite mitigation area shall also be located within the Coastal Zone. Minimum sizes for various species of replacement trees shall be established in the Tree Protection Ordinance. Mitigation sites shall be monitored for a period of 5 years. The City may require replanting of trees that do not survive.</td>
<td>Consistent. No significant native trees are present on the site.</td>
</tr>
<tr>
<td>CE 10.1: New Development and Water Quality. New development shall not result in the degradation of the water quality of groundwater basins or surface waters; surface waters include the ocean, lagoons, creeks, ponds, and wetlands. Urban runoff pollutants shall not be discharged or deposited such that they adversely affect these resources.</td>
<td>Consistent with Mitigation. Implementation of the existing U.S. Army Corps or Engineers permit and NPDES requirements and mitigation for post-construction monitoring would ensure that the Project would not adversely affect surface waters. As described in Section 4.3, Biological Resources, the Project would not result in a reduction in runoff that would result in any hydrological interruption to in Los Carneros Wetland or affect the existing hydrological process. Also refer to Section 4.8, Hydrology and Water Quality.</td>
</tr>
<tr>
<td>CE 10.2: Siting and Design of New Development. New development shall be sited and designed to protect water quality and minimize impacts to coastal waters by incorporating measures designed to ensure the following: a. Protection of areas that provide important water quality benefits, areas necessary to maintain riparian</td>
<td>Consistent with Mitigation. The site does not contain riparian or aquatic resources. Mitigation for post-construction monitoring would ensure that the Project would not adversely affect surface waters. See Section 4.8, Hydrology and Water Quality.</td>
</tr>
</tbody>
</table>
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>and aquatic biota, and areas susceptible to erosion and sediment loss.</td>
<td></td>
</tr>
<tr>
<td>b. Limiting increases in areas covered by impervious surfaces.</td>
<td></td>
</tr>
<tr>
<td>c. Limiting the area where land disturbances occur, such as clearing of vegetation, cut-and-fill, and grading, to reduce erosion and sediment loss.</td>
<td></td>
</tr>
<tr>
<td>d. Limiting disturbance of natural drainage features and vegetation.</td>
<td></td>
</tr>
<tr>
<td>CE 10.3: Incorporation of Best Management Practices for Stormwater Management. New development shall be designed to minimize impacts to water quality from increased runoff volumes and discharges of pollutants from nonpoint sources to the maximum extent feasible, consistent with the City’s Storm Water Management Plan or a subsequent Storm Water Management Plan approved by the City and the Central Coast Regional Water Quality Control Board. Post construction structural BMPs shall be designed to treat, infiltrate, or filter stormwater runoff in accordance with applicable standards as required by law. Examples of BMPs include, but are not limited to, the following:</td>
<td>Consistent with Mitigation. The Project includes construction of drainage infrastructure. Mitigation is required to ensure the infrastructure is maintained over the life of the Project and minimize impacts to water quality and site drainage. See Section 4.8, Hydrology and Water Quality.</td>
</tr>
<tr>
<td>a. Retention and detention basins.</td>
<td></td>
</tr>
<tr>
<td>b. Vegetated swales.</td>
<td></td>
</tr>
<tr>
<td>c. Infiltration galleries or injection wells.</td>
<td></td>
</tr>
<tr>
<td>d. Use of permeable paving materials.</td>
<td></td>
</tr>
<tr>
<td>e. Mechanical devices such as oil-water separators and filters.</td>
<td></td>
</tr>
<tr>
<td>f. Revegetation of graded or disturbed areas.</td>
<td></td>
</tr>
<tr>
<td>g. Other measures as identified in the City’s adopted Storm Water Management Plan and other City-approved regulations.</td>
<td></td>
</tr>
<tr>
<td>CE 10.4: New Facilities. New bridges, roads, culverts, and outfalls shall not cause or contribute to creek bank erosion or creek or wetland siltation and shall include BMPs to minimize impacts to water quality. BMPs shall include construction phase erosion control, polluted runoff control plans, and soil stabilization techniques. Where space is available, dispersal of sheet flow from roads into vegetated areas, or other onsite infiltration practices, shall be incorporated into the project design.</td>
<td>Consistent. See discussion under CE 10.3 and Section 4.8, Hydrology and Water Quality.</td>
</tr>
<tr>
<td>CE 10.6: Stormwater Management Requirements. The following requirements shall apply to specific types of development:</td>
<td>Consistent with Mitigation. The Project would incorporate appropriate BMPs for structures and parking areas. Mitigation is proposed for a Maintenance Agreement to maintain new storm water infrastructure. See Section 4.8, Hydrology and Water Quality.</td>
</tr>
<tr>
<td>a. Commercial and multiple-family development shall use BMPs to control polluted runoff from structures, parking, and loading areas.</td>
<td></td>
</tr>
<tr>
<td>b. Restaurants shall incorporate BMPs designed to minimize runoff of oil and grease, solvents, phosphates, and suspended solids to the storm drain system.</td>
<td></td>
</tr>
<tr>
<td>c. Gasoline stations, car washes, and automobile repair facilities shall incorporate BMPs designed to minimize runoff of oil and grease, solvents, car battery acid,</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.9-1

Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>engine coolants, and gasoline to the stormwater system. d. Outdoor materials storage areas shall be designed to incorporate BMPs to prevent stormwater contamination from stored materials. e. Trash storage areas shall be designed using BMPs to prevent stormwater contamination by loose trash and debris.</td>
<td>Consistent with Mitigation. The Project would comply with the requirements of approved drainage and stormwater management plans. Mitigation is proposed for a Maintenance Agreement to maintain new storm water infrastructure. See Section 4.8, Hydrology and Water Quality.</td>
</tr>
<tr>
<td>CE 10.7: Drainage and Stormwater Management Plans. New development shall protect the absorption, purifying, and retentive functions of natural systems that exist on the site. Drainage Plans shall be designed to complement and use existing drainage patterns and systems, where feasible, conveying drainage from the site in a nonerosive manner. Disturbed or degraded natural drainage systems shall be restored where feasible, except where there are geologic or public safety concerns. Proposals for new development shall include the following: a. A Construction-Phase Erosion Control and Stormwater Management Plan that specifies the BMPs that will be implemented to minimize erosion and sedimentation; provide adequate sanitary and waste disposal facilities; and prevent contamination of runoff by construction practices, materials, and chemicals. b. A Post-Development-Phase Drainage and Stormwater Management Plan that specifies the BMPs—including site design methods, source controls, and treatment controls—that will be implemented to minimize polluted runoff after construction. This plan shall include monitoring and maintenance plans for the BMP measures.</td>
<td></td>
</tr>
<tr>
<td>CE 10.8: Maintenance of Stormwater Management Facilities. New development shall be required to provide ongoing maintenance of BMP measures where maintenance is necessary for their effective operation. The applicant and/or owner, including successors in interest, shall be responsible for all structural treatment controls and devices as follows: a. All structural BMPs shall be inspected, cleaned, and repaired when necessary prior to September 30th of each year. b. Additional inspections, repairs, and maintenance should be performed after storms as needed throughout the rainy season, with any major repairs completed prior to the beginning of the next rainy season. c. Public streets and parking lots shall be swept as needed and financially feasible to remove debris and contaminated residue. d. The homeowners association, or other private owner, shall be responsible for sweeping of private streets and parking lots.</td>
<td>Consistent with Mitigation. The applicant would be responsible for maintenance of BMPs in accordance with an approved stormwater management plan. Mitigation is proposed for a Maintenance Agreement to maintain new storm water infrastructure. See Section 4.8, Hydrology and Water Quality.</td>
</tr>
</tbody>
</table>
Table 4.9-1

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 12.1: Land Use Compatibility. The designation of land uses on the Land Use Plan Map (Figure 2-1) and the review of new development shall ensure that siting of any new sensitive receptors provides for adequate buffers from existing sources of emissions of air pollutants or odors. Sensitive receptors are a facility or land use that includes members of the population sensitive to the effects of air pollutants.</td>
<td>Consistent with Mitigation. The Project would place sensitive receptors within 500 feet of the U.S. 101 corridor. A Health Risk Assessment (HRA) was conducted by Rincon Consultants, Inc. to study the potential long-term health risks associated with exposure of site residents to diesel particulates from U.S. 101 and the UPRR (refer to Appendix C). The HRA found that site residents would not be exposed to acute (short-term) and chronic health risks due to exposure to air pollutants from U.S. 101 and UPRR. However, the HRA found that health (cancer) risks would be above applicable thresholds. Mitigation Measure AQ-4 would provide for the removal of particulates before they enter the indoor environment, thereby reducing the overall exposure of individual residents to below applicable cancer risk thresholds. With this reduction in exposure, health risks to future residents would be below significance thresholds.</td>
</tr>
<tr>
<td>CE 12.2: Control of Air Emissions from New Development. The following shall apply to reduction of air emissions from new development:</td>
<td>Consistent. The Project was referred to the ACPD for comments. The Project would generate long-term Project emissions primarily associated with Project-generated traffic; however, impacts would be below APCD thresholds. The Project does not involve any commercial or industrial uses or any wood-burning fireplace installations.</td>
</tr>
<tr>
<td>a. Any development proposal that has the potential to increase emissions of air pollutants shall be referred to the Santa Barbara County Air Pollution Control District for comments and recommended conditions prior to final action by the City.</td>
<td></td>
</tr>
<tr>
<td>b. All new commercial and industrial sources shall be required to use the best-available air pollution control technology. Emissions control equipment shall be properly maintained to ensure efficient and effective operation.</td>
<td></td>
</tr>
<tr>
<td>c. Wood-burning fireplace installations in new residential development shall be limited to low-emitting State and U.S. Environmental Protection Agency (EPA)-certified fireplace inserts and woodstoves, pellet stoves, or natural gas fireplaces. In locations near monarch butterfly ESHAs, fireplaces shall be limited to natural gas.</td>
<td></td>
</tr>
<tr>
<td>d. Adequate buffers between new sources and sensitive receptors shall be required.</td>
<td></td>
</tr>
<tr>
<td>e. Any permit required by the Santa Barbara County Air Pollution Control District shall be obtained prior to issuance of final development clearance by the City.</td>
<td></td>
</tr>
<tr>
<td>CE 12.3: Control of Emissions during Grading and Construction. Construction site emissions shall be controlled by using the following measures:</td>
<td>Consistent. Construction of the Project is expected to occur over 36 months, including the required pre-construction soil export. Estimated preliminary Project grading would include approximately 178,700 cubic yards of cut and 15,500 cubic yards of fill and approximately 115,000 cubic yards of soil would be exported off-site before construction of the Project. Ozone precursors NOX and ROC, as well as CO and diesel exhaust PM, would be emitted by the operation of construction equipment such as graders, backhoes, and generators, while fugitive dust (PM10) would be emitted by activities that disturb the soil, such as grading and excavation, road construction and building construction. The pre-</td>
</tr>
<tr>
<td>a. Watering active construction areas to reduce windborne emissions.</td>
<td></td>
</tr>
<tr>
<td>b. Covering trucks hauling soil, sand, and other loose materials.</td>
<td></td>
</tr>
<tr>
<td>c. Paving or applying nontoxic solid stabilizers on unpaved access roads and temporary parking areas.</td>
<td></td>
</tr>
<tr>
<td>d. Hydroseeding inactive construction areas.</td>
<td></td>
</tr>
<tr>
<td>e. Enclosing or covering open material stockpiles.</td>
<td></td>
</tr>
<tr>
<td>f. Revegetating graded areas immediately upon</td>
<td></td>
</tr>
</tbody>
</table>

City of Goleta
Table 4.9-1

Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>completion of work.</td>
<td>...construction soil export would proceed according to one of two potential scenarios – one based on smaller (9 cubic yard) haul trucks and another based on larger (20 cubic yard) haul trucks. Scenario 1 includes 25,556 one-way haul truck trips, worker trips, and operation of on-site equipment and Scenario 2 includes 11,500 one-way haul truck trips, worker trips, and operation of on-site equipment. The Project would include standard dust control measures in accordance with APCD requirements and emissions would not exceed APCD thresholds.</td>
</tr>
</tbody>
</table>

CE 12.4: Minimizing Air Pollution from Transportation Sources.

The following measures are designed to reduce air pollution from transportation sources:

a. Hollister Corridor Mixed Use. The Land Use Plan for the Hollister Corridor is designed to: 1) Provide new housing near existing workplaces and commercial services to encourage short trips by foot and bicycle. 2) Provide new housing near existing bus routes with convenient and high frequency service. 3) Provide new housing near the US-101 ramps so as to minimize the length of auto trips on streets within the community. 4) Provide new housing at locations near the existing Amtrak line, which could be considered for commuter rail service in the future.

b. Other Land Use Policies: The following land use policies are designed to reduce demand for auto travel and promote less polluting modes such as bus transit, walking, and bicycling: 1) Clustering of moderate density housing and incorporation of residential apartments on upper floors of buildings, particularly in Goleta Old Town. 2) Integration of new housing into existing neighborhood commercial centers. 3) Emphasis on moderate density residential development rather than low density sprawl. 4) Integrating pedestrian, bicycle, and transit facilities into new development. 5) Establishment of a fixed urban boundary to reduce sprawl outward from the existing urbanized area.

c. Transportation Policies: The following transportation measures are designed to lower emissions of air pollutants by promoting efficient use of the street system: 1) Fine-tuning of intersections and their operations to minimize delays. 2) Coordinated signal timing to improve traffic flow. 3) Promotion of improved transit services. Creation of a linked pedestrian circulation system. 4) Provision of a bikeway system. 5) Encouragement of employer-based trip reduction measures such as subsidized bus fares, flexible work hours, vanpools, and similar measures.

The City shall promote the following practices in existing and new residential construction:

a. Retrofitting of existing residential structures to reduce energy consumption and costs to owners and tenants.

Consistent. All new residential buildings must comply with Chapter 15.13 of the Goleta Municipal Code, “Energy Efficiency Standards,” which require energy savings measures that exceed the 2010 California Energy Code by 15%. The Project is required to meet these standards for building.
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>is encouraged. These retrofits may include: increased insulation, weather stripping, caulking of windows and doors, low-flow showerheads, and other similar improvements. Master metering is discouraged, and conversions to individual metering where practicable is preferred.</td>
<td>permits.</td>
</tr>
<tr>
<td>b. The City shall enforce the State’s residential energy conservation building standards set forth in Title 24 through its plan check and building permit issuance processes.</td>
<td></td>
</tr>
<tr>
<td>c. New residential development and additions to existing homes shall be designed to provide a maximum solar orientation when appropriate, and shall not adversely affect the solar access of adjacent residential structures. Use of solar water heating systems, operational skylights, passive solar heating, and waste heat recovery systems is encouraged.</td>
<td></td>
</tr>
</tbody>
</table>

CE 13.3: Use of Renewable Energy Sources. For new projects, the City encourages the incorporation of renewable energy sources. Consideration shall be given to incorporation of renewable energy sources that do not have adverse effects on the environment or on any adjacent residential uses. The following considerations shall apply:

a. Solar access shall be protected in accordance with the state Solar Rights Act (AB 2473). South wall and rooftop access should be achievable in low-density residential areas, while rooftop access should be possible in other areas.

b. New development shall not impair the performance of existing solar energy systems. Compensatory or mitigation measures may be considered in instances where there is no reasonable alternative.

c. Alternative energy sources are encouraged, provided that the technology does not contribute to noise, visual, air quality, or other potential impacts on nearby uses and neighborhoods.

CE 15.3: Water Conservation for New Development. In order to minimize water use, all new development shall use low water use plumbing fixtures, water-conserving landscaping, low flow irrigation, and reclaimed water for exterior landscaping, where appropriate.

SAFETY ELEMENT

SE 1.3: Site-Specific Hazards Studies. Applications for new development shall consider exposure of the new development to coastal and other hazards. Where appropriate, an application for new development shall include a geologic/soils/geotechnical study and any other studies that identify geologic hazards affecting the proposed project site and any necessary mitigation.

Consistent. A Geotechnical Engineering Report was prepared for the site by Earth Systems Pacific in 2014. As described in Section 4.5, *Geology and Soils*, the soils on the site are prone to liquefaction and expansion. Mitigation has been identified to reduce impacts to a less than significant level.
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>measures. The study report shall contain a statement certifying that the project site is suitable for the proposed development and that the development will be safe from geologic hazards. The report shall be prepared and signed by a licensed certified engineering geologist or geotechnical engineer and shall be subject to review and acceptance by the City.</td>
<td>Consistent. According to the California Division of Mines and Geology radon mapping, the Project site is located in an area with low potential for indoor radon levels above 4.0 picocuries per liter (Santa Barbara and Ventura Counties Radon Mapping, 1997).</td>
</tr>
<tr>
<td>SE 1.9: Reduction of Radon Hazards. The City shall require the consideration of radon hazards for all new construction and require testing of radon levels for construction of homes and buildings located in areas subject to moderate or high potential for radon gas levels exceeding 4.0 picocuries as shown on maps produced by the California Division of Mines and Geology. The City shall require new homes to use radon-resistant construction where needed based on U.S. Environmental Protection Agency guidelines.</td>
<td>Consistent. The closest Alquist-Priolo mapped earthquake fault is over 20 miles to the southeast (Pitas Point/Red Mountain Faults). The More Ranch Fault is located approximately 1 mile south of the Project site, and is characterized as active in the Santa Barbara County Comprehensive Plan Seismic Safety and Safety Element. Therefore, there are no active or potentially active faults on or within 50 feet of the Project site.</td>
</tr>
<tr>
<td>SE 4.4: Setback from Faults. New development shall not be located closer than 50 feet to any active or potentially active fault line to reduce potential damage from surface rupture. Nonstructural development may be allowed in such areas, depending on how such nonstructural development would withstand or respond to fault rupture or other seismic damage</td>
<td>Consistent. See discussion under policy SE 1.3.</td>
</tr>
<tr>
<td>SE 4.11: Geotechnical Report Required. The City shall require geotechnical and/or geologic reports as part of the application for construction of habitable structures and essential services buildings (as defined by the building code) sited in areas having a medium-to-high potential for liquefaction and seismic settlement. The geotechnical study shall evaluate the potential for liquefaction and/or seismic-related settlement to impact the development, and identify appropriate structural-design parameters to mitigate potential hazards.</td>
<td>Consistent. See discussion under policy SE 1.3.</td>
</tr>
<tr>
<td>SE 5.2: Evaluation of Soil-Related Hazards. The City shall require structural evaluation reports with appropriate mitigation measures to be provided for all new subdivisions, and for discretionary projects proposing new nonresidential buildings or substantial additions. Depending on the conclusions of the structural evaluation report, soil and geological reports may also be required. Such studies shall evaluate the potential for soil expansion, compression, and collapse to impact the development; they shall also identify mitigation to reduce these potential impacts, if needed.</td>
<td>Consistent. See discussion under policy SE 1.3.</td>
</tr>
<tr>
<td>SE 6.4: Avoidance of Flood Hazard Areas. The City shall discourage any new intensive development in any flood hazard area. Similarly, the City shall require appropriate flood mitigation for intensification of existing development in any flood-prone area. The City shall not approve development within areas designated as the 100-year floodplain that would obstruct flood flow (such as construction in the designated floodway), displace floodwaters onto other property, or be subject to flood</td>
<td>Consistent. The Project site is not located in the 100-year floodplain.</td>
</tr>
<tr>
<td>Policy</td>
<td>Discussion</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>damage. The City shall not allow development that will create or worsen drainage problems.</td>
<td></td>
</tr>
<tr>
<td>SE 7.1: Fire Prevention and Response Measures for New Development. New development and redevelopment projects shall be designed and constructed in accordance with National Fire Protection Association standards to minimize fire hazards, with special attention given to fuel management and improved access in areas with higher fire risk, with access or water supply deficiencies, or beyond a 5-minute response time.</td>
<td>Consistent. The Project would be built in accordance with all fire protection standards and is within the 5-minute response zone. The nearest fire station, which serves the Project site, is Fire Station 14, located at 320 N. Los Carneros Road, approximately ½ mile north of the Project site.</td>
</tr>
<tr>
<td>SE 7.2: Review of New Development. Applications for new or expanded development shall be reviewed by appropriate Santa Barbara County Fire Department personnel to ensure they are designed in a manner that reduces the risk of loss due to fire. Such review shall include consideration of the adequacy of “defensible space” around structures at risk; access for fire suppression equipment, water supplies, construction standards; and vegetation clearance. Secondary access may be required and shall be considered on a case-by-case basis. The City shall encourage built-in fire suppression systems such as sprinklers, particularly in high-risk or high-value areas.</td>
<td>Consistent. The Project has been reviewed by the Santa Barbara County Fire Protection District. The Fire District provided specifications for elevators, driveways, street signs, fire hydrants, a new fire lane, fire extinguishers, automatic sprinkler system, automatic fire or emergency alarm system, access way entrance gates, requirement for a Knox Box at entry, and payment of development impact fees. The Project would be consistent with the Fire Departments comments.</td>
</tr>
<tr>
<td>SE 7.5: Automatic Fire Sprinkler Systems. The City shall require the installation of automatic fire sprinklers for; a) all new buildings that have a total floor area of 5,000 square feet or more and b) any existing building proposed for remodeling or an addition, which, upon completion of the remodel or addition, will have a total floor area of 5,000 square feet or more. The 5,000-square-foot threshold cited in criteria a) and b), above, shall be reduced to 1,000 square feet for any building zoned or used for commercial or industrial purposes if such building is within 100 feet of any residually zoned parcel.</td>
<td>Consistent. The Project has been reviewed by the Santa Barbara County Fire Protection District and would be subject to standard Department requirements mandating installation of fire sprinklers.</td>
</tr>
<tr>
<td>SE 10.5: Restriction on Residential Development near Hazardous Facilities. The City shall consider the exposure of new development to risk of hazardous materials accidents and exposure as a part of its project and environmental review processes and require any appropriate mitigation measures. The City shall not allow any new residential development near hazardous facilities if these residences would be exposed to unacceptable and unmitigable risk.</td>
<td>Consistent. Upon adoption of the General Plan, the City determined that a residential land use/zoning designation was appropriate for the Project site. As discussed in Section 4.7, Hazards/Risk of Upset, residents at the Project site may be exposed to a low-to extremely low risk of upset due to the potential release of hazardous materials from nearby businesses, truck accidents on U.S. 101, train derailments on the UPRR rail line, and a high-pressure natural gas pipeline on Hollister Avenue (as discussed in Section 4.7, the estimated risk of upset from the various potential hazards is substantially less than once in 1,000 years). Federal, state and local regulations place strict requirements on the users of hazardous materials to ensure that the risk of upset is extremely low. Therefore, although this EIR conservatively identifies the risk of upset impact as Class I, significant and unavoidable, the various upset hazards present in the site vicinity do not constitute an unacceptable risk for residences to be placed on the Project site.</td>
</tr>
</tbody>
</table>
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>VISUAL AND HISTORIC RESOURCES ELEMENT</td>
<td>Inconsistent. As described in Section 4.1, Aesthetics, the Project site does not include scenic resources identified in Policy VH 1.1. The Project would not obstruct southward scenic views of the Pacific Ocean from the Los Carneros Road overpass. However, the Project would partially obstruct a designated view corridor of the Santa Ynez Mountains northward from S. Los Carneros Road at Calle Koral. As described in Section 4.1, Aesthetics, the simulated three-story buildings in the southwest portion of the site would rise to a level just below the ridgeline of the Santa Ynez Mountains, obstructing scenic views of the bulk of mountains to the northeast from the perspective of northbound motorists on S. Los Carneros Road. This has been identified as a Class I, significant and unavoidable, impact.</td>
</tr>
<tr>
<td>VH 1.1: Scenic Resources. An essential aspect of Goleta’s character is derived from the various scenic resources within and around the city. Views of these resources from public and private areas contribute to the overall attractiveness of the city and the quality of life enjoyed by its residents, visitors, and workforce. The City shall support the protection and preservation of the following scenic resources:</td>
<td>Inconsistent. As described in VH 1.1, above, and Section 4.1, Aesthetics, the Project, which changing the existing view, would not obstruct southward scenic views of the Pacific Ocean from the Los Carneros Road overpass. However, the Project would partially obstruct a designated view corridor of the Santa Ynez Mountains northward from S. Los Carneros Road at Calle Koral. This has been identified as a Class I, significant and unavoidable, impact.</td>
</tr>
<tr>
<td>a. The open waters of the Pacific Ocean/Santa Barbara Channel, with the Channel Islands visible in the distance.</td>
<td></td>
</tr>
<tr>
<td>b. Goleta’s Pacific shoreline, including beaches, dunes, lagoons, coastal bluffs, and open coastal mesas.</td>
<td></td>
</tr>
<tr>
<td>c. Goleta and Devereux Sloughs.</td>
<td></td>
</tr>
<tr>
<td>d. Creeks and the vegetation associated with their riparian corridors.</td>
<td></td>
</tr>
<tr>
<td>e. Agricultural areas, including orchards, lands in vegetable or other crop production, and fallow agricultural lands.</td>
<td></td>
</tr>
<tr>
<td>f. Lake Los Carneros and the surrounding woodlands.</td>
<td></td>
</tr>
<tr>
<td>g. Prominent natural landforms, such as the foothills and the Santa Ynez Mountains.</td>
<td></td>
</tr>
<tr>
<td>VH 1.4: Protection of Mountain and Foothill Views. Views of mountains and foothills from public areas shall be protected. View protection associated with development that may affect views of mountains or foothills should be accomplished first through site selection and then by use of design alternatives that enhance, rather than obstruct or degrade, such views. To minimize structural intrusion into the skyline, the following development practices shall be used where appropriate:</td>
<td></td>
</tr>
<tr>
<td>a. Limitations on the height and size of structures.</td>
<td></td>
</tr>
<tr>
<td>b. Limitations on the height of exterior walls (including retaining walls) and fences.</td>
<td></td>
</tr>
<tr>
<td>c. Stepping of buildings so that the heights of building elements are lower near the street and increase with distance from the public viewing area. Increased setbacks along major roadways to preserve views and create an attractive visual corridor.</td>
<td></td>
</tr>
<tr>
<td>d. Downcast, fully shielded, full cut off lighting of the minimum intensity needed for the purpose.</td>
<td></td>
</tr>
<tr>
<td>e. Limitations on removal of native vegetation.</td>
<td></td>
</tr>
<tr>
<td>f. Use of landscaping for screening purposes and/or minimizing view blockage as applicable.</td>
<td></td>
</tr>
<tr>
<td>g. Revegetation of disturbed areas.</td>
<td></td>
</tr>
<tr>
<td>h. Limitations on the use of reflective materials and colors for roofs, walls (including retaining walls), and fences.</td>
<td></td>
</tr>
<tr>
<td>i. Selection of colors and materials that harmonize with the surrounding landscape.</td>
<td></td>
</tr>
<tr>
<td>j. Clustering of building sites and structures.</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>VH 2.2: Preservation of Scenic Corridors. The aesthetic qualities of scenic corridors shall be preserved through retention of the general character of significant natural features; views of the ocean, foothills, and mountainous areas; and open space associated with recreational and agricultural areas including orchards, prominent vegetation, and historic structures. If landscaping is used to add visual interest or for screening, care should be taken to prevent a wall-like appearance. Bridges, culverts, drainage ditches and other roadway ancillary elements should be appropriately designed; side slopes and earthen berms adjacent to roadways should be natural in appearance.</td>
<td>Inconsistent. With regard to scenic views identified in the General Plan, including Figure 6-1, the Project development will be visible primarily from the Los Carneros Road Overpass, the U.S. 101 Los Carneros southbound on-ramp, and the Los Carneros Road scenic view corridor. Due to the elevation change between the Project site and the overpass/ramp, scenic and coastal views from these viewpoints, while changed, would not be obstructed by the Project. As described in Impact AES-1, the Project would not obstruct southward scenic views of the Pacific Ocean from the Los Carneros Road overpass. However, the Project would partially obstruct a designated view corridor of the Santa Ynez Mounts northward from S. Los Carneros Road at Calle Koral. This has been identified as a Class I, significant and unavoidable, impact. See discussions under Policies VH 1.1, VH 1.4, and Section 4.1, Aesthetics.</td>
</tr>
<tr>
<td>VH 2.3: Development Projects Along Scenic Corridors. Development adjacent to scenic corridors should not degrade or obstruct views of scenic areas. To ensure visual compatibility with the scenic qualities, the following practices shall be used, where appropriate: a. Incorporate natural features in design. b. Use landscaping for screening purposes and/or for minimizing view blockage as applicable. c. Minimize vegetation removal. d. Limit the height and size of structures. e. Cluster building sites and structures. f. Limit grading for development including structures, access roads, and driveways. Minimize the length of access roads and driveways and follow the natural contour of the land. g. Preserve historical structures or sites. h. Plant and preserve trees. i. Minimize use of signage. j. Provide site-specific visual assessments, including use of story poles. k. Provide a similar level of architectural detail on all elevations visible from scenic corridors. l. Place existing overhead utilities and all new utilities underground. m. Establish setbacks along major roadways to help protect views and create an attractive scenic corridor. On flat sites, step the heights of buildings so that the height of building elements is lower close to the street.</td>
<td>Inconsistent. See discussion under policy VH 2.2.</td>
</tr>
</tbody>
</table>
Table 4.9-1

Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>VH 3.1: Community Design Character. The visual character of Goleta is derived from the natural landscape and the built environment. The city’s agricultural heritage, open spaces, views of natural features, established low-density residential neighborhoods, and small-scale development with few visually prominent buildings contribute to this character. Residential, commercial, and industrial development should acknowledge and respect the desired aspects of Goleta’s visual character and make a positive contribution to the city through exemplary design.</td>
<td>Consistent. As discussed in Section 4.1, Aesthetics, landscaping and building design would respect Goleta’s visual character and the surrounding residential development. The proposed landscape design is intended to blend with the existing Willow Springs Apartments by using a similar plant palette and two-rail fence along Camino Vista. Additionally, Mitigation measures AES-4(a) and AES-4(b) would be required to reduce potentially significant impacts from the Project’s massing and architectural style and to ensure that building heights remain consistent with adjacent development. The massing and architectural style of the proposed apartment buildings would be compatible with surrounding development. The Project design would enhance Goleta’s overall visual character using building forms that are typical of the neighborhood and adding distinction with architectural elements. See the discussion of Policy LU 1.8, Policy VH 1.4 and EIR Section 4.1 Aesthetics.</td>
</tr>
<tr>
<td>VH 3.2: Neighborhood Identity. The unique qualities and character of each neighborhood shall be preserved and strengthened. Neighborhood context and scale shall be maintained. New development shall be compatible with existing architectural styles of adjacent development, except where poor quality design exists.</td>
<td>Consistent. The proposed apartment buildings would be compatible with adjacent residential buildings. Both the Project and adjacent residential development are multi-family housing made up of buildings two and three stories tall. The Project site plan corresponds with the neighborhood context and the structures are not out of scale with the area. Additionally, architectural elements in the building design, such as the proposed severe, rectangular appearance, provide a distinction for the on-site development. See Section 4.1, Aesthetics, and Policies LU 1.8, VH 1.4 and VH 3.1.</td>
</tr>
<tr>
<td>VH 3.3: Site Design. The City’s visual character shall be enhanced through appropriate site design. Site plans shall provide for buildings, structures, and uses that are subordinate to the natural topography, existing vegetation, and drainage courses; adequate landscaping; adequate vehicular circulation and parking; adequate pedestrian circulation; and provision and/or maintenance of solar access.</td>
<td>Consistent. The Project would remove 115,000 cubic yards of fill soil from the site, restoring the natural topography of the site. See Section 4.1, Aesthetics, for further details. The Project would provide parking as required by the City Code and site access would be sufficient (see traffic study in Appendix I).</td>
</tr>
<tr>
<td>VH 3.4: Building Design. The city’s visual character shall be enhanced through development of structures that are appropriate in scale and orientation and that use high-quality, durable materials. Structures shall incorporate architectural styles, landscaping, and amenities that are compatible with and complement surrounding development.</td>
<td>Consistent. See discussions under Policies LU 1.8, VH 1.4, VH 3.1 and VH 3.2, and in section 4.1, Aesthetics.</td>
</tr>
<tr>
<td>VH 4.4: Multifamily Residential Areas. In addition to the items listed in Subpolicy VH 4.3, the following standards shall be applicable to multifamily residential development (see related Subpolicies LU 1.9 and LU 2.3): a. Roof lines should be varied to create visual interest. b. Large building masses should be avoided, and where feasible, several smaller buildings are encouraged rather than one large structure. Multiple structures should be clustered to maximize open space. c. Multifamily residential developments shall include common open space that is appropriately located, is</td>
<td>Consistent. The Project includes 8 residential buildings with varied rooflines (flat and gabled) and architectural details including balconies. Based on the preliminary landscaping plan, extensive landscaping also would soften the development’s mass and scale. The proposed landscape design is intended to blend with the existing Willow Springs Apartments by using a similar plant palette and two-rail fence along Camino Vista. Additionally, Mitigation measures AES-4(a) and AES-4(b) would be required to reduce potentially significant impacts from the Project’s massing and architectural style and to ensure that building heights remain</td>
</tr>
</tbody>
</table>

City of Goleta

255
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>functional, and provides amenities for different age groups.</td>
<td>consistent with adjacent development. Pedestrian access would also be provided throughout the site and landscaping would be provided along site boundaries to screen the site from nearby roadways. Storage areas for trash and recycling bins would be screened.</td>
</tr>
<tr>
<td>c. Where multifamily developments are located next to less dense existing residential development, open space should provide a buffer along the perimeter.</td>
<td></td>
</tr>
<tr>
<td>d. Individual units shall be distinguishable from each other. Long continuous wall planes and parking corridors shall be avoided. Three dimensional façades are encouraged.</td>
<td></td>
</tr>
<tr>
<td>e. Extensive landscaping is encouraged to soften building edges and provide a transition between adjacent properties.</td>
<td></td>
</tr>
<tr>
<td>f. Storage areas for recycling and trash shall be covered and conveniently located for all residents and screened with landscaping or walls.</td>
<td></td>
</tr>
<tr>
<td>g. Safe and aesthetically pleasing pedestrian access that is physically separated from vehicular access shall be provided in all new residential developments whenever feasible. Transitional spaces, including landscape or hardscape elements, should be provided from the pedestrian access to the main entrance. Main entrances should not open directly onto driveways or streets. Safe bicycle access should be considered in all residential developments.</td>
<td></td>
</tr>
<tr>
<td>VH 4.9: Landscape Design. Landscaping shall be considered and designed as an integral part of development, not relegated to remaining portions of a site following placement of buildings, parking, or vehicular access. Landscaping shall conform to the following standards:</td>
<td>Consistent. As described in Section 2.0, Project Description, and Section 4.1, Aesthetics, the Project includes native landscaping throughout the Project and landscape screening on the perimeter of the site.</td>
</tr>
<tr>
<td>a. Landscaping that conforms to the natural topography and protects existing specimen trees is encouraged.</td>
<td></td>
</tr>
<tr>
<td>b. Any specimen trees removed shall be replaced with a similar size tree or with a tree deemed appropriate by the City.</td>
<td></td>
</tr>
<tr>
<td>c. Landscaping shall emphasize the use of native and drought-tolerant vegetation and should include a range and density of plantings including trees, shrubs, groundcover, and vines of various heights and species.</td>
<td></td>
</tr>
<tr>
<td>d. The use of invasive plants shall be prohibited.</td>
<td></td>
</tr>
<tr>
<td>e. Landscaping shall be incorporated into the design to soften building masses, reinforce pedestrian scale, and provide screening along public streets and off-street parking areas.</td>
<td></td>
</tr>
<tr>
<td>VH 4.12: Lighting. Outdoor lighting fixtures shall be designed, located, aimed downward or toward structures (if properly shielded), retrofitted if feasible, and maintained in order to prevent overlighting, energy waste, glare, light trespass, and sky glow. The following standards shall apply:</td>
<td>Consistent. Outdoor lighting fixtures would be of the minimum number necessary for safety and would be properly shielded. See Section 4.1, Aesthetics, includes mitigation for outdoor lighting specification ensuring the Project is consistent with this policy.</td>
</tr>
<tr>
<td>a. Outdoor lighting shall be the minimum number of fixtures and intensity needed for the intended purpose. Fixtures shall be fully shielded and have full cut off lights to minimize visibility from public viewing areas and prevent light pollution into residential areas or other sensitive uses such as wildlife habitats or</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>migration routes.</td>
<td></td>
</tr>
<tr>
<td>b. Direct upward light emission shall be avoided to protect views of</td>
<td>Inconsistent. As discussed in Section 4.1, Aesthetics, photo-realistic visual simulations show that the Project would create a Class I impact on views of the Santa Ynez Mountains from S. Los Carneros Road.</td>
</tr>
<tr>
<td>the night sky.</td>
<td></td>
</tr>
<tr>
<td>c. Light fixtures used in new development shall be appropriate to the</td>
<td></td>
</tr>
<tr>
<td>architectural style and scale and compatible with the surrounding</td>
<td></td>
</tr>
<tr>
<td>area.</td>
<td></td>
</tr>
<tr>
<td>VH 4.15: Site-Specific Visual Assessments. The use of story poles,</td>
<td></td>
</tr>
<tr>
<td>physical or software-based models, photo-realistic visual simulations,</td>
<td></td>
</tr>
<tr>
<td>perspectives, photographs, or other tools shall be required, when</td>
<td></td>
</tr>
<tr>
<td>appropriate, to evaluate the visual effects of proposed development</td>
<td></td>
</tr>
<tr>
<td>and demonstrate visual compatibility and impacts on scenic views.</td>
<td></td>
</tr>
<tr>
<td>VH 5.4: Preservation of Historic Resources. Historic resources and</td>
<td>Consistent. The Project site does not include known historic structures.</td>
</tr>
<tr>
<td>the heritage they represent shall be protected, preserved, and</td>
<td></td>
</tr>
<tr>
<td>enhanced to the fullest extent feasible. The City shall recognize,</td>
<td></td>
</tr>
<tr>
<td>preserve and rehabilitate publicly owned historic resources and</td>
<td></td>
</tr>
<tr>
<td>provide incentive programs to encourage the designation, protection,</td>
<td></td>
</tr>
<tr>
<td>and preservation of privately owned historic resources. Various</td>
<td></td>
</tr>
<tr>
<td>incentives or benefits to the property owner shall be considered,</td>
<td></td>
</tr>
<tr>
<td>such as direct financial assistance, reduced permitting fees to</td>
<td></td>
</tr>
<tr>
<td>upgrade structures, flexibility with regard to allowed uses,</td>
<td></td>
</tr>
<tr>
<td>compliance with the State Historic Building Code rather than the</td>
<td></td>
</tr>
<tr>
<td>Uniform Building Code, façade conservation easements, identification</td>
<td></td>
</tr>
<tr>
<td>of grant sources, provision of information regarding rehabilitation</td>
<td></td>
</tr>
<tr>
<td>loan financing, and tax advantages.</td>
<td></td>
</tr>
<tr>
<td>TRANSPORTATION ELEMENT</td>
<td></td>
</tr>
<tr>
<td>TE 1.6: Development Review. As a condition of approval of new</td>
<td>Consistent. The Project includes 14 bicycle parking pads placed throughout the property. Additionally, the public transportation located along Hollister Ave is accessible from the Project site.</td>
</tr>
<tr>
<td>non-residential projects, the City may require developers to provide</td>
<td></td>
</tr>
<tr>
<td>improvements that will reduce the use of single-occupancy vehicles.</td>
<td></td>
</tr>
<tr>
<td>These improvements may include, but are not limited to, the following:</td>
<td></td>
</tr>
<tr>
<td>a. Preferential parking spaces for carpools.</td>
<td></td>
</tr>
<tr>
<td>b. Bicycle storage, parking spaces, and shower facilities for</td>
<td></td>
</tr>
<tr>
<td>employees.</td>
<td></td>
</tr>
<tr>
<td>c. Bus turnouts and shelters at bus stops.</td>
<td></td>
</tr>
<tr>
<td>d. Other improvements as may be appropriate to the site.</td>
<td></td>
</tr>
<tr>
<td>TE 7.12: Transit Amenities in New Development. The City shall</td>
<td>Consistent. The Project would result in approximately 11 new transit users during the peak periods (7:00 to 9:00 A.M. and 4:00 to 6:00 P.M.) (refer to Appendix I). There are currently 22 buses that serve the site during the weekday peak hour periods. Thus, the Project would add fewer than 1 rider per bus on average. New bus riders generated by the Project would not measurably impact the operations of the transit routes that serve the site. Bus stops are located in close proximity to the Project site on Hollister Avenue at the Aero Camino intersection (approximately 0.3 miles south of the Project site) and would be easily accessible from the site.</td>
</tr>
<tr>
<td>require new or substantially renovated development to incorporate</td>
<td></td>
</tr>
<tr>
<td>appropriate measures to facilitate transit use, such as integrating</td>
<td></td>
</tr>
<tr>
<td>bus stop design with the design of the development. Bus turnouts,</td>
<td></td>
</tr>
<tr>
<td>comfortable and attractive all-weather shelters, lighting, benches,</td>
<td></td>
</tr>
<tr>
<td>secure bicycle parking, and other appropriate amenities shall be</td>
<td></td>
</tr>
<tr>
<td>incorporated into development, when appropriate, along Hollister</td>
<td></td>
</tr>
<tr>
<td>Avenue and along other bus routes within the city. Existing facilities</td>
<td></td>
</tr>
<tr>
<td>that are inadequate or deteriorated shall be improved or upgraded</td>
<td></td>
</tr>
<tr>
<td>where appropriate and feasible.</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE 9.3: Parking in Residential Neighborhoods. Any proposed new or expanded use in residential areas shall provide adequate onsite parking to support the use. Adequate parking shall be provided to minimize the need for parking in public rights-of-way and to avoid spillover of parking onto adjacent uses and into other areas. The existing supply of onstreet parking spaces shall be preserved to the maximum extent feasible. Off-street parking for proposed new single-family dwellings in all residential use categories shall be provided in enclosed garages. Driveway aprons in single-family residential neighborhoods shall have sufficient widths and depths to allow parking of two standard-sized vehicles in front of the garage.</td>
<td>Consistent. The Project provides adequate on-site parking to serve future uses (see Section 4.13, Transportation/Traffic, and Impact LU-5).</td>
</tr>
<tr>
<td>TE 10.4: Pedestrian Facilities in New Development. Proposals for new development or substantial alterations of existing development shall be required to include pedestrian linkages and standard frontage improvements. These improvements may include construction of sidewalks and other pedestrian paths, provision of benches, public art, informational signage, appropriate landscaping, and lighting. In planning new subdivisions or large-scale development, pedestrian connections should be provided through subdivisions and cul-de-sacs to interconnect with adjacent areas. Dedications of public access easements shall be required where appropriate.</td>
<td>Consistent. The Project includes internal sidewalks and pedestrian paths and connections to Calle Koral, which has sidewalks to Los Carneros.</td>
</tr>
<tr>
<td>TE 11.4: Facilities in New Development. Bicycle facilities such as lockers, secure enclosed parking, and lighting shall be incorporated into the design of all new development to encourage bicycle travel and facilitate and encourage bicycle commuting. Showers and changing rooms should be incorporated into the design of all new development where feasible. Transportation improvements necessitated by new development should provide onsite connections to existing and proposed bikeways.</td>
<td>Consistent. The Project includes 14 bicycle parking pad placed throughout the property and would provide on-site security lighting. The Project is a residential development; therefore, items such as bike lockers, showers, and changing rooms do not apply.</td>
</tr>
<tr>
<td>TE 13.1: Traffic Studies for Development Proposals. Future development in Goleta will cause added burdens on the transportation system. Traffic analyses and reports shall be required for development proposals which the City Engineer and Planning Director determine may have effects on the local street system, including but not limited to possible degradation of service levels, potential creation of safety hazards, potential adverse effects on local neighborhood streets, or other substantial transportation concerns. When required by the City, traffic studies shall be performed by a qualified transportation engineer under a contract with the City. The costs of the traffic study, including costs of City staff time, shall be the responsibility of the project applicant.</td>
<td>Consistent. A traffic study was prepared for the Project by Associated Transportation Engineers and peer reviewed by Linscott, Law & Greenspan.</td>
</tr>
<tr>
<td>TE 13.3: Maintenance of LOS Standards. New development shall only be allowed when and where such development can be adequately (as defined by the LOS standards in Policy TE 4) served by existing and/or planned transportation facilities. Transportation facilities are</td>
<td>Consistent. The traffic study concludes that all traffic impacts would be less than significant.</td>
</tr>
</tbody>
</table>
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>considered adequate if, at the time of development:</td>
<td></td>
</tr>
<tr>
<td>a. Existing transportation facilities serving the development, including those to be constructed by the developer as part of the project, will result in meeting the adopted LOS standards set in Policy TE 4; or</td>
<td></td>
</tr>
<tr>
<td>b. A binding financial commitment and agreement is in place to complete the necessary transportation system improvements (except for the planned new grade-separated freeway crossings), or to implement other strategies which will mitigate the project-specific impacts to an acceptable level, within 6 or fewer years; and</td>
<td></td>
</tr>
<tr>
<td>c. Any additional offsite traffic mitigation measures are incorporated into the impact fee system for addressing cumulative transportation impacts of future development.</td>
<td></td>
</tr>
</tbody>
</table>

PUBLIC FACILITIES ELEMENT

PF 3.4: Fire Safety in New Development. The following fire safety standards shall be met, where applicable, in new development within the city:

a. Two routes of ingress and egress shall be required for any new development or subdivision of land requiring approval of a discretionary action. This requirement may be waived by the City when secondary access cannot be provided and maintenance of fire safety standards are ensured by other means.

b. All private roads that provide access to structures served by the Santa Barbara County Fire Department shall be constructed at a minimum to the department’s standards.

c. All nonagricultural development in the foothills area shall include provisions for connection to the GWD or another public water purveyor.

d. Emergency access shall be a consideration in the siting and design of all new development within the city.

PF 3.8: Impact Fee for Police Facilities. The City shall continue to require a development impact fee to provide revenue to assist with funding capital facilities for police services.

Consistent. The applicant would be required to pay development impact fees for police protection services.

PF 3.9: Safety Considerations in New Development. All proposals for new or substantially remodeled development shall be reviewed for potential demand for and impacts on safety and demand for police services. The design of streets and buildings should reinforce secure, safe, and crime-free environments. Safety and crime reduction or prevention, as well as ease of policing, shall be a consideration in the siting and design of all new development within the city.

Consistent. The Project’s impacts on police protection services was evaluated in Section 4.11, Public Services, and found to be less than significant. The Project involves the construction of walls along the north, east, and west boundaries that would reduce trespassing.

PF 5.2: Assessment of School Impacts of Large Development Projects. Applications for residential development within the city shall be referred to the school districts for their review and comments. The City shall require the assessment of impacts of large development projects on school facility needs through the

Consistent. Impacts of the Project on schools were evaluated in Section 4.11, Public Services, and found to be less than significant. The Project applicant would be required to pay school impact mitigation fees.
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF 9.2: Phasing of New Development. Development shall be allowed only when and where it is demonstrated that all public facilities are adequate and only when and where such development can be adequately served by essential public services without reducing levels of service elsewhere.</td>
<td>Consistent. Adequate public facilities are available to serve the Project. See also discussions for Policies PF 3.4, PF 3.8, PF 3.9, and PF 5.2.</td>
</tr>
<tr>
<td>PF 9.3: Responsibilities of Developers. Construction permits shall not be granted until the developer provides for the installation and/or financing of needed public facilities. If adequate facilities are currently unavailable and public funds are not committed to provide such facilities, the burden shall be on the developer to arrange appropriate financing or provide such facilities in order to develop. Developers shall provide or pay for the costs of generating technical information as to impacts the proposed development will have on public facilities and services. The City shall require new development to finance the facilities needed to support the development wherever a direct connection or nexus of benefit or impact can be demonstrated.</td>
<td>Consistent. See discussions for Policies PF 3.4, PF 3.8, PF 3.9, PF 5.2, and PF 9.2.</td>
</tr>
</tbody>
</table>
| **PF 9.7: Essential Services for New Development.** Development shall be allowed only when and where all essential utility services are adequate in accord with the service standards of their providers and only when and where such development can be adequately served by essential utilities without reducing levels of service below the level of service guidelines elsewhere.
 a. Domestic water service, sanitary sewer service, stormwater management facilities, streets, fire services, schools, and parks shall be considered essential for supporting new development.
 b. A development shall not be approved if it causes the level of service of an essential utility service to decline below the standards referenced above unless improvements to mitigate the impacts are made concurrent with the development for the purposes of this policy. "Concurrent with the development" shall mean that improvements are in place at the time of the development or that a financial commitment is in place to complete the improvements.
 c. If adequate essential utility services are currently unavailable and public funds are not committed to provide such facilities, developers must provide such facilities at their own expense in order to develop. | Consistent. Based upon the Judgement Upon Arbitration Award, Case Number 232281 filed in Santa Barbara Superior Court on February 26, 2002, the combined Willow Springs properties (Willow Springs I, Willow Springs II, and the Project) have been granted allocation of a total of 100.9 AFY of potable water from the GWD. The total estimated water demand for the three properties is 100.8 AFY. As discussed in Section 4.14, Utilities and Service Systems, the Project would be adequately served by water, sewer, and stormwater services. See discussion for Policies PF 3.4, PF 3.8, PF 3.9, PF 5.2, PF 9.2, and PF 9.3. |

NOISE ELEMENT

| NE 1.1: Land Use Compatibility Standards. The City shall use the standards and criteria of Table 9-2 to establish compatibility of land use and noise exposure. The City shall require appropriate mitigation, if feasible, or prohibit development that would subject proposed or existing land uses to noise levels that exceed acceptable levels as | Consistent with Mitigation. The Project could expose future residents to noise above the standards and criteria of the City’s General Plan Noise Element Table 9-2, Noise and Land Use Compatibility Criteria due to noise from the adjacent U.S. 101, UP RR and existing business park development. However, Mitigation Measure N-5 in Section 4.10, Noise, would reduce... |
Table 4.9-1

Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>indicated in this table. Proposals for new development that would cause standards to be exceeded shall only be approved if the project would provide a substantial benefit to the City (including but not limited to provision of affordable housing units or as part of a redevelopment project), and if adequate mitigation measures are employed to reduce interior noise levels to acceptable levels.</td>
<td>indoor and outdoor noise exposure levels for the proposed housing Project to within City standards. Noise associated with Project construction was found to not exceed thresholds. Project generated traffic noise would not exceed thresholds.</td>
</tr>
<tr>
<td>NE 1.2: Location of New Residential Development. Where sites, or portions of sites, designated by the land use element for residential use exceed 60 dBA CNEL, the City shall require measures to be incorporated into the design of projects that will mitigate interior noise levels and noise levels for exterior living and play areas to an acceptable level. In the event that a proposed residential or mixed-use project exceeds these standards, the project may be approved only if it would provide a substantial benefit to the City, including but not limited to, provision of affordable residential units. Mitigation measures shall reduce interior noise levels to 45 dBA CNEL or less, while noise levels at exterior living areas and play areas should in general not exceed 60 dBA CNEL and 65 dBA CNEL, respectively.</td>
<td>This residential apartment Project would provide 228 workforce housing units to assist the City in addressing its jobs/housing balance.</td>
</tr>
<tr>
<td>NE 1.4: Acoustical Studies. An acoustical study that includes field measurement of noise levels may be required for any proposed project that would: a) locate a potentially intrusive noise source near an existing sensitive receptor, or b) locate a noise sensitive land use near an existing known or potentially intrusive noise source such as a freeway, arterial roadway, railroad, industrial facility, or airport traffic pattern. Acoustical studies should identify noise sources, magnitudes, and potential noise mitigation measures and describe existing and future noise exposure. The acoustical study shall be funded by the applicant and conducted by a qualified person or firm that is experienced in the fields of environmental noise assessment and architectural acoustics. The determination of applicability of this requirement shall be made by the Planning and Environmental Services Department by applying the standards and criteria of Table 9-2.</td>
<td>An acoustical study was conducted as part of this EIR. Noise sources, magnitudes, and mitigation are described in Section 4.10, Noise.</td>
</tr>
<tr>
<td>NE 1.5: Acceptable Noise Levels. New construction and substantial alterations of existing construction shall include appropriate noise insulation measures (such as insulation, glazing, and other sound attenuation measures) so that such construction or renovations comply with state and building code standards for allowable interior noise levels. The intent of this policy is to require improved soundproofing for both noise receivers and sources.</td>
<td>Consistent with Mitigation. See discussion for Policy NE 1.1.</td>
</tr>
</tbody>
</table>
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE 4.1: Consideration of Exposure to Railway Noise. The City shall consider current and projected exposure to noise levels for any proposed development or use on land adjacent to the UPRR. The City should not approve any development that would result in unacceptable levels of noise exposure in accordance with the standards of Policy NE 1 above.</td>
<td>Consistent with Mitigation. The Project is adjacent to the UPRR. Section 4.10, Noise, includes a discussion of noise levels associated with the rail line. With mitigation, noise exposure would be reduced to a less than significant level.</td>
</tr>
<tr>
<td>NE 6.4: Restrictions on Construction Hours. The City shall require, as a condition of approval for any land use permit or other planning permit, restrictions on construction hours. Noise-generating construction activities for projects near or adjacent to residential buildings and neighborhoods or other sensitive receptors shall be limited to Monday through Friday, 8:00 a.m. to 5:00 p.m. Construction in nonresidential areas away from sensitive receivers shall be limited to Monday through Friday, 7:00 a.m. to 4:00 p.m. Construction shall generally not be allowed on weekends and state holidays. Exceptions to these restrictions may be made in extenuating circumstances (in the event of an emergency, for example) on a case by case basis at the discretion of the Director of Planning and Environmental Services. All construction sites subject to such restrictions shall post the allowed hours of operation near the entrance to the site, so that workers on site are aware of this limitation. City staff shall closely monitor compliance with restrictions on construction hours, and shall promptly investigate and respond to all noncompliance complaints.</td>
<td>Consistent with Mitigation. The Project site is located adjacent (within 50 feet) to existing residential uses that are considered sensitive receptors and would be affected by construction at the Project site. Therefore, Mitigation Measure N-1(a) restricts construction activity hours to between 8:00 a.m. and 5:00 p.m. Monday through Friday.</td>
</tr>
<tr>
<td>NE 6.5: Other Measures to Reduce Construction Noise. The following measures shall be incorporated into grading and building plan specifications to reduce the impact of construction noise:</td>
<td>Consistent with Mitigation. Mitigation Measures N-1(b) – N-1(e) include additional measures beyond the requirements of this policy to reduce the impacts of construction noise.</td>
</tr>
<tr>
<td>a. All construction equipment shall have properly maintained sound-control devices, and no equipment shall have an unmuffled exhaust system.</td>
<td></td>
</tr>
<tr>
<td>b. Contractors shall implement appropriate additional noise mitigation measures including but not limited to changing the location of stationary construction equipment, shutting off idling equipment, and installing acoustic barriers around significant sources of stationary construction noise.</td>
<td></td>
</tr>
<tr>
<td>c. To the extent practicable, adequate buffers shall be maintained between noise-generating machinery or equipment and any sensitive receivers. The buffer should ensure that noise at the receiver site does not exceed 65 dBA CNEL. For equipment that produces a noise level of 95 dBA at 50 feet, a buffer of 1600 feet is required for attenuation of sound levels to 65 dBA.</td>
<td></td>
</tr>
<tr>
<td>NE 7.2: Site-Design Techniques. The City encourages the inclusion of site-design techniques for new construction that will minimize noise exposure impacts. These techniques shall include building placement, landscaped setbacks, and siting of more noise-tolerant components (parking, utility areas, and maintenance facilities) between noise sources and sensitive receptor areas.</td>
<td>Consistent with Mitigation. The Project includes construction of eight-foot high sound wall along the northern site boundary to reduce noise from U.S. 101 and UPRR. Mitigation Measure N-5 would further reduce noise exposure impacts.</td>
</tr>
</tbody>
</table>
Table 4.9-1

Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE 7.6: Noise-Insulation Standards for Multi-Family Dwellings. In compliance with state law, the City shall require all multi-family residential developments that are proposed within the 60-dBA CNEL noise contour to include appropriate noise insulation measures.</td>
<td>Consistent with Mitigation. See discussion for policy NE 7.2.</td>
</tr>
<tr>
<td>HOUSING ELEMENT</td>
<td></td>
</tr>
<tr>
<td>HE 6.3: Vacant Sites Designated for Rezoning to Residential or Higher Density. Vacant sites designated by the Land Use Element for residential use, as identified in Technical Appendix Table 10A-24, shall be rezoned to higher density residential as identified in Technical Appendix Table 10A-28 following adoption of this updated element. Additionally, vacant nonresidential sites, as identified in Technical Appendix Table 10A-27, shall be rezoned to allow for residential use, consistent with the Land Use Element, following adoption of this updated element.</td>
<td>Consistent. The Project site is zoned for residential use consistent with the Land Use Element. The Project is consistent with the current residential land use designation and zoning.</td>
</tr>
<tr>
<td>HE 9.3: Housing Design Principles for Multifamily and Affordable Housing. The intent in the design of new multifamily and affordable housing is to provide stable, safe, and attractive neighborhoods through high-quality architecture, site planning, and amenities that address the following principles (see related Policy VH 4):</td>
<td></td>
</tr>
<tr>
<td>a. Reduce the Appearance of Building Bulk— Require designs that break up the perceived bulk and minimize the apparent height and size of new buildings, including the use of upperstory step-backs, variations in wall and roof planes, and landscaping. Application of exterior finish materials and trim, and windows and doors, for example, are important elements of building design and an indicator of overall building quality.</td>
<td>Consistent. The multi-family Project would have overall mass, bulk and scale similar to that of adjacent multi-family residential developments. The Project includes a mixture of two and three story buildings and would break up the overall bulk of the development by providing eight buildings clustered on the site with open space common areas between the buildings. The placement of windows and balconies provides privacy for the residential units and metal window canopies are designed using decorative metal. Focal points are provided on-site including a two acre public park in the center of the development. In addition, Mitigation Measures AES-4(a) and AES-4(b) would be required to reduce potentially significant impacts from the Project’s massing and architectural style and to ensure that building heights remain consistent with adjacent development. The continuity of building architecture and landscaping provide a sense of place. Pedestrian pathways are designed throughout the site and connect to the sidewalk on Calle Koral. Extensive landscaping would be provided along the sites eastern and western boundaries as well as eight-foot high privacy wall to the north provide buffers between site development and adjacent UPRR and U.S. 101. Carports and open parking spaces with landscape screening are located along the side and rear edges of the site. The Project is consistent with housing design principles for multifamily and affordable housing.</td>
</tr>
<tr>
<td>b. Recognize Existing Street Patterns— Incorporate transitions in height and setbacks from adjacent properties to respect adjacent development character and privacy. Design new housing so that it relates to the existing street pattern, creates a sense of neighborhood with surrounding buildings, and integrates pedestrian and bicycle systems.</td>
<td></td>
</tr>
<tr>
<td>c. Enhance the "Sense of Place" by Incorporating Focal Areas—Design new housing around natural and/or designed focal points that are emphasized through direct pedestrian and bicycle pathway connections. Site design and placement of structures shall include the maximum amount of usable, contiguous open space.</td>
<td></td>
</tr>
<tr>
<td>d. Minimize the Visual Impact of Parking and Garages— Discourage residential designs in which garages dominate the public façade of the residential building.</td>
<td></td>
</tr>
<tr>
<td>e. Provide Buffers between Housing and Nonresidential Uses—Ensure compatibility of residential and nonresidential uses by addressing parking and driveway patterns, transitions between uses, entries, site planning, and the provision of appropriate buffers</td>
<td></td>
</tr>
</tbody>
</table>

See discussions under Policies LU 1.8, VH 3.1, VH 3.2, VH 3.3, VH 3.4, VH 4.4, VH 4.9, VH 4.12, VH 4.15 and section 4.1, Aesthetics.
Table 4.9-1
Consistency with Policies in the Goleta General Plan

<table>
<thead>
<tr>
<th>Policy</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>f. Maximize Privacy for Individual Units—Site design, including placement of structures, pedestrian circulation, and common areas, as well as elements of architectural design such as, but not limited to, placement of windows, shall achieve a maximum degree of privacy for individual dwelling units within multifamily projects, including privacy for individual exterior spaces.</td>
<td></td>
</tr>
<tr>
<td>g. Maximize Security and Safety—Site and architectural design of multifamily residential projects shall emphasize principles of “defensible space,” security for residents, and public safety and shall facilitate policing and observation by the City’s police department from public streets and rights-of-way to the extent feasible.</td>
<td></td>
</tr>
</tbody>
</table>

As described in Table 4.9-1, the Project would be consistent with most applicable City land use policies, and would be inconsistent with Policies VH 1.1, VH 1.4, VH 2.2, VH 2.3, and VH 4.15. As described in Section 4.1, Aesthetics, the Project would partially obstruct a designated view corridor of the Santa Ynez Mounts northward from S. Los Carneros Road at Calle Koral. This has been identified as a Class I, significant and unavoidable, impact.

Mitigation Measures. As described in Section 4.1, Aesthetics, mitigation is not available to reduce the obstruction of scenic views of the Santa Ynez Mountains from the vantage point of motorist on S. Los Carneros Road near Calle Koral. These buildings would unavoidably obstruct scenic views.

Residual Impact. As described in Section 4.1, Aesthetics, impacts to scenic view corridors would be significant and unavoidable because no feasible mitigation measures are available to reduce the obstruction of scenic views from S. Los Carneros Road. Therefore there will be a significant residual impact on Impact LU-1 as well.

Impact LU-2 The Project would be consistent with the Inland Zoning Ordinance, as adopted by the Goleta Municipal Code, with approval of the requested modification to the required side-yard setback. Impacts would be Class III, less than significant [Threshold 2].

The Project site is zoned Design Residential (DR-20) in the Inland Zoning Ordinance (Article III, Chapter 35 of the Goleta Municipal Code). Pursuant to the zoning regulations (Section 35-222.1), the purpose of the DR zone district is to “provide standards for traditional multiple residences as well as allowing flexibility and encouraging innovation and diversity in the design of residential developments by allowing a wide range of densities and housing types while requiring the provision of a substantial amount of open space within new residential developments. The intent is to ensure comprehensively planned, well designed projects.” Permitted uses in this zone include multi-family dwelling units, including community apartment projects. Accessory use buildings that are incidental to the permitted uses are also allowed. The Project involves multi-family housing that would be permitted in the DR zone.
The DR-20 zoning designation allows for a maximum of 20 units per acre. As stated in Impact LU-1, the Project site is an Affordable Housing Opportunity Site within the General Plan, which requires a minimum density of 20 units/acre. The Project would have a density of 25.4 units/acre. Table 4.9-2 shows consistency with other DR zone and General Regulation requirements in the City’s zone code, based on the proposed site plan shown on Figure 2-5 in Section 2.0, *Project Description*:

Table 4.9-2
Consistency with Zoning Ordinance Requirements

<table>
<thead>
<tr>
<th>Zoning Requirements</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Yard Setback:</td>
<td>Consistent</td>
</tr>
<tr>
<td>Twenty (20) feet from right-of-way line</td>
<td>The front setback would be more than 20 feet from the property line along Camino Vista and 20 feet from the property line along Calle Koral.</td>
</tr>
<tr>
<td>Side Yard Setback:</td>
<td>Consistent with Modification Approval</td>
</tr>
<tr>
<td>Ten (10) feet from any side or rear property line</td>
<td>Carports would be located 10 feet from the eastern property line.</td>
</tr>
<tr>
<td>Rear Yard Structure Setback:</td>
<td>Consistent</td>
</tr>
<tr>
<td>The DR zone requires a 10-foot rear yard setback, however General Regulations permit an accessory structure to be located in the rear yard setback.</td>
<td>Carports (accessory structures) would be located 10-feet from the rear property line.</td>
</tr>
<tr>
<td>Parking Design:</td>
<td>Consistent</td>
</tr>
<tr>
<td>Arranged to prevent through traffic to other parking areas; uncovered parking shall be screened from the street and adjacent residences to a height of at least four feet with hedges, dense plantings, solid fences or walls.</td>
<td>The proposed parking areas would only connect to Camino Vista and would not connect to other parking areas. Parking areas would be screened from adjacent uses with perimeter property walls.</td>
</tr>
<tr>
<td>Distance between buildings:</td>
<td>Consistent</td>
</tr>
<tr>
<td>Minimum of 5 feet</td>
<td>There would be a minimum of 5 feet between all proposed buildings.</td>
</tr>
<tr>
<td>Building Coverage:</td>
<td>Consistent</td>
</tr>
<tr>
<td>Not to exceed 30% of the net area of the property</td>
<td>Building footprints are 17% of the total site area</td>
</tr>
<tr>
<td>Height limit:</td>
<td>Consistent</td>
</tr>
<tr>
<td>35 feet</td>
<td>The Project includes buildings with a maximum building height of 35 feet.</td>
</tr>
<tr>
<td>The zoning ordinance defines building height as the vertical distance from the average finished grade of the lot covered by the building to the mean height of the highest gable or pitch of a hip roof.</td>
<td>For buildings on stepped pads, building height is an average height as determined by measurements around the entire building footprint which are then averaged from the finished grade to mean roof heights.</td>
</tr>
<tr>
<td>Open Space:</td>
<td>Consistent</td>
</tr>
<tr>
<td>Minimum of 40% of the net area of the property dedicated to common and/or public open space</td>
<td>Approximately 7.2 acre of common open space, or 42.0% of total site area would be provided.</td>
</tr>
<tr>
<td>Landscaping:</td>
<td>Consistent</td>
</tr>
<tr>
<td>Uncovered parking area separated from property lines by a landscaped strip not less than 5 feet in width.</td>
<td>No uncovered parking spaces are proposed to be located along property lines.</td>
</tr>
</tbody>
</table>
Table 4.9-2
Consistency with Zoning Ordinance Requirements

<table>
<thead>
<tr>
<th>Zoning Requirements</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density:</td>
<td>Consistent. The Project’s density would be 25.4 acres (360 units/14.24 developable acres). The Project includes a permitted senior density bonus making the Project consistent with this requirement.</td>
</tr>
<tr>
<td>Minimum 20 du/acre</td>
<td></td>
</tr>
<tr>
<td>Maximum 25 du/acre</td>
<td></td>
</tr>
</tbody>
</table>

The Project would be consistent with the front and rear yard setbacks, parking design, distance between buildings, building coverage, height limit, open space and landscaping requirements of the City’s zoning regulations. The Project includes a parking modification from the parking standards of the City’s zoning regulations to reduce the parking requirement from 550 to 510 spaces. This is discussed in Impact LU-5, below.

Mitigation Measures. Mitigation would not be required as this impact would be less than significant.

Residual Impact. Impacts would be less than significant without mitigation.

Impact LU-3
Temporary construction activities associated with development of the Project would potentially generate short-term compatibility effects on surrounding uses. However, temporary impacts would be less than significant with incorporation of mitigation measures included in Section 4.10, Noise. This would be a Class II, *significant but mitigable*, impact with mitigation measures for construction noise [Threshold 2].

Project construction would occur over approximately 36 months, including the required pre-construction soil hauling. Construction activities would include site preparation, grading, building construction, paving and architectural coating phases. Construction compatibility issues with surrounding development include air quality and noise impacts. The Project site is surrounded by general industrial uses to the east, UPRR and U.S. 101 transportation corridors to the north, business park to the west, and residential (Willow Springs I and II) to the south. Potential temporary compatibility issues on existing surrounding uses during construction are summarized below.

Air Quality. Temporary compatibility effects on surrounding land uses would occur during grading and construction of the Project from dust generation and construction equipment emissions. The closest sensitive receptors to the Project site are the residential uses (Willow Springs I and II) located 50 feet south of the Project site. As discussed in Section 4.2, *Air Quality*, air pollutant emissions from construction activities would be below adopted thresholds and impacts would be less than significant.

Noise. Construction activity would impact residential uses (Willow Springs I and II) south of the Project site resulting in a potentially significant short-term impact. Mitigation measures designed to address short-term noise impacts during the construction period are presented in Section 4.10, *Noise*. These include construction hours limited to 8 AM and 5 PM, Monday through Friday, haul routes that avoid residential neighborhoods, requirement for electrical power to run air compressors and similar power tools, a noise compliant line, distancing of vehicles and equipment, avoidance of operating equipment simultaneously, sound control curtains, and use of newest power equipment.
Mitigation Measures. Mitigation Measure N-1 in Section 4.10, Noise, would reduce construction noise impacts to levels that would avoid significant land use compatibility impacts during construction.

Residual Impact. With implementation of Mitigation Measure N-1, compatibility conflicts relating to Project construction would be less than significant.

Impact LU-4 Quality of life issues identified in the City’s Environmental Thresholds and Guidelines Manual include loss of privacy, neighborhood incompatibility, nuisance noise, not exceeding noise thresholds, increased traffic in quiet neighborhoods, and loss of sunlight/solar access. Impacts related to privacy, incompatibility, noise, sunlight/solar access, and neighborhood traffic would be Class II, significant but mitigable [Threshold 4].

Project impacts related to loss of privacy, neighborhood incompatibility, nuisance noise, not exceeding noise thresholds, increased traffic in quiet neighborhoods, and loss of sunlight/solar access are discussed below.

Loss of Privacy. The Project site is located between existing residential development and the U.S. 101 Freeway. Project tenants would be able to see onto portions of adjacent properties. Landscape screening is proposed along property lines that would partially shield the adjacent properties from view. In addition, the areas that could be visible to site tenants are mainly limited to driveways, parking lots, and other areas where privacy is not typically a major concern. Site tenants would have no visual access to business operations on either adjacent site.

Neighborhood Incompatibility. The Project site is surrounded by general industrial uses to the east, UPRR and U.S. 101 transportation corridors to the north, business park to the west, and residential (Willow Springs I and II) to the south and west.

The residential uses to the south are comprised of multi-family residential that is of similar height, bulk, and scale as the Project. The residential neighborhood to the west (currently under construction) contains a mixture of multi-family residential and single family units. The Project would be made up of eight rectangular buildings, with similar heights to neighborhood developments. The proposed buildings would be grouped together, creating an overall character on the site that would provide some variation from the neighborhood development. The industrial uses to the east are bordered by Willow Springs I and II further south of the site. The Project would provide a boundary between the residential uses and industrial uses consistent with Willow Springs I and II.

Business park buildings located to the west of the Project site on the far side of Los Carneros Road are setback from the road with parking areas providing a buffer between the proposed residential uses and commercial uses. No compatibility issues exist. As discussed in Section 4.1, Aesthetics, the Project would not adversely affect the visual character of the site or neighborhood with incorporation of mitigation to ensure that the proposed buildings have compatible massing, architectural style, and height with adjacent development.

Nuisance Noise Levels. As discussed in Section 4.10, Noise, the increase in ambient noise on neighboring land uses due to Project operation, including increased traffic levels, would be less than significant. Increased noise levels would not be in conflict with surrounding uses. Traffic noise generated by the Project would not result in significant land use incompatibility with respect to the neighborhood.
Increased Traffic in Quiet Neighborhood. As discussed in Section 4.13, Transportation and Circulation, Project traffic would incrementally increase traffic at study-area intersections. However, the Project would not generate traffic exceeding any City-adopted neighborhood thresholds and would not disrupt access to adjacent properties or otherwise reach levels where the proposed land use would conflict with surrounding uses.

Loss of Sunlight/Solar Access. Proposed structures would cast shadows. However, based on the height of the proposed structures and distance to structures on adjacent properties, the Project would have no impact upon solar access on adjacent sites.

Overall quality of life impacts would be less than significant with incorporation of mitigation to achieve aesthetic compatibility with surrounding development.

Mitigation Measures. Mitigation measures AES-4(a) and AES-4(b) would be required to reduce potentially significant impacts from the Project’s massing and architectural style and to ensure that building heights remain consistent with adjacent development.

Residual Impacts. With implementation of Mitigation measures AES-4(a) and AES-4(b), quality of life impacts would be less than significant.

c. Cumulative Impacts. As discussed in Section 3.0, Related Projects, planned, pending and recently approved development in and around Goleta consists of 1,511 residential units and more than 1.8 million square feet of non-residential development. Conflicts regarding land use compatibility between the Project and surrounding uses have been found to be less than significant. These impacts are localized to the Project site and its surrounding area and as such would not involve any significant cumulative impacts. Potential land use conflicts for cumulative development would be addressed on a case-by-case basis and potential quality of life impacts would be reduced through Project design review. The Project’s contribution to cumulative land use impacts would be less than significant.
4.10 NOISE

This section evaluates both temporary noise impacts associated with construction activity and long-term noise impacts associated with residential use of the Project site. Additionally, noise impacts to sensitive receptors on the Project site and vibration from off-site sources is studied. The analysis herein is based partially on the Environmental Noise Study Report prepared by Dudek for the project site on May 21, 2014.

4.10.1 Setting

a. Overview of Sound Measurement. Noise level (or volume) is generally measured in decibels (dB) using the A-weighted sound pressure level (dBA). The A-weighting scale is an adjustment to the actual sound pressure levels to be consistent with that of human hearing response, which is most sensitive to frequencies around 4,000 Hertz (about the highest note on a piano) and less sensitive to low frequencies (below 100 Hertz). In addition to the instantaneous measurement of sound levels, the duration of sound is important since sounds that occur over a long period of time are more likely to be an annoyance or cause direct physical damage or environmental stress. One of the most frequently used noise metrics that considers both duration and sound pressure level is the equivalent noise level (Leq). The Leq is defined as the single steady A-weighted level that is equivalent to the same amount of energy as that contained in the actual fluctuating levels over a period of time. Typically, Leq is summed over a one-hour period.

The sound pressure level is measured on a logarithmic scale with the 0 dB level based on the lowest detectable sound pressure level that people can perceive (an audible sound that is not zero sound pressure level). Decibels cannot be added arithmetically, but rather are added on a logarithmic basis. Based on the logarithmic scale, a doubling of sound energy is equivalent to an increase of 3 dB and a sound that is 10 dB less than the ambient sound level would result in a negligible increase (less than 0.5 dB) in total ambient sound levels. Because of the nature of the human ear, a sound must be about 10 dB greater than the reference sound to be judged as twice as loud. In general, a 3 dB change in community noise levels is noticeable, while 1-2 dB changes generally are not perceived. Quiet suburban areas typically have noise levels in the range of 40 to 50 dBA, while those along arterial streets are in the 50 to 60+ dBA range. Normal conversational levels are in the 60-65 dBA range and ambient noise levels greater than that can interrupt conversations.

Noise levels typically attenuate at a rate of 6 dB per doubling of distance from point sources such as industrial machinery. Noise from lightly traveled roads typically attenuates at a rate of about 4.5 dB per doubling of distance, while noise from heavily traveled roads typically attenuates at about 3 dB per doubling of distance. Noise from a point source typically attenuates at about 6 dBA per doubling of distance. Noise levels may also be reduced by intervening structures; generally, a single row of buildings between the receptor and the noise source reduces the noise level by about 5 dBA, while a solid wall or berm that breaks the line-of-sight reduces noise levels by 5 to 10 dBA. The Federal Transit Administration’s (FTA) Transit Noise and Vibration Impact Assessment indicates that the manner in which newer buildings in California are constructed generally provides a reduction of exterior-to interior noise levels of about 25 dBA with closed windows (May 2006). The Environmental Noise Study Report prepared by Dudek for the project site (May 2014) finds that standard construction materials and techniques used for residential developments in Southern California (conventional wood frame construction consistent with current California energy conservation requirements) normally result in a
minimum exterior-to-interior noise attenuation of 15 dBA with windows open and 20 dBA with windows closed.

The time period in which noise occurs is also important since noise that occurs at night tends to be more disturbing than that which occurs during the daytime. To evaluate community noise on a 24-hour basis, the day-night average sound level was developed (Ldn). Ldn is the average of all A-weighted levels for a 24-hour period with a 10 dB upward adjustment added to those noise levels occurring between 10:00 PM and 7:00 AM to account for the general increased sensitivity of people to nighttime noise levels. The Community Noise Equivalent Level (CNEL) is identical to the Ldn with one exception. The CNEL adds 5 dB to evening noise levels (7:00 PM to 10:00 PM). Thus, both the Ldn and CNEL noise measures represent a 24-hour average of A-weighted noise levels with Ldn providing a nighttime adjustment and CNEL providing both an evening and nighttime adjustment.

b. Noise Sources. The project site is located south of U.S. 101 and the Union Pacific Railroad (UPRR) tracks and east of S. Los Carneros Road. The project site is also in an area characterized primarily by residential and industrial development. Consequently, noise sources affecting noise levels onsite and in the project site vicinity include traffic noise, railroad noise, and noise associated with industrial operations.

Railroad Noise. Passenger and freight operations occur along the UPRR, which parallels and is just south of the U.S. 101 corridor. The railroad roughly bisects the City in an east-west direction. Based on information provided in the City of Goleta General Plan Noise Element 2006 and Amtrak’s online train schedule, daily rail operations include 12 freight trains with 3 occurring at night, and 9 passenger trains with all occurring during the day (Westar Mixed-Use FEIR, City of Goleta 2012). The maximum instantaneous sound of passing trains ranges from 96 to 100 dBA at 100 feet from the tracks, and the average sound level ranges from 70 to 75 dBA CNEL. The combined noise sources of the railway and U.S. 101 result in a 300- to 600-foot-wide east-west corridor where noise levels equal or exceed 70 dBA CNEL and produce noise levels equal to or exceeding 60 dBA CNEL in a corridor that is roughly three times the width of the 70+ dBA CNEL corridor (Goleta General Plan Noise Element, 2006).

c. Current Noise Levels. The Noise Element of the Goleta General Plan shows the northern half of the project site as being within the 65 dBA CNEL noise contour for U.S. 101 and the remainder of the project site as being within the 60 dBA CNEL noise contour. The Noise Element also shows the northern part of the project site as within the 70 dBA CNEL noise contour for the railroad, the central part of the project site as within the 65 dBA CNEL noise contour, and the southern part of the project site as within the 60 dBA CNEL noise contour.

As part of the Dudek study, the existing noise environment at the site was monitored on Thursday through Friday, March 13–14, 2014. One short-term (6-minute duration) noise measurement and one long-term (24-hour duration) noise measurement was conducted on site. Both measurements were conducted in the same location, adjacent to the northern project boundary, approximately 500 feet east of S. Los Carneros Road. During the short-term noise measurement, traffic on U.S. 101 was counted and noted. The traffic counts and the short-term noise level data were used to calibrate the traffic noise model (refer to Appendix H for measurement device details and methodology).

During the short-term noise measurement, the principal contributor to the ambient noise environment at the project site was traffic noise from the U.S. 101. The U.S. 101 traffic was observed to move smoothly during the measurements. Other noise sources observed during the measurements included distant construction noise. No trains passed by the site during the short-term noise measurement,
although rail noise was a contributor during the long-term noise measurement. The noise level measurement results are presented in Table 4.10-1.

<table>
<thead>
<tr>
<th>Location</th>
<th>Date/Time</th>
<th>Measured Ambient Noise (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjacent to northern project boundary, approximately mid-site in east-west direction</td>
<td>3/13/2014 1:10 PM - 1:16 PM</td>
<td>54 dBA n/a</td>
</tr>
<tr>
<td></td>
<td>3/13/2014 2:00 PM - 3/14/2014 2:00 PM</td>
<td>62 dBA 67 dBA</td>
</tr>
</tbody>
</table>

Notes: Weather conditions: Temperature 64 degrees F; 69% Relative humidity; partly cloudy skies; 2 mph southerly wind.

1. Leq is essentially the average sound level over the measurement period.
2. CNEL is the average sound level over a 24-hour period

Source: Dudek, 2014

Measured onsite noise levels are lower than what is shown in the Noise Element of the General Plan. This is because the generalized noise contours developed as part of the Noise Element do not account for site-specific conditions that affect noise propagation. Site-specific factors that reduce noise from U.S. 101 and the UPRR on the project site include topographic features which obstruct noise transmission, such as the U.S. 101 onramp at S. Los Carneros Road, which serves as a partial barrier that reduces noise from U.S. 101, and S. Los Carneros Road, which serves as a partial barrier to approaching and departing vehicle traffic on U.S. 101 as well as rail traffic on the UPRR line.

d. Sensitive Noise Receptors. The General Plan Noise Element defines sensitive receptors as users or types of uses that are interrupted (rather than merely annoyed) by relatively low levels of noise. These include: residential neighborhoods, schools, libraries, hospitals and rest homes, auditoriums, certain open space areas, and public assembly places. Uses in the immediate vicinity of the project site consist primarily of residential and industrial development. Sensitive receptors near the project site include residential uses (Willow Spring I and II) south of the project site across Camino Vista. In addition, an additional residential development has been approved to the west of the project site, beyond S. Los Carneros Road. This development would be considered a noise sensitive use.

e. Fundamentals of Groundborne Vibration. Vibration is sound radiated through the ground. The rumbling sound caused by the vibration of room surfaces is called groundborne noise. The ground motion caused by vibration is measured as particle velocity in inches per second and, in the U.S., is referenced as vibration decibels (VdB).

The background vibration velocity level in residential areas is usually around 50 VdB. The vibration velocity level threshold of perception for humans is approximately 65 VdB. A vibration velocity level of 75 VdB is the approximate dividing line between barely perceptible and distinctly perceptible levels for many people. Most perceptible indoor vibration is caused by sources within buildings, such as operation of mechanical equipment, movement of people, or the slamming of doors. Typical outdoor sources of perceptible groundborne vibration are construction equipment, steel-wheeled trains, and traffic on rough roads. If a roadway is smooth, the groundborne vibration from traffic is rarely perceptible. The range of interest is from approximately 50 VdB, which is the typical background vibration velocity level, to 100 VdB, which is the general threshold where minor damage can occur in fragile buildings.
The general human response to different levels of groundborne vibration velocity levels is described in Table 4.10-2.

Table 4.10-2
Human Response to Different Levels of Groundborne Vibration

<table>
<thead>
<tr>
<th>Vibration Velocity Level</th>
<th>Human Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 VdB</td>
<td>Approximate threshold of perception for many people.</td>
</tr>
<tr>
<td>75 VdB</td>
<td>Approximate dividing line between barely perceptible and distinctly perceptible. Many people find transit vibration at this level annoying.</td>
</tr>
<tr>
<td>85 VdB</td>
<td>Vibration acceptable only if there are an infrequent number of events per day.</td>
</tr>
<tr>
<td>90 VdB</td>
<td>Difficulty with tasks such as reading computer screens.</td>
</tr>
</tbody>
</table>

Source: FTA, 2006.

f. Regulatory Setting. The Noise Element of the Goleta General Plan establishes noise standards for various land use categories based on the U.S. Department of Housing and Urban Development Guidelines and standards from the California Office of Noise Control. The City recommends 50-60 dBA as the “normally acceptable” range and 60-65 dBA as the “conditionally acceptable” range for multi-family residential uses. According to the Goleta General Plan, multi-family residences within the “normally acceptable range” are deemed satisfactory, based upon the assumption that any buildings involved are of normal conventional construction, without any special noise insulation requirements. Development of multi-family residences within the “conditionally acceptable” range should be undertaken only after a detailed analysis of the noise reduction requirements is made and needed noise insulation features are included in the design.

Table 4.10-3 shows the noise and land use compatibility criteria in the City’s Noise Element.

Table 4.10-3
Goleta Noise and Land Use Compatibility Criteria

<table>
<thead>
<tr>
<th>Land Use Category</th>
<th>Community Noise Exposure (Ldn or CNEL, dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normally Acceptable</td>
</tr>
<tr>
<td>Residential - low density</td>
<td>50-60</td>
</tr>
<tr>
<td>Residential – multiple family</td>
<td>50-60</td>
</tr>
<tr>
<td>Transient Lodging – motels and hotels</td>
<td>50-65</td>
</tr>
<tr>
<td>Schools, libraries, churches, hospitals, and nursing homes</td>
<td>50-60</td>
</tr>
<tr>
<td>Auditoriums, concert halls, and amphitheaters</td>
<td>NA</td>
</tr>
</tbody>
</table>
Table 4.10-3

Goleta Noise and Land Use Compatibility Criteria

<table>
<thead>
<tr>
<th>Land Use Category</th>
<th>Normally Acceptable</th>
<th>Conditionally Acceptable</th>
<th>Normally Unacceptable</th>
<th>Clearly Unacceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sports arenas and outdoor spectator sports</td>
<td>NA</td>
<td>50-70</td>
<td>NA</td>
<td>70-85+</td>
</tr>
<tr>
<td>Playgrounds and neighborhood parks</td>
<td>50-70</td>
<td>NA</td>
<td>70-75</td>
<td>75-85+</td>
</tr>
<tr>
<td>Golf courses, riding stables, water recreation, and cemeteries</td>
<td>50-70</td>
<td>NA</td>
<td>70-80</td>
<td>80-85+</td>
</tr>
<tr>
<td>Office buildings, business commercial, and professional</td>
<td>50-67.5</td>
<td>67.5-75</td>
<td>75-85+</td>
<td>NA</td>
</tr>
<tr>
<td>Industrial, manufacturing, utilities, and agriculture</td>
<td>50-75</td>
<td>70-75</td>
<td>75-85+</td>
<td>NA</td>
</tr>
</tbody>
</table>

Source: Table 9-2, Noise Element, Goleta General Plan (September 2006)

Normally Acceptable: Specified land use is satisfactory, based upon the assumption that any buildings involved are of normal conventional construction, without any special noise insulation requirements.

Conditionally Acceptable: New construction or development should be undertaken only after a detailed analysis of the noise reduction requirements is made and needed noise insulation features are included in the design. Conventional construction, but with closed windows and fresh air supply systems or air conditioning, will normally suffice.

Normally Unacceptable: New construction or development should be discouraged. If new construction or development does proceed, a detailed analysis of the noise reduction requirements shall be made and needed noise insulation features shall be included in the design.

Clearly Unacceptable: New construction or development should generally not be undertaken.

NA: Not applicable.

According to Noise Element policy NE 1.1, the City requires mitigation for development that would subject proposed land uses to noise levels that exceed the acceptable levels shown in Table 4.10-2. Policy NE 1.2 requires new development in areas over 60 dBA CNEL to include mitigation to reduce interior noise levels to 45 dBA CNEL or less. The Noise Element also restricts construction activities near or adjacent to residential buildings and other sensitive receptors to the hours of 8:00 AM to 5:00 PM Monday through Friday and 7:00 AM to 4:00 PM Monday through Friday for construction in nonresidential areas (Policy NE 6.4). Noise Element Policy NE 6.5 requires noise mitigation for construction equipment.

The Goleta Municipal Code (GMC) Chapter 9.09 regulates noise in the City. The purpose of the Chapter is to preserve public peace and comfort for citizens of Goleta from unwarranted noise and disturbances. The GMC prohibits loud and unreasonable noise between the hours of 10:00 PM and 7:00 AM Sunday through Thursday and between 12:00 midnight and 7:00 AM Friday and Saturday. Loud and unreasonable noise is defined as sound which is clearly discernible at a distance of 100 feet from the property line of the property upon which it is broadcast or sound which is above 60 dBA at the edge of the property line upon which the sounds is broadcast. The City does not have any code requirements related to noise from construction activities but the GMC noise regulations would apply to construction noise.
4.10.2 Impact Analysis

a. Methodology and Significance Thresholds. The future noise levels at the project area building facades and the outdoor recreational areas (pools areas, park) were calculated using the Federal Highway Administration’s (FHWA) Traffic Noise Model (TNM v. 2.5). Noise modeling data sheets can be viewed in Appendix H. The model calculations are based on traffic data from the project traffic study performed by Associated Transportation Engineers (ATE) (see Appendix I) and Caltrans traffic counts (http://traffic-counts.dot.ca.gov/). Cumulative conditions correspond to the assumed buildout of pending development within the City as indicated in Section 3.0, Environmental Setting, Tables 3-1 and Table 3-2. The traffic noise model was calibrated using the short-term sound level measurement shown in Table 1. The difference between the monitored and calibrated noise levels is less than 1 dBA, which is within the acceptable margin-of-error of noise monitoring equipment and modeling programs.

Based upon Section 2.0, Project Description, a planned eight-foot masonry wall height along the northern and western project boundaries was included in the noise model.

Noise associated with rail activities on the adjacent UPRR line was based on information provided in the City of Goleta General Plan Noise Element 2006 Estimates of rail operations (12 freight trains with 3 occurring at night, and 9 passenger trains with all occurring during the day) were obtained from the Westar Mixed-Use FEIR (City of Goleta, 2012) and Amtrak’s online train schedule. According to the City of Goleta General Plan Noise Element 2006, passenger and freight operations long the UPRR comprise another source of transportation-related noise. The maximum instantaneous sound level of passing trains ranges from 96 to 100 dBA at 100 feet from the tracks, and the average sound level ranges from 70 to 75 dBA CNEL. The combined noise sources of the railway and U.S. 101 result in a 300- to 600-foot-wide east-west corridor where noise levels equal or exceed 70 dBA CNEL and produce noise levels equal or exceeding 60 dBA CNEL in a corridor that is roughly three times the width of the 70+ dBA CNEL corridor.

Overall onsite noise levels were calculated by standard logarithmic decibel addition. Based on logarithmic addition, a doubling of sound energy translates to a 3 dBA increase in noise (e.g., an increase from 65 dBA to 68 dBA represents a doubling of sound energy). Estimated onsite noise accounts for both vehicle traffic noise and railroad noise.

Construction noise and groundborne vibration levels were estimated based on information available in FTA’s Transit Noise and Vibration Impact Assessment (May 2006). Reference noise and vibration levels from that document were used to estimate noise levels at nearby sensitive receptor locations based on the distance between the construction site and receptors and a standard noise attenuation rate of 6 dB per doubling of distance and vibration attenuation rate of approximately 9 VdB per doubling of distance. Construction noise and vibration level estimates do not account for the presence of intervening structures or topography, which could further reduce noise and vibration levels at receptor locations. Therefore, the noise and vibration levels presented herein represent a worst-case estimate of actual construction noise.

The following thresholds are based on Appendix G of the CEQA Guidelines. Impacts would be potentially significant if the Project would result in:
1. Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies;

2. Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels;

3. A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project;

4. A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project;

5. For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, exposure of people residing or working in the project area to excessive noise levels; or

6. For a project within the vicinity of private airstrip, would the project expose people residing or working the project area to excessive noise levels.

According to the City’s Environmental Thresholds and Guidelines Manual, impacts would be significant if the Project would result in:

a) Noise levels in excess of 65 dBA CNEL that could affect sensitive receptors;

b) Exposure to outdoor noise levels in excess of 65 dBA CNEL and/or exposure to interior noise levels in excess of 45 dBA CNEL.

c) A substantial increase in ambient noise levels for noise-sensitive receptors generally presumed to be an increase to 65 dBA CNEL or more; or a substantial increase in ambient noise levels for noise-sensitive receptors that is less than 65 dBA CNEL, as determined on a case-by-case basis.

d) Noise from grading and construction activity proposed within 50 feet of sensitive receptors, including schools, residential development, commercial lodging facilities, hospitals, or care facilities.

With respect to traffic noise increases due to project-generated traffic, impacts would be significant if traffic-generated noise associated with development of the project would result in exposure of sensitive receptors to unacceptable noise levels, as outlined in Table 4.10-4, below. The May 2006 FTA Transit Noise and Vibration Impact Assessment recommendations were used to determine whether or not increases in roadway noise would be considered significant. The allowable noise exposure increase changes with increasing noise exposure, such that lower ambient noise levels have a higher allowable noise exposure increase. Table 4.10-4 shows the significance thresholds for increases in traffic-related noise levels caused by the project. If residential development or other sensitive receptors would be exposed to traffic noise increases exceeding the FTA criteria, impacts would be considered significant.
Goleta has not adopted specific thresholds for groundborne vibration impacts. Therefore, this analysis uses the FTA’s vibration impact thresholds to determine whether groundborne vibration would be “excessive.” A vibration velocity level of 75 VdB is the approximate dividing line between barely perceptible and distinctly perceptible levels for many people. The FTA does not consider most commercial and industrial uses to be noise-sensitive (except for those that depend on quiet as an important part of operations, such as sound recording studios) and therefore does not recommend thresholds for groundborne vibration impacts to such uses. In terms of groundborne vibration impacts on structures, the FTA states that groundborne vibration levels in excess of 100 VdB would damage fragile buildings and levels in excess of 95 VdB would damage extremely fragile historic buildings. According to FTA Transit Noise and Vibration Impact Assessment, the groundborne vibration threshold for “infrequent events,” defined as fewer than 30 vibration events of the same kind per day, for residences and buildings where people normally sleep (e.g., the future onsite residences and the residences 50 feet south of the project site) is 80 VdB.

According to the Goleta General Plan, the project site is located outside of the current and the anticipated 2030 60 dBA CNEL noise contour of the Santa Barbara Municipal Airport. There are no private airports within the vicinity of the City. No impact related to airport noise would occur and airport noise impacts for Thresholds 5 and 6 are discussed in Section 4.15, Effects Found Not to be Significant.

b. Project Impacts and Mitigation Measures.

Impact N-1 Construction activities would be located within 50 feet of sensitive receptors, including existing residential uses approximately 50 feet away along the southern project site border. Therefore, temporary construction-related noise could exceed City of Goleta Municipal Code Chapter 9.09 noise regulations. This impact would be Class I, significant and unavoidable [Threshold 4].

The Project would be constructed over a period of approximately 36 months, including the required soil hauling. Table 4.10-5 shows typical noise levels associated with various construction equipment at
distances of 50, 100, 200, 400, and 500 feet from the noise source. Typical construction noise levels at 50 feet from the source range from about 76 to 89 dBA. The grading/excavation phase of project construction tends to create the highest construction noise levels because of the operation of heavy earth-moving equipment, although only a limited amount of equipment would operate near a given location at a particular time. In the case of the Project, activity requiring the use of heavy earth-moving equipment would include the pre-construction soil removal phase.

The most affected adjacent uses are residential uses (Willow Spring I and II) south of the project site across Camino Vista approximately 50 feet away. Adjacent industrial uses to the east could be exposed to temporary noise levels up to 89 dBA range during the loudest periods of construction. However, these types of facilities are not considered noise sensitive receptors. Since construction activities would be located within 50 feet of residential uses and noise at these receptors could exceed 89 dBA, the impact from construction noise would be potentially significant.

The Project would involve approximately 178,000-cubic yards of cut and 15,500-cubic yards of fill with approximately 115,000-cubic yards of export material, as described in Section 2.3.3. Trucks hauling material to and from the site would be a source of construction noise during this phase, which is anticipated to last up to 27 weeks as described in Section 2.0, Project Description.

As shown in Table 4.10-5, noise from trucks can reach up to 88 dBA at 50 feet from the source. The only available haul route from the Project site is Camino Vista to Los Carneros to U.S. 101 which would require trucks to pass by the existing Willow Spring I and II sites south of the project site across Camino Vista. Because hauling trucks would travel through residential neighborhoods and past sensitive receptors, noise levels from hauling activities may exceed 65 dBA and impacts would be potentially significant.
Mitigation Measures. Construction activity associated with the Project would occur within 50 feet of sensitive receptors and could therefore generate noise that exceeds City standards. Therefore, the following mitigation measures are required to minimize construction-related noise.

N-1(a) Construction Timing. Construction activity and equipment maintenance is limited to the hours between 8 AM and 5 PM, Monday through Friday. No construction can occur on State holidays (e.g., Thanksgiving, Labor Day). Non-noise generating construction activities such as interior painting are not subject to these restrictions.

Plan Requirements and Timing: At least one sign near each Project site entrance along Camino Vista stating these restrictions must be posted on the site. Signs must be a minimum size of 24” x 48.” Signs must be in place before the beginning of and throughout grading and construction activities. Violations may result in suspension of permits.

Monitoring: The Planning and Environmental Review Director or designee must monitor compliance with restrictions on construction hours and must promptly investigate and respond to all complaints.

N-1(b) Electrical Power. Electrical power must be used to run air compressors and similar power tools.

Plan Requirements and Timing: The equipment area with appropriate acoustic shielding must be designated on building and grading plans. Equipment and shielding must remain in the designated location throughout construction activities.

Monitoring: The Planning and Environmental Review Director or designee must periodically inspect the site to ensure compliance with all noise attenuation requirements.

N-1(c) Construction Noise Complaint Line. The applicant must provide a non-automated telephone number for local residents and employees to call to submit complaints associated with construction noise.

Plan Requirements and Timing: The telephone number must be included in the notice required by Measure N-1(a) and posted on the Project site and must be easily viewed from adjacent public areas. Proof of mailing the notices must be provided to the Planning and Environmental Review Director or designee before the City issues a grading permit. At least one sign near each Project site entrance along Camino Vista with the phone number must be posted onsite. The applicant must inform the Planning and Development Review Director or designee of any complaints within one week of receipt of the complaint. Signs must be in place before beginning of and throughout grading and construction activities. Violations may result in suspension of permits.
Monitoring: Building Inspectors and Permit Compliance staff may periodically inspect and respond to complaints.

N-1(d) Distancing of Vehicles and Equipment. Noise and groundborne vibration construction activities whose specific location on the Project site may be flexible (e.g., operation of compressors and generators, cement mixing, general truck idling) must be conducted as far as possible from the nearest noise- and vibration-sensitive land uses.

Plan Requirements and Timing. The location of vehicles and equipment must be designated on building and grading plans. Equipment and vehicles must remain in the designated location throughout construction activities.

Monitoring. The Planning and Environmental Review Director must periodically inspect the site to ensure compliance.

N-1(e) Avoid Operating Equipment Simultaneously. Whenever possible, construction activities must be scheduled so as to avoid operating several pieces of equipment simultaneously, which causes high noise levels.

Plan Requirements and Timing. The construction schedule and timing of operation of each piece of equipment must be provided by the applicant.

Monitoring. Planning and Environmental Review Director or designee must periodically inspect the site to ensure compliance.

N-1(f) Sound Control Curtains and Acoustical Blankets. Flexible sound control curtains must be placed around all drilling apparatuses, drill rigs, and jackhammers when in use. Acoustical blankets (or similarly effective temporary noise barriers) must be placed along the southern and eastern Project site boundaries to reduce noise transmission to existing land uses to the south and east, including residential units at the existing Willow Spring I and II sites south of the project site across Camino Vista.

Plan Requirements and Timing. The equipment area with appropriate sound control curtains and the locations of acoustical blankets must be designated on building and grading plans. Equipment and shielding must remain in the designated location throughout construction activities.

Monitoring. Planning and Environmental Review Director or designee must monitor compliance with restrictions on construction hours and must promptly investigate and respond to all complaints.

N-1(g) Newest Power Construction Equipment. The Project contractor must use the newest available power construction equipment with standard recommended noise shielding and muffling devices.

Plan Requirements and Timing. The equipment with appropriate noise shielding and muffling must be designated on building and grading plans.
Monitoring. The Planning and Environmental Review Director or designee must inspect the building and grading plans before the City issues permits and periodically inspect the site to ensure compliance.

Residual Impact. Project construction would represent a temporary source of noise to sensitive receptors adjacent to the Project site and along the route used by soil hauling trucks, which would impact existing residential units at the existing Willow Spring I and II sites south of the project site across Camino Vista. Mitigation Measures N-1(a) through N-1(g) require implementation of noise reduction devices and techniques during construction, and would reduce the noise levels associated with construction of the Project to the maximum extent feasible. Construction noise would be intermittent and temporary, and implementation of the maximum feasible construction noise reduction measures would reduce construction-related noise to the extent feasible. However, due to the fact that heavy construction equipment would be located as close to 50 feet from existing residential units, and the pre-construction soil hauling activity would result in heavy trucks passing existing residences along Camino Vista for up to 27 weeks, construction noise impacts would remain significant and unavoidable.

Impact N-2

Project construction activities could generate intermittent levels of groundborne vibration affecting surrounding residential development. However, the expected vibration levels during temporary construction activity would not exceed applicable standards for infrequent vibration events. This impact would be Class III, less than significant [Threshold 2].

Construction activities that would occur at the Project site have the potential to generate low levels of groundborne vibration. Table 4.10-6 identifies various vibration velocity levels for the types of construction equipment that would operate at the Project site during construction activities.

Table 4.10-6

Vibration Levels for Construction Equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Approximate VdB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25 Feet</td>
</tr>
<tr>
<td>Hoe Ram</td>
<td>87</td>
</tr>
<tr>
<td>Large Bulldozer</td>
<td>87</td>
</tr>
<tr>
<td>Caisson Drilling</td>
<td>87</td>
</tr>
<tr>
<td>Loaded Trucks</td>
<td>86</td>
</tr>
<tr>
<td>Jackhammer</td>
<td>79</td>
</tr>
<tr>
<td>Small Bulldozer</td>
<td>58</td>
</tr>
</tbody>
</table>

As shown in Table 4.10-6, vibration levels could reach approximately 78 VdB at 50 feet from the Project site boundary. The Project would be adjacent to several general industrial uses, which are located approximately 50 feet east of the Project site. However, these structures do not include uses that would
be sensitive to vibration, and vibration levels would not exceed 100 VdB, which is the FTA threshold at which groundborne vibration levels may damage buildings.

The nearest residential uses are located 50 feet south of the Project site. As described above, the FTA groundborne vibration threshold for “infrequent events” (defined as fewer than 30 vibration events of the same kind per day), for residences and buildings where people normally sleep (e.g., the future onsite residences and the residences 50 feet south of the Project site) is 80 VdB. Activity during the construction period would not result in vibration levels that would exceed 80 VdB, and would not be expected to result in vibration levels that would be perceptible at nearby residences in excess of 30 vibration events of the same kind per day. Therefore, impacts associated with groundborne vibration would be less than significant.

Mitigation Measures. Mitigation is not required since this impact would be less than significant.

Residual Impact. Impacts would be less than significant without mitigation.

Impact N-3
Project-generated traffic would incrementally increase traffic-related noise on study area roadway segments, which would potentially affect existing sensitive receptors on area roadways. However, the change in noise levels would not exceed significance thresholds. Therefore, the effect of increased traffic noise would be Class III, less than significant [Threshold 3].

The Project would generate an estimated 1,970 average daily vehicle trips to and from the site, including 174 AM peak hour trips and 183 PM peak hour trips (refer to the Project traffic study in Appendix I). These trips would incrementally increase traffic noise on study area roadways. The Project could therefore incrementally increase noise at neighboring uses, particularly uses located along Los Carneros Road, Camino Vista, Los Carneros Way, and U.S. 101. (Long-term noise impacts to the proposed new residences that would result from the Project are discussed below in Impact N-5.)

Estimated peak hour traffic values from the traffic study were used to model the change in noise levels resulting from increased traffic on eight traffic intersections. Table 4.10-7 indicates noise levels at the adjacent existing Willow Springs I and II residences to the south, a location at the Project site nearest Los Carneros Road, UPRR, and U.S. 101, and the location of the noise measurement performed by Dudek for this EIR. The noise measurement location was modeled to calibrate the model and ensure accuracy. The peak-hour noise measurement taken was 62 dBA Leq, while the Traffic Noise Model (TNM) for the same location (Roadway 3 in Table 4.10-7) produced a noise level of 62.8 dBA Leq.
Table 4.10-7
Calculated Exterior Noise Associated with Traffic on Surrounding Roadways During Peak Hour

<table>
<thead>
<tr>
<th>Roadway</th>
<th>Projected Noise Level (dBA Leq)</th>
<th>Change In Noise Level (dBA Leq)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Existing</td>
<td>Existing + Project</td>
</tr>
<tr>
<td>1. Camino Vista</td>
<td>62.1</td>
<td>63.8</td>
</tr>
<tr>
<td>2. South Los Carneros Road</td>
<td>65.9</td>
<td>66.1</td>
</tr>
<tr>
<td>3. U.S. 101</td>
<td>62.8</td>
<td>62.8</td>
</tr>
</tbody>
</table>

Refer to Appendix H for full noise model output. Noise levels presented do not account for attenuation provided by existing barriers or future barriers; therefore, actual noise levels at sensitive receptor locations influenced by study area roadways may in many cases be lower than presented herein.

Source: Federal Highway Administration Traffic Noise Model 2.5

As shown in Table 4.10-7, the highest noise level increase due to the Project would be 1.7 dBA under existing plus Project conditions at the existing Willow Springs I and II residential development to the south, which would be primarily affected by increased traffic on Camino Vista. Roadway noise increases associated with new traffic on South Los Carneros Road and U.S. 101 would be less than 1 dBA.

The increase in noise of 1.7 dBA under existing conditions and 1.0 dBA under cumulative conditions would be less than the applicable noise increase threshold of 2.0 dBA shown in Table 4.10-3. The 0.2 dBA noise increase under existing conditions and 0.1 noise increase under cumulative conditions on the Project site would be less than the applicable noise increase threshold of 1.0 dBA at this location. Therefore, impacts related to Project-generated traffic noise would be less than significant.

Mitigation Measures. Mitigation is not required since significant traffic noise increases would not occur along any study road segments.

Residual Impact. Impacts would be less than significant without mitigation.

Impact N-4

Operation of the Project would generate noise typically associated with residential development. However, noise would not affect sensitive receptors and noise levels would not exceed City thresholds. Impacts would be Class III, less than significant [Threshold 1].

The new parking areas on the Project site would bring vehicular activity and associated parking lot noise to the site. These uses would result in increased noise at the industrial uses immediately adjacent to the Project site, and potential onsite noise conflicts between vehicular/parking activity and proposed residential units. Sources of noise would include general vehicular movement, periodic instantaneous sounds such as car honking and car alarms, and conversations. Table 4.10-8 shows exterior noise levels typically associated with parking lots. Noise levels at parking areas onsite could reach 72 dBA at 50 feet from the parking areas when street sweeping occurs, and 69 dBA when car alarms and car horns sound. However, these noise sources are sporadic and not usually anticipated as part of normal parking lot activity in a residential area. Noise levels from normal daily parking lot activity would not exceed 64 dBA.
Table 4.10-8
Parking Lot Noise Sources at 50 Feet

<table>
<thead>
<tr>
<th>Source</th>
<th>Level (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autos at 14 mph</td>
<td>50</td>
</tr>
<tr>
<td>Sweepers</td>
<td>72</td>
</tr>
<tr>
<td>Car Alarm Signal</td>
<td>69</td>
</tr>
<tr>
<td>Car Alarm Chirp</td>
<td>54</td>
</tr>
<tr>
<td>Car Horns</td>
<td>69</td>
</tr>
<tr>
<td>Door Slams</td>
<td>64</td>
</tr>
<tr>
<td>Talking</td>
<td>36</td>
</tr>
<tr>
<td>Radios</td>
<td>64</td>
</tr>
<tr>
<td>Tire Squeals</td>
<td>66</td>
</tr>
</tbody>
</table>

The Project would require maintenance associated with typical residential uses, such as lawn mowers, leaf blowers, and other landscaping equipment. Use of this outdoor equipment would generally be of short duration, and would not occur on a daily basis (landscaping activities would generally occur weekly or semi-weekly), and would occur during the daytime, when residential land uses are the least noise-sensitive; therefore these activities would not contribute substantially to the overall outdoor noise environment and would not be expected to cause noise levels to exceed 65 dBA CNEL.

The Goleta General Plan Noise Element requires that habitable rooms do not exceed interior noise levels of 45 dBA CNEL. As described in Section 4.10.1(a), standard construction materials and techniques used for residential developments in Southern California normally result in a minimum exterior-to-interior noise attenuation of 15 dBA with windows open and 20 dBA with windows closed. Factoring in this reduction, interior noise levels for residences would not exceed 45 dBA CNEL as long as the City’s outdoor 65 dBA CNEL standard is not exceeded. Therefore, this impact would be less than significant.

Mitigation Measures. Mitigation is not required because impacts would be less than significant.

Residual Impact. Impacts would be less than significant without mitigation.

Impact N-5
Construction of the Project near the Union Pacific Railroad, U.S. 101, and existing business park development could expose future residents on the project site to noise levels exceeding City standards. This impact would be Class II, *significant but mitigable [Threshold 1]*.

The UPRR borders the Project site to the north. In addition, U.S. 101 is immediately north of the UPRR. Roadways border the Project site to the east and southwest. The Project would locate new residential units as close as 120 feet from the railroad tracks, 300 feet from the centerline of U.S. 101, and within 50 feet from the centerlines of the other adjacent roadways. Therefore, future residents could be exposed to noise produced by passenger and freight trains on the UPRR and from vehicle traffic on the U.S. 101 and surrounding roadways. The Project site is also bordered on the east by existing general industrial development. Future residents could be exposed to noise produced by vehicles, truck loading and unloading, forklifts, HVAC systems, and other mechanical units needed to support ongoing industrial park activities.
As shown in Table 4.10-1, existing long-term noise levels measured on site were 67 dBA CNEL, which exceeds the City of Goleta threshold of 65 dBA for noise-sensitive land uses. These noise measurements were collected during the day during normal operational hours for the adjacent industrial development. Therefore, future residents would be potentially exposed to noise levels above City standards. The Project would also include a masonry wall of approximately eight feet in height along the northern and western Project boundaries. These walls would attenuate noise associated with the U.S. 101 and the UPRR located north of the Project site, as well as industrial development located east of the Project site.

Table 4.10-9 shows estimated noise levels (CNEL) at the proposed residential buildings that would be most affected by noise from roadway and railroad noise (Buildings 3, 4, 5, 7, and 8) with the proposed eight-foot masonry wall. Noise levels were calculated for roadways and the UPRR, and were then combined for an estimate of the overall onsite CNEL. In Table 4.10-9, overall onsite noise levels estimated to exceed the City’s exterior standard of 65 dBA are bolded.

Table 4.10-9
Highest Calculated Exterior Sound Levels (Cumulative Plus Project)
with Eight-Foot High Wall at Northern and Western Project Boundaries

<table>
<thead>
<tr>
<th>Receiver</th>
<th>Roadway and Railroad CNEL With 8’ Sound Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st floor facade</td>
</tr>
<tr>
<td>Building 1</td>
<td>61</td>
</tr>
<tr>
<td>Building 2</td>
<td>61</td>
</tr>
<tr>
<td>Building 3</td>
<td>65</td>
</tr>
<tr>
<td>Building 4</td>
<td>68</td>
</tr>
<tr>
<td>Building 5</td>
<td>68</td>
</tr>
<tr>
<td>Building 6</td>
<td>57</td>
</tr>
<tr>
<td>Building 7</td>
<td>68</td>
</tr>
<tr>
<td>Building 8</td>
<td>67</td>
</tr>
<tr>
<td>Pool/Recreation Area</td>
<td>60</td>
</tr>
</tbody>
</table>

Only the highest sound levels for each building are shown. Sound levels calculated using Traffic Noise Model Version 2.5.

As shown in Table 4.10-9, with the proposed eight-foot masonry wall along the northern site boundary, the overall ground floor exterior combined CNEL associated with roadway and rail noise is estimated at 57 dBA for Building 6 to about 68 dBA for Building 7. The second floor CNEL for combined roadway and rail noise is estimated at 57 dBA for Building 6 to 68 dBA at Building 7. The third floor combined CNEL due to roadway and rail noise is projected to range from 60 dBA at Building 6 to 72 dBA at Building 7. Overall, exterior levels are projected to exceed the City’s 65 dBA CNEL exterior standard for noise sensitive uses at both the ground floor, second, and third floor of the most affected buildings onsite, including Buildings 3, 4, 5, 7, and 8. Exterior levels at other proposed buildings, which would be located farther from U.S. 101 and the UPRR and would be partially shielded by intervening buildings on the site, would be expected to remain within the acceptable range (up to 70 dBA CNEL) for recreational uses. Nevertheless, throughout the Project site, residents would be subject to periodic elevated noise levels.
associated with trains passing on the UPRR. In particular, events occurring at night could be disturbing to residents.

Because exterior noise levels would exceed 65 dBA CNEL at the most affected residential units, impacts related to exposure of site residents to noise are potentially significant.

As described in Section 4.10.1(a), standard construction materials and techniques used for residential developments in Southern California normally result in a minimum exterior-to-interior noise attenuation of 15 dBA with windows open and 20 dBA with windows closed. Table 4.10-10 shows the estimated interior noise levels (CNEL) compared to the 45 dBA interior standard established by the City of Goleta General Plan Noise Element.

Table 4.10-10

Highest Calculated Exterior and Interior Sound Levels (Cumulative Plus Project)
with Eight-Foot High Wall at Northern and Western Project Boundaries

<table>
<thead>
<tr>
<th>Receiver</th>
<th>Calculated Interior Noise</th>
<th>Interior Standard Exceeded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st floor facade</td>
<td>2nd floor facade</td>
</tr>
<tr>
<td>Building 1</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>Building 2</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>Building 3</td>
<td>45</td>
<td>46</td>
</tr>
<tr>
<td>Building 4</td>
<td>48</td>
<td>47</td>
</tr>
<tr>
<td>Building 5</td>
<td>48</td>
<td>47</td>
</tr>
<tr>
<td>Building 6</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Building 7</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Building 8</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>Pool/Recreation Area</td>
<td>40</td>
<td>0</td>
</tr>
</tbody>
</table>

Only the highest sound levels for each building are shown. Sound levels calculated using Traffic Noise Model Version 2.5. Bold text indicates a potentially significant impact.

With standard construction materials and techniques used for residential developments in Southern California, exterior-to-interior noise levels for Buildings 3 (2nd floor), 4 (1st and 2nd floors), 5 (1st and 2nd floors), 7 (1st, 2nd, and 3rd floors) and 8 (1st, 2nd, and 3rd floors) would not meet the City’s 45 dBA CNEL standard, and would therefore exceed the acceptable interior noise level established in City of Goleta General Plan Noise Element. Impacts associated with exterior and interior noise conflicts at specific new residential units on the project site would be potentially significant.

Mitigation Measures. The following mitigation measures would be required to reduce exterior and interior noise levels to a less than significant level.

As shown in Table 4.10-9, balconies and patios of residential units located in Buildings 3, 4, 5, 7 and 8 that are facing U.S. 101 and/or the UPRR line may be subject to noise exceeding 65 dBA CNEL. Use of balconies is optional for residents living in these buildings and noise disturbance on these balconies can generally be avoided by residents limiting their use of these areas to times when noise levels are not
excessive. Nevertheless, Mitigation Measure N-5(a) would be required to ensure that noise levels in such areas do not exceed City standards.

N-5(a) Outdoor Living Area Noise Attenuation. Residential outdoor living spaces (e.g., patios and balconies) associated with all residential units located in the proposed Buildings 3, 4, 5, 7 and 8, facing U.S. 101 and/or the UPRR line, must be protected from sound intrusion so that they meet the City’s standard of 65 dBA CNEL for outdoor living spaces. Patios and balconies for these residential units must include noise barriers up to seven feet in height to reduce traffic and train noise to meet the City’s 65 dBA CNEL noise level criterion for exterior living areas. The noise barriers may be constructed of a material such as tempered glass, acrylic glass, or any masonry material with a surface density of at least three pounds per square foot. The noise barriers should have no openings or cracks.

Once building elevations and exterior design details are finalized, further noise evaluation should be performed in order to prescribe the height of necessary noise barrier per balcony area. Failure to conclusively demonstrate the effectiveness of the proposed noise attenuation measures must result in the denial of a permit to build the affected unit.

Plan Requirements and Timing: These requirements must be incorporated into all construction documents submitted for approval before the issuance of a Land Use Permit for all residential units in Buildings 3, 4, 5, 7 and 8 that are facing U.S. 101 and/or the UPRR line.

Monitoring: The Planning and Environmental Review Director, or designee, must verify compliance before the issuance of a Land Use Permit for all residential units in Buildings 3, 4, 5, 7 and 8 that are facing U.S. 101 and/or the UPRR line. City building inspectors must verify compliance in the field before the City issues a certificate of occupancy for an affected unit. No certificate of occupancy can be issued unless compliance is achieved.

As shown in Table 4.10-10, interior living spaces of Buildings 3, 4, 5, 7 and 8 that are facing U.S. 101 and/or the UPRR line may be subject to noise exceeding 45 dBA CNEL. Mitigation Measure N-5(b) would be required to ensure that interior noise levels do not exceed City interior noise standards.

N-5(b) Indoor Noise Attenuation. All residential units located in the proposed Buildings 3, 4, 5, 7 and 8 that are facing U.S. 101 and the UPRR rail line to the north and Los Carneros Road to the west must include windows with a minimum Sound Transmission Class (STC) rating of 28 STC, and forced-air mechanical ventilation or air conditioning systems, satisfactory to the local building official, to adequately ventilate the interior space of the units when windows are closed to control noise, and sound rated windows. Incorporation of these design requirements would be expected to achieve an exterior-to-interior noise level reduction of 25 dB or greater.
Before the City issues building permits, the applicant must submit an interior noise study to be approved by the Planning and Environmental Review Director or designee. This interior noise study must analyze the residential units in the proposed Buildings 3, 4, 5, 7 and 8 that are facing U.S. 101, the rail line, and Los Carneros Road. The interior noise study must ensure compliance with the City’s 45 dBA CNEL noise standard. Failure to conclusively demonstrate the effectiveness of the proposed noise attenuation measures will result in the City denying a building permit for the affected units.

Plan Requirements and Timing: These requirements must be incorporated into all construction documents submitted for approval before the issuance of a Land Use Permit for the residential units in Buildings 3, 4, 5, 7 and 8 that are facing U.S. 101, the UPRR line, or Los Carneros Road.

Monitoring: The Planning and Environmental Review Director, or designee, must verify compliance before the City issues a permit for the residential units in Buildings 3, 4, 5, 7 and 8 that are facing U.S. 101, the UPRR line, or Los Carneros Road. The City building inspectors must verify compliance in the field before the City issues a certificate of occupancy for an affected unit. No certificate of occupancy can be issued unless compliance is achieved.

Residual Impact. Noise reduction provided by the seven-foot barrier required by Mitigation Measure N-5(a) was calculated using methodology from the *Handbook of Noise Control*, 2nd Ed. (Harris, 1979) and height inputs from the Dudek Noise Study. As shown below in Table 4.10-11, the required seven-foot barriers would reduce exterior noise levels at all affected balconies and patios to levels below the City’s 65 dBA threshold.

<table>
<thead>
<tr>
<th>Receiver</th>
<th>Roadway and Railroad CNEL</th>
<th>Exterior Noise</th>
<th>Calculated Reduced Exterior Noise With 7’ Balcony Barrier</th>
<th>Exterior Standard Exceeded with Mitigation (65 dBA Leq)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st floor facade</td>
<td>2nd floor facade</td>
<td>3rd floor facade</td>
<td>1st floor facade</td>
</tr>
<tr>
<td>Building 4</td>
<td>68</td>
<td>67</td>
<td>--</td>
<td>57</td>
</tr>
<tr>
<td>Building 5</td>
<td>68</td>
<td>67</td>
<td>--</td>
<td>57</td>
</tr>
<tr>
<td>Building 7</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>54</td>
</tr>
<tr>
<td>Building 8</td>
<td>66</td>
<td>68</td>
<td>71</td>
<td>54</td>
</tr>
</tbody>
</table>

Methodology Source: Harris, C.M. (1979), Handbook of Noise Control, 2nd. Ed.

As shown in Table 4.10-11, Mitigation Measure N-5 would achieve an acceptable exterior noise level in outdoor living spaces. With implementation of these measures, exterior and interior noise levels experienced by future residents on the Project site from traffic on U.S. 101 and the UPRR line would be reduced to a less than significant level.

Additionally, the following condition of approval to notify potential residents of the UPRR and U.S. 101 associated noise is recommended to further reduce impacts.
The applicant must provide a rail line real-estate disclosure to potential occupants, providing notice of the site’s proximity to the UPRR and that associated noise and vibration may be perceptible.

Impact N-6 Development of the Project near the UPRR could expose future residents to groundborne vibration generated by passing trains. However, because vibration levels would be below applicable thresholds, impacts would be Class III, less than significant [Threshold 2].

Table 4.10-12 shows the approximate VdB from passenger and freight trains at 30, 50, 100, 200, and 300 feet from the track centerline traveling at 50 miles per hour. The residential units closest to the train tracks would be approximately 105 feet from the track centerline. These are vibration levels at ground floor elevation. Upper level floors would experience less vibration due to dispersion and attenuation of the vibration energy as it propagates through a building. Vibration typically attenuates at a rate of 1 to 2 VdB per floor above ground level.

<table>
<thead>
<tr>
<th>Locomotive Powered Passenger or Freight Train (50 mph)</th>
<th>30 Feet</th>
<th>50 Feet</th>
<th>100 Feet</th>
<th>120 Feet</th>
<th>200 Feet</th>
<th>300 Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>88</td>
<td>85</td>
<td>78</td>
<td>76</td>
<td>72</td>
<td>67</td>
</tr>
</tbody>
</table>

Vibration levels at 105 feet would not exceed 78 VdB, which is below the structural damage threshold of 100 VdB and below the FTA threshold of 80 VdB for infrequent events to residential uses where people normally sleep. Therefore, at the proposed residential units 120 feet from the track centerline, impacts would be less than significant.

Mitigation Measures. Mitigation is not required as impacts would be less than significant.

Residual Impact. Impacts would be less than significant without mitigation.

c. Cumulative Impacts. Table 4.10-7 shows cumulative noise increases along roadways near the Project site due to cumulative traffic growth. Noise level increases along the traffic study roadway segments near sensitive receptors due to cumulative traffic would range between 0.1 and 1.0 dBA. This increase would not be significant based on the applicable FTA significance thresholds for each roadway/receptor (refer to Table 4.10-4). Therefore, the Project’s contribution would not be cumulatively considerable or significant.

Construction and operation of other projects in the vicinity of the Project site would likely generate noise levels in excess of existing measured noise levels and may affect sensitive receptors. As described in Section 2.0, *Project Description*, there is a residential development with 465 residential units currently under construction on a formerly vacant site west of S. Los Carneros Road. When complete, these residences may be exposed to construction noise from the Project. Alternately, the construction of the Project may expose future sensitive receptors on the Project site to construction noise, depending on...
which project is developed first. However, construction and operational noise would be localized and short-term in nature and would not contribute to cumulative noise impacts. With implementation of Mitigation Measures N-1(a) through N-1(g) and N-5, cumulative noise impacts would be reduced to a less than significant level.
This page intentionally left blank.
4.11 PUBLIC SERVICES

This section analyzes the Project’s potential impacts to fire and police protection services, public schools, and library facilities. Potential impacts to public parks and recreational facilities are described in Section 4.12, Recreation.

4.11.1 Setting

a. Fire Protection. The Santa Barbara County Fire Protection District (SBCFD) provides fire protection and emergency services in Goleta. The SBCFD was formed in 1957 and is governed by the Fire Protection District Law of 1987 (Health and Safety Code § 13800, et seq.). The nearest fire station that serves the Project site is Fire Station 14, located at 320 N. Los Carneros Road, approximately ½ mile north of the Project site. The Project site falls within the existing service area of this station. Fire Station 14 houses three full-time personnel per shift including a captain, an engineer, and a firefighter in addition to a Type 1 engine and Type 3 brush truck. Average response time of Station 14 is less than five minutes.

The SBCFD has implemented a dynamic deployment system for its fire engines, in addition to the traditional static deployment system from fire stations when the station’s engine is in-house. Dynamic deployment allows for the dispatching of engines already on the road to emergency calls rather than dispatching by a station’s “first in area,” as has been the previous practice. Basically, dynamic deployment uses a Global Positioning System (GPS) to monitor the exact location of each engine in real time. Previously, when an engine was out on routine (nonemergency) activities, such as inspections or training, the engine company was considered in-service and its exact location at any given moment in time was not known to County Dispatch. However, with dynamic deployment using the County’s GPS, County dispatch has real-time information on the exact location of each engine at all times and can dispatch the closest, un-engaged engine to an emergency incident, regardless of which fire station’s service area the call originates from (Mike Young, SBCFD, personal communication, June 2, 2015). This precludes the need for an in-service engine to have extended run times when another fire engine would be closer. The SBCFD has also added a battalion chief as the fourth firefighter on scene, in order to meet the two-in-two-out rule.

b. Police Protection. The Santa Barbara County Sheriff’s Office provides police services to the City of Goleta. The Sheriff’s Office enforces the statutes of the State of California and the Goleta Municipal Code. Law enforcement services include 24-hour police patrol for traffic enforcement, accident investigation, vehicle abatement, and parking control, as well as detective services for special investigations as well as specialized functions provided through the Sheriff’s Office as needed.

The City of Goleta is patrolled by three “beats” or patrol units and one supervisor 24 hours per day. Other full-time (40 hours per week) staff include, one traffic sergeant, three motor officers, one community resource deputy, and one school resource deputy. Officers of the Sheriff’s Office assigned to the unincorporated area of the County are available to supplement Sheriff’s Office units within the City as needed, for emergency response within the City limits. Sheriff’s Office units within the City operate out of the Goleta Police Department, a storefront in Camino Real Marketplace, and the City Hall (Arnoldi, 2015). For the current year, the Sheriff’s Office is on track to break their record for the number of calls for service and reports filed which have been steadily rising in recent years with the increased amount development within the City.
c. Public Schools. The Goleta Union School District (GUSD) and the Santa Barbara Unified School District (SBUSD) provide public school service in Goleta and the remainder of the Goleta Valley. GUSD operates four public schools (Brandon, Ellwood, Kellogg, and La Patera) located within the City and six other public schools (El Camino, Foothill, Hollister, Isla Vista, Goleta Family School, and Mountain View) located within unincorporated areas of the Goleta Valley.

SBUSD oversees the secondary schools of Dos Pueblos High School and the Goleta Valley Junior High School, situated within Goleta’s boundaries.

The Project site is within the districts of Isla Vista and La Patera Elementary Schools, Goleta Valley Junior High School, and Dos Pueblos High School. Table 4.11-1 shows the most current available enrollment rates, approximate capacities, and percent of capacity utilization for these schools. As indicated, the two elementary schools are currently at 78% and 88% of capacity, Goleta Valley Junior High School is at 58% of capacity, and Dos Pueblos High School is at 93% of capacity.

Table 4.11-1
Current School Enrollment and Capacity

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Goleta Union School District (K-6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isla Vista Elementary School</td>
<td>472</td>
<td>592</td>
<td>78%</td>
</tr>
<tr>
<td>La Patera Elementary School</td>
<td>432</td>
<td>492</td>
<td>88%</td>
</tr>
<tr>
<td>Santa Barbara Unified School District</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goleta Valley Junior High School</td>
<td>769</td>
<td>1,323</td>
<td>58%</td>
</tr>
<tr>
<td>Dos Pueblos High School</td>
<td>2,130</td>
<td>2,295</td>
<td>93%</td>
</tr>
</tbody>
</table>

d. Library Facilities. Library services in Goleta are provided by contract with the City of Santa Barbara in a facility owned by the City of Goleta. The Goleta Public Library is located at 500 North Fairview Avenue and currently operates seven days a week with varying hours each day, and is closed on holidays. The 2-acre library site includes a 15,437 square foot (SF) building and parking areas. The facility provides services for the City and nearby unincorporated areas. In 2010 and 2011, library visits totaled 256,996 and circulation totaled 606,741. Services were provided by five full-time and two part-time employees (Willow Spring II FEIR, City of Goleta, 2012).

e. Regulatory Setting.

State.

Government Code § 66410, et seq. (Subdivision Map Act). The Subdivision Map Act sets forth general provisions, procedures, and requirements for the division of land including the provision of public services.

California Fire Code, as adopted by the Goleta Municipal Code. Chapter 5 of the 2007 California Fire Code includes requirements for new development regarding access for fire-fighting apparatus and personnel, and fire protection water supplies (fire-flow).
California Occupational Safety and Health Administration. The California Occupational Safety and Health Administration (CalOSHA) requirement for firefighter safety, known as the two-in-two-out rule, is also applicable. This rule requires a minimum of two personnel to be available outside a structure prior to entry by firefighters to provide an immediate rescue for trapped or fallen firefighters, as well as immediate assistance in rescue operations.

Local.

Goleta General Plan/Coastal Land Use Plan. The Goleta General Plan identifies three standards with respect to the provision of fire protection services, which are derived from guidelines by the National Fire Protection Association (NFPA) and the SBCFD. These standards include:

- A firefighter-to-population ratio of one firefighter on duty 24 hours a day for every 2,000 persons is the ideal goal, however, one firefighter for every 4,000 persons is the absolute maximum population that can be adequately served;
- A ratio of one engine company per 16,000 persons, assuming four firefighters per station, represents the maximum population that the SBCFD determined can be adequately served by a four-person crew; and
- A five-minute response time in urban areas.

In addition, the Goleta General Plan contains policies and objectives regarding the adequacy of public services to serve new developments, including:

- Policy PF 2: Other Facilities in the City of Goleta
 - Objective: To provide a full range of municipal public facilities to meet the need of the Goleta community.

- Policy PF 3: Public Safety Services and Facilities
 - Objective: Ensure that adequate fire and police services and facilities are available to meet the needs of both existing and new development in the city as well as service demands from outside Goleta’s boundaries.

- Policy PF 5: School Facilities
 - Objective: Ensure that adequate public school services and facility capacities are available to meet the long-term needs of both existing and new development in the city as well as service demands from outside Goleta’s boundaries.

Goleta Inland Zoning Ordinance. The Inland Zoning Ordinance (IZO § 35-317.7(1)(d)), as adopted by the Goleta Municipal Code, includes a requirement for finding of adequate public services to serve new developments, before approval of a preliminary or final development plan.

SBCFD’s Planning and Engineering Development Standards. In compliance with SBCFD standards, the Project must include defensible space, serviceable access, adequate fire hydrants, adequate building addressing, adequate interior fire sprinkler system, adequate fire or emergency alarm system, and approved locking systems for any gated access ways, among other standard conditions (SBCFD Fire Prevention Division, 2010).

Development Impact Fees. In 1986, the State Legislature adopted AB 2926, which authorized school districts to levy development fees and placed a cap on the amount of the fee that could be levied. Since 1986 Legislative actions have alternatively expanded and contracted these initial limits.
addition, AB 1600 (1987) established a requirement that there be a nexus between the amount of the school facility fee and the impact created by new development. SB 50 provided for three tiers of fees based on needs assessment. A fee cap established under these laws, subject to every two-year adjustment for inflation by the State Allocation Board, is the total amount of fees that can be levied for school facilities (Government Code § 65995). Payment of school facilities fees pursuant to California law fully mitigates a project’s environmental effects on schools under CEQA. Both the GUSD and the SBUSD require payment of development fees for providing school facilities to mitigate the impacts of new development on their schools. Special Parcel Fees have also been imposed by the SBUSD. The Project would be required to pay these fees before receipt of building permit or a certificate of occupancy. Accordingly, pursuant to Government Code § 65995, payment of the required GUSD and SBUSD fees would fully mitigate the Project’s potential impacts on public schools for purposes of CEQA. On January 1, 2014, the State Allocation Board (SAB) took action to increase developer fees for residential construction. The current maximum Level I fee is $3.37 per square foot of residential floor area for development projects.

City of Santa Barbara Library Standards. The following goals have been established by the City of Santa Barbara for the Goleta Public Library (County of Santa Barbara Eastern Goleta Valley EIR, 2015):

- Maintain a circulation of 615,000 items checked out to the public.
- Assist at least 32,000 adults and 6,800 children.
- Provide access to the internet to the public for 60,000 sessions.
- Provide access to the library 7 days a week and for a total of 55 hours open per week.

4.11.2 Impact Analysis

a. Methodology and Significance Thresholds. In the absence of thresholds for impacts to fire protection, police protection, and other public services in the City’s Environmental Thresholds and Guidelines Manual, the checklist items listed in Appendix G of the CEQA Guidelines have been used to develop thresholds for the project. Based on the CEQA Guidelines, a significant impact related to public services could occur, if the Project would:

Result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for any of the following public services:

1. Fire protection?
2. Police protection?
3. Other public facilities?

The fire protection criteria in the General Plan, as discussed in the Regulatory Setting, also provide a guideline that is acknowledged in the impact analysis.

The City’s Environmental Thresholds and Guidelines Manual includes thresholds of significance for potential impacts on area schools. Specifically, under these thresholds any project that would generate enough students to generate the need for an additional classroom using current State standards, would be considered to result in a significant impact on area schools. Current State standards for classroom size are as follows:
Heritage Ridge Residential Project EIR
Section 4.11 Public Services

- Grades K – 2: 20 students/classroom
- Grades 3 – 8: 29 students/classroom
- Grades 9 – 12: 28 students/classroom

A project’s contribution to cumulative school impacts is considered significant if the project specific impact, as described above, is considered significant. As explained above, paying the required District-imposed school impact fees results in full compliance with CEQA.

b. Project Impacts and Mitigation Measures

Impact PS-1 The Project would increase the amount of structural development and the number of residents dependent on fire protection service from the Santa Barbara County Fire Protection District. However, service ratios and response times would remain at acceptable levels. In addition, Fire Protection District requirements would be incorporated into the Project to ensure adequate access to the Project site. Therefore, impacts related to the provision of fire protection services would be Class III, less than significant [Threshold 1].

The Project involves construction of eight residential buildings with 360 units, two recreational buildings, a maintenance building, and a maintenance/storage building. Based on the average household size of 2.76 persons for workforce housing (228 units proposed) and 1.11 persons for senior housing (132 units proposed), the Project would add an estimated 776 new residents (Department of Finance, 2015). The addition of 776 new residents to the existing population would not result in failure of SBCFD to meet the City’s minimum service ratio of one firefighter per 2,000 residents. Because the Project would not exceed the City’s minimum service ratio, there is no evidence that the Project would result in response times in excess of the five minute response time goal. Fire response times in the City are expected to remain adequate due to the proximity of Station 14 and other fire stations in the southern coastal portion of Santa Barbara County, as well as utilization of the dynamic response system discussed in Section 4.11.1(a) (Mike Young, SBCFD, personal communication, June 2, 2015). In the event that Fire Station 14 would require back-up, other available engine companies would respond via static and/or dynamic deployment. The Project would not result in the need of new or expanded facilities to maintain acceptable fire protection service ratios or response times. Therefore, this impact would be less than significant.

Mitigation Measures. This impact would be less than significant, and no mitigation would be required.

Residual Impact. Impacts would be less than significant without mitigation.

Impact PS-2 The Project would increase the amount of structural development and the number of residents dependent on police protection service from the Santa Barbara County Sheriff’s Office. However, the Project would not result in a need for new or expanded police facilities. Therefore, impacts on police protection services would be Class III, less than significant [Threshold 2].
Based on the City of Goleta General Plan Environmental Impact Report (EIR) prepared in September 2006, the Santa Barbara County Sheriff’s Office recommends that additional deputies be assigned to the City at a range of 1:750 to 1:1,070 new residents. The Project would generate approximately 776 new residents within the City. Given the recommended service level for the City, the Project may result in the need for one additional officer. However, the Project would not be expected to result in the need to expand or construct new facilities police facilities that would result in physical impacts on the environment. Therefore, impacts to police protection facilities resulting from the Project would be less than significant.

Mitigation Measures. This impact would be less than significant, and no mitigation would be required.

Residual Impact. Impacts would be less than significant without mitigation.

Impact PS-3 The Project would increase the number of residents served by GUSD and SBUSD public schools. However, additional residents would not increase school enrollment beyond capacity, and the Project developer would be required to pay school impact fees in accordance with State law. Therefore, impacts to public schools would be Class III, less than significant [Threshold 3].

The Project would develop 228 multi-family and 132 senior residential units within the City of Goleta. Using student generation factors of 0.2 students per unit for GUSD schools, 0.1 students per unit for GVJHS, and 0.2 for DPHS, the Project would generate approximately 161 additional students. Table 4.11-2 shows projected enrollment increases attributable to the development of the proposed project.

Table 4.11-2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Goleta Union School District (K-6)</td>
<td>Isla Vista Elementary School</td>
<td>472</td>
<td>592</td>
<td>No</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>La Patera Elementary School</td>
<td>432</td>
<td>492</td>
<td>No</td>
<td>46</td>
</tr>
<tr>
<td>Santa Barbara Unified School District</td>
<td>Goleta Valley Junior High School</td>
<td>769</td>
<td>1,323</td>
<td>No</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Dos Pueblos High School</td>
<td>2,130</td>
<td>2,295</td>
<td>No</td>
<td>46</td>
</tr>
</tbody>
</table>

According to Table 4.11-2, the proposed residential development would add 92 students to GUSD and 69 students to the SBUSD schools. The schools which serve the Project site would be able to accommodate the additional students generated by the Project within their existing capacities. Therefore, the Project would not result in the need for new or expanded public school facilities. Payment of the required school impact fees would ensure that impacts to public schools would remain less than significant.
Mitigation Measures. With payment of State-mandated school impact fees, this impact would be less than significant, and no mitigation would be required.

Residual Impact. Impacts would be less than significant without mitigation.

Impact PS-4 The Project would increase the number of residents dependent on library services at the Goleta Public Library. However, existing facilities would be sufficient to accommodate the increased use and annual circulation. Therefore, impacts to on library services would be Class III, less than significant [Threshold 3].

The Project includes 360 new residential units which would generate approximately 776 new residents within the City and could result in increased use of the Goleta Public Library. The addition of 776 new residents to the existing City population of 30,765 (Department of Finance, 2015) would result in a total population of approximately 31,541 persons. This increase is not expected to inhibit the City’s goals for the library described in Section 4.11.2(a). The existing library facilities would be sufficient to accommodate increased use and circulation needs that may result from the Project. Therefore, this impact would be less than significant.

Mitigation Measures. This impact would be less than significant and no mitigation would be required.

Residual Impact. Impacts would be less than significant without mitigation.

c. Cumulative Impacts. Cumulative development in the City of Goleta would add 1,344 residential units and more than 1.8 million square feet of commercial and retail space (refer to Tables 3-1 and 3-2 in Section 3.0, Related Projects). In addition, cumulative development in non-City areas in the Goleta vicinity would add 167 housing units and approximately 21,000 square feet of commercial and industrial space. Cumulative development in the City and the vicinity, which is under various stages of construction and approval, would increase demand for public services.

Fire Protection. Development of the planned Fire Station 10, as identified in General Plan Policies PF 3.2 and PF 3.3, is intended to address deficiencies in fire service and facilities within the City, which could result from cumulative development. In December 2008, the City executed a purchase agreement for a vacant 1.3-acre site that is intended for the future development of Fire Station 10 at 7952 Hollister Avenue, in the western Goleta Valley (City of Goleta, Agenda Item D.1, January 19, 2010). A Final Mitigated Negative Declaration (Final MND) prepared for Fire Station 10 site acquisition/selection was adopted by the City Council (Fire Station 10 Site Selection; November 2010). The Final MND found that Fire Station 10 would result in no significant and unavoidable (Class I) impacts and potentially significant but mitigable (Class II) impacts in the areas of Aesthetics, Air Quality, Biological Resources, Cultural Resources, Geology/Soils, Hazards and Hazardous Materials, Hydrology/Water Quality, Noise, Transportation/Traffic, and Utilities/Service Systems. The Final MND for Fire Station 10 includes mitigation measures for all Class II impacts that would reduce impacts below a level of significance. Cumulative development in the City could result in deficiencies in fire services and facilities. However, with the development of new fire facilities this cumulative impact would be reduced to a less than significant level.
In early 2016, a Memorandum of Understanding (MOU) and lease agreement regarding the construction and operation of Fire Station 10 was approved by the Goleta City Council (January 19, 2016) and the Santa Barbara County Board of Supervisors (March 15, 2016). Plans for Fire Station 10 are underway with construction slated to commence in 2017 with the Station being operational in 2018. According to Santa Barbara County’s 2013 Capital Improvement Program Summary, Development Impact Fees (DIFs) (refer to Section 4.11.1[e]) are being collected by the City for the Fire Station 10 project. The planned Fire Station 10 project would ensure that cumulative development in the western end of the City would be served efficiently and service to existing customers would continue to be provided within current standards. With the development of the planned Fire Station 10 project, the City would possess sufficient facilities for fire protection services to serve planned cumulative development. Therefore, the Project would not contribute to a significant cumulative impact.

Police Protection. According to the Santa Barbara County Sheriff’s Office, cumulative development throughout the City is placing increased pressure on the Office’s current personnel and facilities. Increasing the service demand of the Sheriff’s Office may result in increased response times that would require additional staff, and which eventually may result in the need for new or expanded facilities (Arnoldi, 2015). However, the Project developer would be required to comply with Policy PF 10.2, which requires new development to pay a proportionate share of the costs of new or upgraded capital facilities attributable to new development, including sufficient funding for environmental compliance and permitting. This requirement would address any potential impacts associated with planned cumulative development in the City. Therefore, with payment of applicable DIFs, the Project would not be cumulatively considerable and potential impacts would be less than significant.

Public Schools. Residential development in the area under cumulative conditions could generate enough new students which may exceed the capacity of schools within the GUSD or SBUSD and therefore require new or altered school facilities in the future. Although development of new schools could result in environmental impacts, a precise evaluation of environmental impacts would be speculative because the location and timing of such facilities is not known at this time. Future facilities that would need to be constructed as a result of cumulative development would be subject to subsequent environmental review. As discussed above, the collection of state-mandated fees (pursuant to Section 65995 (3) (h) of the California Government Code) is considered full and complete mitigation for impacts to public schools. Through the payment of impact mitigation fees, potential cumulative impacts related to public schools would be less than significant.

Library Facilities. Cumulative development planned for the City includes 1,344 new residential units which would increase the population within the City and increase demand on public library services. However, the Project developer would be required to pay DIFs, as described in Policy PF 10.2 of the General Plan, which would provide funding for expanded library facilities to accommodate new residents, including environmental compliance and permitting for new facilities. Therefore, with payment of DIFs, the Project’s contribution to cumulative impacts on library services would be less than cumulatively considerable and less than significant.
4.12 RECREATION

This section describes existing recreational facilities in the vicinity of the Project site and the potential impacts of the Project related to recreation.

4.12.1 Setting

a. Existing Park and Recreation Facilities. The City of Goleta currently operates 16 City Parks and 8 open spaces, totaling approximately 482 acres throughout the City (City of Goleta, 2015). This equates to approximately 15.7 acres per 1,000 residents (based on 2015 total population of 30,765 [Department of Finance, 2015]). According to the Goleta General Plan, three City-owned regional open space preserves – Sperling Preserve, Santa Barbara Shores Park, and Lake Los Carneros Natural and Historical Preserve – collectively account for 363 acres of the City’s total open space acreage. In addition to park and open space areas, approximately 40 percent of Goleta’s two miles of Pacific shoreline is in City ownership. Furthermore, hiking trails and recreational areas in the Los Padres National Forest are located within a few miles of the City.

The City’s parks, open space areas, and shoreline provide opportunities for passive recreational activities and enjoyment of natural areas. However, these passive recreational areas do not provide facilities that address the City’s active recreational needs. The term “passive recreation” refers to activities that do not require prepared facilities like sports fields or pavilions, while “active recreation” consists of structured individual or team activities that require the use of special facilities, courses, fields, or equipment. According to the City of Goleta General Plan, neighborhood open space areas and natural preserves provide many opportunities for passive recreation activities and enjoyment of natural areas. However, the City determined there was a lack of abundance of areas specifically developed for active recreational uses, with about 3 acres of land per 1,000 residents. As identified in the General Plan, additional active parks were an important community need. The General Plan also determined that the City’s single recreation center, the Goleta Valley Community Center, does not provide sufficient active recreation space to fulfill all of the combined needs of community groups and residents. Although the privately owned and managed Girsh Park provides facilities for active recreation, there remains a shortage of public facilities for active recreation such as sports fields, tennis courts, swimming pools, and dedicated trails (Goleta General Plan/Coastal Land Use Plan, 2006).

Parks in the vicinity of the Project site include Willow Springs Open Space and Lake Los Carneros Natural and Historic Preserve. The park closest to the Project site is Willow Springs Open Space. The 2.37-acre park is located just southeast of the Project site boundary, across Camino Vista. The approximately 140-acre Lake Los Carneros Natural and Historic Preserve provides predominantly passive open space, as well as the historic Stow House Museum and is located approximately 500 feet north of the Project site boundary, across U.S. 101 and Calle Real.

The locations of existing parks and open space within the City are shown in Figure 4.12-1. Planned parks in the City are listed in Table 4.12-1. All of the planned parks listed in Table 4.12-1 would include active recreation components, with a potential total acreage of approximately 9 to 12 acres.
Table 4.12-1
Planned Active Parks

<table>
<thead>
<tr>
<th>Park Name</th>
<th>Park Type</th>
<th>Acres</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hollister/Kellogg Park</td>
<td>Neighborhood Park</td>
<td>4.0</td>
<td>Active recreation park located between Kellogg Avenue and San Jose Creek to the north of Hollister Avenue</td>
</tr>
<tr>
<td>Willow Springs Park</td>
<td>Neighborhood Park</td>
<td>2.0 - 3.0</td>
<td>Active recreation park located on Camino Vista adjacent to the Phase II of the Willow Springs Apartments (part of the proposed Project)</td>
</tr>
<tr>
<td>Village at Los Carneros Park</td>
<td>Neighborhood Park</td>
<td>3.0 - 5.0</td>
<td>Active recreation park located on Castillian Drive near Village at Los Carneros Project</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>9.0 - 12.0</td>
<td></td>
</tr>
</tbody>
</table>

Source: City of Goleta General Plan/Coastal Land Use Plan Open Space Element Figure 3-2.

b. Regulatory Setting.

Quimby Act (1975). The Quimby Act (California Government Code §66477) is intended to require developers to help mitigate the impacts of growth on park facilities. It gives the legislative body of a City or County the authority, by ordinance, to require the dedication of land or payment of in-lieu fees, or a combination of both, for park and recreational purposes as a condition of approval of a tract map or parcel map.

Goleta Municipal Code Chapter 16.14 – Park and Recreation Dedication and Fees. Based on the authority vested in the City by the Quimby Act, Chapter 16.14 of the Goleta Municipal Code requires new development and subdivisions within the City to mitigate their park and recreation facility impacts by constructing, or financing the construction of, the park and recreation facilities needed to serve their projects. Section 16.14.010 of the Goleta Municipal Code requires dedication of 0.0128 acres of property per dwelling unit to neighborhood and community park and recreational purposes, exclusive of and in addition to school lands used cooperatively for recreational purposes. This requirement is intended to meet the City's existing Quimby Act park-to-population ratio of 4.7 acres of parkland per 1,000 residents. In lieu of dedicating parkland, a developer may pay a fee for the purpose of developing new or rehabilitating existing park or recreation facilities. The City’s Park and Recreation fee is based on the number of multi-family dwelling units proposed and is updated periodically.

City of Goleta General Plan, Open Space Element. The Open Space Element includes goals, policies, and actions intended to achieve the City’s vision for open space, parks, and recreation facilities that are accessible to all members of the community. This includes a commitment to seek to increase the amount of active parks, emphasizing those areas of the community that were relatively underserved as of 2005 and areas designated for future new residential development. Open Space Element Figure 3-2 indicates the location of existing and planned public parks. Policy OS 6 ensures that new parks and recreational services for the public are provided concurrent with new development. Its stated objective is to ensure the development of a well-maintained, interconnected system of multi-functional parks, recreation facilities, and public open spaces that will meet the needs of existing and future residents and employees and that are attractive, safe, and accessible to all segments of the City’s population, and supportive of established neighborhoods. Policies that would apply to the Project include:

- **Policy OS 9-2: Mitigation of Impacts of New Development on Parks and Recreation Facilities.**
- **Policy OS 9.3: Alternatives to Impact Fees.**
4.12.2 Impact Analysis

a. Methodology and Significance Thresholds. The City has not adopted specific thresholds regarding impacts involving recreational facilities, but strives to maintain a ratio of 4.7 acres of parkland per 1,000 residents. Therefore, impacts may be significant if a project causes the City to contain less than 4.7 acres of parkland per 1,000 residents, such that new facilities would need to be developed. Furthermore, in accordance with Appendix G of the CEQA Guidelines, impacts would be significant if:

1. The Project would increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated.
2. The Project would include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse effect on the environment?

b. Project Impacts and Mitigation Measures.

Impact REC-1 The Project would accommodate an estimated 776 residents, resulting in an increase in parkland demand of 4.6 acres. The Project would provide two private recreational facilities (clubhouse and pool for each development area) and a two-acre public park, which would partially address the increase in demand for park and recreation facilities. As part of Project approval, City-required mitigation fees would be paid to offset the increased demand for parkland. Impacts related to recreation would be Class III, less than significant [Threshold 1 and Threshold 2].

Based on an average household size of 2.76 persons for workforce housing (228 units proposed) and 1.11 persons for senior housing (132 units proposed), the Project would add an estimated 776 new residents (Department of Finance, 2015). This would represent a 2.5 percent increase in the City's population, which would result in a corresponding increase in demand for recreational facilities and open space. Absent development of new active park space, the anticipated 776 new residents would reduce the per person park space level in the City to 2.9 acres per resident.

As discussed in the Setting, for new developments and subdivisions that increase recreational demand, Chapter 16.14 of the Goleta Municipal Code requires a dedication of 0.0128 acres per dwelling unit to neighborhood and community park and recreation purposes. Based on this ratio, the Project must devote 4.61 acres to park and recreation purposes. Alternatively, when filing a tentative map application for approvals, the applicant may choose to pay the City an in-lieu fee.

The Project includes a two-acre public park that would be developed onsite and would include an activity trail, benches, barbecue area, picnic tables bicycle parking, level turf play area, and native landscaping. This park would not create any significant environmental impacts and would partially offset impacts of the population increase generated from the Project. In addition to the proposed park, private recreational facilities would be provided as part of the Project for residents of the development and would consist of a clubhouse and pool for each development area. As these private recreational facilities would not be available for public use, they do not count toward the required dedication of park and recreational facilities for neighborhood or community use. However, pursuant to Chapter 16.14 of the
Heritage Ridge Residential Project EIR
Section 4.12 Recreation

Goleta Municipal Code, the provision of private developed parkland within common open space can be credited towards offsetting public parkland impacts in the form of reduced in-lieu fees. The credit toward in-lieu fees may not exceed 50 percent.

The City has an abundance of passive open space opportunities. The Project would increase demands on the capacity of existing regional and neighborhood open space areas with passive recreational opportunities, such as the Ellwood/Sperling Preserve and Lake Los Carneros Natural and Historic Preserve which collectively account for 363 acres of the City’s total open space acreage. With the Project’s additional 776 new residents in the City, there would be approximately 11.5 acres of these open space areas per 1,000 residents. Therefore, the City’s supply of such areas is sufficient to meet the demand generated by the Project. Therefore, the Project’s impacts on passive open space recreation would be less than significant.

The increase in demand for active recreational facilities from future residents on the Project site would exacerbate the City’s existing deficiency in parkland with active recreational amenities (described in detail in Section 4.12.1[a], above). Thus, the Project could further contribute to deterioration, or accelerate deterioration, of the City’s existing inventory of active recreational facilities. Nevertheless, Chapter 16.14 of the Goleta Municipal Code would require the applicant to pay in-lieu parks and recreation fees upon the approval of the final subdivision map and development project and prior to the issuance of land use permits, which would be used to fund public park and recreational facilities. The amount of fee required in lieu of land dedication is based on the fee schedule in effect when the applicant applies for land use clearance for the subdivision. With payment of these fees, the Project would comply with City requirements related to provision of park facilities. The Project would not cause the physical deterioration of existing parks or create the need for new parks or recreational facilities beyond those proposed onsite and currently planned by the City. Therefore, the Project’s impact on recreational facilities would be less than significant.

Mitigation Measures. The Project’s impact on recreational facilities would be less than significant, and no mitigation would be required.

Residual Impact. Impacts would be less than significant without mitigation.

c. Cumulative Impacts. Residential growth throughout the City would result in increased demand for recreational facilities. According to the City’s February 2015 list of cumulative projects (current as of the release of the Notice of Preparation), a total increase of 1,344 residential units are pending review, have been approved, or are under construction in Goleta. As required by Chapter 16.14 of the Goleta Municipal Code, new residential developments within the City must dedicate 0.0128 acres per dwelling unit to parks and recreation, or else pay in-lieu fees toward the future development of such facilities. Thus, cumulative development in the City would generate demand for approximately 17 acres of recreational facilities.

The Goleta General Plan identifies approximately 90 acres of existing active recreation, which translates to approximately 3 acres per 1,000 residents. Several of the planned park facilities, as shown in Table 4.12-1, would provide space for active recreation. If fully developed, these parks would provide an additional 12 acres, bringing the total active recreation area to 101.7 acres. With the addition of approximately 3,709 City of Goleta residents upon development of cumulative projects (1,344 residences x 2.76 persons per residence), the available active recreation ratio would be approximately 3 acres per 1,000 residents. This would be equivalent to the current 3 acres per 1,000 residents and falls
short of the City’s adopted goal of providing 4.7 acres of parkland per thousand residents. The Project’s population would contribute to this existing cumulative impact. However, the proposed onsite facilities and required payment of park and recreation fees required by Goleta Municipal Code Chapter 16.14 would be used to fund public park facilities that would meet the incremental demand for recreational facilities created by the Project. With the required payment of in-lieu parks and recreation fees, the Project’s incremental contribution to this cumulative impact would be less than significant.
This page intentionally left blank.
4.13 TRANSPORTATION/CIRCULATION

This section analyzes impacts to the local transportation and circulation system, including long-term impacts associated with operation of the Project. The analysis is based primarily on a traffic study for the Project prepared by Associated Traffic Engineers (ATE), dated January 29, 2016 and a Pre-Construction Soil Removal Phase Traffic Impact Analysis Memorandum prepared by Linscott, Law & Greenspan, Engineers (LLG), dated November 30, 2015. These reports are included in Appendix I.

4.13.1 Setting

The Project site is located on the east side of S. Los Carneros Road north of the Calle Koral intersection in the western area of the City of Goleta. The 17.36-gross acre site is currently vacant and undeveloped. The Project proposes the construction of 132 senior apartment units, 228 apartment units, and a 2-acre park. Access to the Project site would be provided via three driveways on Camino Vista, which extends along the southern frontage of the site.

a. Existing Street System. Primary regional access to the study area is provided by U.S. 101 via Los Carneros Road. U.S. 101 generally runs in a north-south direction throughout California; however, in the Santa Barbara County area, it runs in an east-west direction. The circulation system in the study area is comprised of regional highways, arterial roadways and residential streets. The principal components of this street network are discussed in the following text and shown in relation to the Project site in Figure 4.13-1.

U.S. Highway 101 (U.S. 101), located north of the Project site, is a multi-lane interstate highway serving the Pacific Coast between Los Angeles and the state of Washington. This freeway is the principal route between the City of Goleta and the adjacent cities of Santa Barbara, Carpinteria, and Ventura to the south; and the cities of Buellton and Santa Maria to the north. Access to U.S. 101 would be provided via the Los Carneros Road interchange.

Hollister Avenue, located south of the Project site, is an arterial roadway that serves as the main east-west surface street through the community of Goleta. Hollister Avenue is a 4-lane divided arterial with on-street bike lanes. Within the Study Area, Hollister Avenue is signalized at Los Carneros Road, Los Carneros Way, and Aero Camino intersections.

Los Carneros Road, located west of the Project site, is a north-south arterial street. North of Hollister Avenue, Los Carneros Road extends as 4- to 5-lane roadway connecting with the U.S. 101 interchange and continues north as a 2-lane roadway to its terminus at Cathedral Oaks Road. Los Carneros Road has recently been widened to 4-lanes south of Hollister Avenue to Discovery Drive. South of Discovery Drive, Los Carneros Road continues as a 2-lane roadway and provides access to the Isla Vista-UCSB area. Within the study area, Los Carneros Road is signalized at the U.S. 101 Northbound Ramp, Southbound Ramp, Calle Koral, and Hollister Avenue intersections.

Los Carneros Way is a 2-lane road located south of the Project site that extends between Calle Koral and Hollister Avenue. Los Carneros Way is stop controlled at the Calle Koral intersection, and the Hollister Avenue/Los Carneros Way intersection is controlled by traffic signals.
Source: Associated Transportation Engineers, 2015.

Intersection Lane Geometry and Traffic Controls

Figure 4.13-1

City of Goleta

Page 308
Calle Koral, located southwest of the Project site, is a 2-lane road that extends from Los Carneros Road to Camino Vista. The Calle Koral/Los Carneros Road intersection is controlled by traffic signals and the Calle Koral/Camino Vista intersection is uncontrolled.

Aero Camino, located east of the Project site, is a 2-lane road that serves the existing industrial land uses and extends north from Hollister Avenue to its terminus south of U.S. 101. The Hollister Avenue/Aero Camino intersection is controlled by traffic signals.

Camino Vista, located along the southern frontage of the Project site, is a 2-lane road that extends easterly from Calle Koral serving the Willow Springs I and Willow Springs II apartment complexes. The segment of Camino Vista between the Willow Springs II apartments and Aero Camino has recently been constructed as part of the Willow Springs II development and is now open for public travel.

Recently Constructed Improvements. The City of Goleta recently finished replacing the Los Carneros Road bridge over the Union Pacific Railroad adjacent to the U.S. 101 interchange. The new bridge includes a dedicated right-turn lane for the northbound approach of Los Carneros Road to the U.S. 101 Southbound On-Ramp and two travel lanes in both directions. The right-turn lane extends northerly from Calle Koral to the U.S. 101 Southbound On-Ramp. Los Carneros Road was also widened south of the Calle Koral intersection to provide three northbound travel lanes. The Project also installed Class II bike lanes on Los Carneros Road in both directions.

The segment of Camino Vista between Calle Koral and Aero Camino was recently constructed as part of the Willow Springs II development. This new roadway segment is now open for public travel and provides a new travel route from the Aero Camino corridor to the Los Carneros Road interchange.

b. Existing Traffic Volumes and Levels of Service. The following sections present the existing peak hour traffic volumes at intersections in the study area, the existing average daily traffic (ADT) volumes for the street segments, a description of the methodology used to analyze the intersection and roadway segment traffic conditions, and the resulting level of service at each location under existing conditions.

Existing Roadway Segment Volumes. Figure 4.13-2 shows the existing ADT volumes for the study area roadways. Existing roadway volumes were obtained from counts conducted by ATE in 2013 (refer to Appendix I). It should be noted that the ATE traffic study identifies project conditions at the time the Notice of Preparation was prepared in accordance with CEQA Guidelines Section 15125(a). The operational characteristics of the study area roadways were analyzed based on the City of Goleta engineering roadway design capacities. Table 4.13-1 shows the existing ADT volumes and the City’s Acceptable Capacity thresholds for the key roadways in the Project study area.

The data in Table 4.13-1 show the existing (2013) roadway volumes on the study area roadway segments. Based on this data, these roadways carry volume within the City of Goleta’s Acceptable Capacity designations.
Existing Traffic Volumes

Figure 4.13-2

Source: Associated Transportation Engineers, 2015.

City of Goleta
Table 4.13-1
Existing Roadway Operations

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Roadway Classification</th>
<th>Geometry</th>
<th>Acceptable Capacity</th>
<th>Existing ADT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Carneros Road south of U.S. 101 SB Ramp a</td>
<td>Major Arterial</td>
<td>5-Lane</td>
<td>47,000</td>
<td>23,300</td>
</tr>
<tr>
<td>Los Carneros Road south of Hollister Avenue b</td>
<td>Major Arterial</td>
<td>4-lane</td>
<td>34,000</td>
<td>17,700</td>
</tr>
<tr>
<td>Hollister Avenue west of Los Carneros Road</td>
<td>Major Arterial</td>
<td>4-Lane</td>
<td>34,000</td>
<td>17,300</td>
</tr>
<tr>
<td>Hollister Avenue east of Los Carneros Road</td>
<td>Major Arterial</td>
<td>4-Lane</td>
<td>34,000</td>
<td>14,400</td>
</tr>
</tbody>
</table>

(a) Roadway recently widened to 5-lanes between U.S. 101 and Calle Koral.
(b) Roadway recently widened to 4-lanes between Hollister Avenue and Discovery Drive.

Existing Intersection Operations/Levels of Service. Because traffic flow on urban arterials is most constrained at intersections, detailed traffic flow analyses focus on the operating conditions of critical intersections during peak travel periods. In rating intersection operations, “Levels of Service” (LOS) A through F are used, with LOS A indicating free flow operations and LOS F indicating congested operations. The City of Goleta has established LOS C as the minimum acceptable operating standard for intersections. Table 4.13-2 presents the LOS criteria for intersections.

Table 4.13-2
Level of Service Criteria for Intersections

<table>
<thead>
<tr>
<th>LOS</th>
<th>Signalized intersections (V/C Ratio)</th>
<th>Unsignalized intersections (Sec. of delay)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>< 0.60</td>
<td>< 10</td>
<td>Conditions of free unobstructed flow, no delays and all signal phases sufficient in duration to clear all approaching vehicles.</td>
</tr>
<tr>
<td>B</td>
<td>0.61 – 0.70</td>
<td>> 10 and < 15</td>
<td>Conditions of stable flow, very little delay, a few phases are unable to handle all approaching vehicles.</td>
</tr>
<tr>
<td>C</td>
<td>0.71- 0.80</td>
<td>> 15 and < 25</td>
<td>Conditions of stable flow, delays are low to moderate, full use of peak direction signal phases is experienced.</td>
</tr>
<tr>
<td>D</td>
<td>0.81 – 0.90</td>
<td>> 25 and < 35</td>
<td>Conditions approaching unstable flow, delays are moderate to heavy, significant signal time deficiencies are experienced for short durations during the peak traffic period.</td>
</tr>
<tr>
<td>E</td>
<td>0.91 – 1.00</td>
<td>> 35 and < 50</td>
<td>Conditions of unstable flow, delays are significant, signal phase timing is generally insufficient, congestion exists for extended duration throughout the peak period.</td>
</tr>
<tr>
<td>F</td>
<td>> 1.00</td>
<td>> 50</td>
<td>Conditions of forced flow, travel speeds are low and volumes are well above capacity. This condition is often caused when vehicles released by an upstream signal are unable to proceed because of back-ups from a downstream signal.</td>
</tr>
</tbody>
</table>

Peak hour volumes for the study area intersections were obtained from traffic counts conducted in 2012 and 2013 (refer to Appendix I). Figure 4.13-1 presents the existing lane geometry and traffic controls for the study area intersections. Figure 4.13-2 shows the existing peak hour turning movements for the study area intersections. Levels of service were calculated for the signalized intersections using the “Intersection Capacity Utilization” (ICU) methodology. Levels of service for the stop-sign controlled and
roundabout intersections were calculated using the methodology outlined in the Highway Capacity Manual (HCM). Table 4.13-3 presents the existing levels of service for the study area intersections.

Table 4.13-3

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Control</th>
<th>A.M. Peak</th>
<th>P.M. Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ICU/Delay</td>
<td>LOS</td>
</tr>
<tr>
<td>Los Carneros Road/Calle Real<sup>a</sup></td>
<td>Roundabout</td>
<td>6.4 sec.</td>
<td>LOS A</td>
</tr>
<tr>
<td>Los Carneros Rd/U.S. 101 NB Ramp</td>
<td>Signal</td>
<td>0.54</td>
<td>LOS A</td>
</tr>
<tr>
<td>Los Carneros Rd/U.S. 101 SB Ramp<sup>b</sup></td>
<td>Signal</td>
<td>0.55</td>
<td>LOS A</td>
</tr>
<tr>
<td>Los Carneros Road/Calle Koral<sup>c</sup></td>
<td>Signal</td>
<td>0.46</td>
<td>LOS A</td>
</tr>
<tr>
<td>Calle Koral/Los Carneros Way<sup>a</sup></td>
<td>Stop Sign</td>
<td>8.3 sec.</td>
<td>LOS A</td>
</tr>
<tr>
<td>Calle Koral/Camino Vista</td>
<td>Yield</td>
<td>N/A</td>
<td>NIA</td>
</tr>
<tr>
<td>Los Carneros Road/Hollister Avenue</td>
<td>Signal</td>
<td>0.39</td>
<td>LOS A</td>
</tr>
<tr>
<td>Los Carneros Way/Hollister Avenue</td>
<td>Signal</td>
<td>0.28</td>
<td>LOS A</td>
</tr>
<tr>
<td>Aero Camino/Hollister Avenue</td>
<td>Signal</td>
<td>0.31</td>
<td>LOS A</td>
</tr>
</tbody>
</table>

<sup>(a) Unsignalized intersection. LOS based on average weighted delay per vehicle in seconds.
(b) LOS assumes recently-completed improvements.</sup>

The data presented in Table 4.13-3 show that all of the study area intersections currently operate at LOS C or better during the A.M. and P.M. peak hour periods. These operations are considered acceptable based on the City’s LOS C operating standard.

c. **Existing Transit System and Bicycle Infrastructure.** The Santa Barbara Metropolitan Transit District (MTD) provides local bus service for the region. The nearest bus stops to the Project site are located on Hollister Avenue at the Aero Camino intersection (approximately 0.3 miles south of the Project site). The existing bus stops are served by MTD Lines 6 and 12x, which provide transit service to/from downtown Santa Barbara to the Old Town Goleta and Camino Real Marketplace areas. Data published on the MTD website indicate that in November 2015, Line 6 carried an average of 33.9 passengers per operating hour, which is slightly below the system wide average of 35.7 passengers per operating hour, and Line 12x carried an average of 36.3 passengers per operating hour, which is slightly higher than the system wide average. The data also shows that both routes experienced 4-10 “at capacity” loads and 3-4 “too full to board” loads during the month of November 2015 (MTD data are included in the Technical Appendix to the ATE traffic study, Appendix I). Census data collected in 2010 show that 5% of commuters in the Goleta area utilize public transportation (census data are included in the Technical Appendix to the ATE traffic study, Appendix I).

Class II bicycle lanes are currently provided along both sides of Camino Vista adjacent to the Project site. The Camino Vista bicycle lanes connect to the existing Class II bicycle lanes provided on Calle Koral, Los Carneros Road, and Hollister Avenue. Census data collected in 2010 show that 6% of commuters in the Goleta travel to work on bicycles (census data are included in the Technical Appendix to the ATE traffic study, Appendix I).
4.13.2 Impact Analysis

a. Methodology and Significance Thresholds. This section describes how the potential for Project-generated traffic impacts were determined.

Project-Generated Traffic Projections. Trip generation estimates were calculated for the Project using the rates contained in the Institute of Transportation Engineers (ITE) Trip Generation Manual 9th Edition and traffic counts conducted at the existing Willow Springs I apartment complex, located just south of the Project site (refer to Appendix I). For the senior apartments, the trip generation analysis is based on the ITE rates for Senior Adult Housing (ITE Land Use Code #252). For the apartments, the analysis uses the ITE Apartment rates (ITE Land Use Code #220) to calculate average daily trips.

Cumulative Traffic Projections. Cumulative traffic volumes were forecast using the City's traffic model. The cumulative forecasts include traffic generated by the approved and pending projects proposed within the City of Goleta (refer to Appendix I) as well as development of the UCSB Long Range Development Plan (LRDP), the Santa Barbara Airport Specific Plan and terminal expansion, and regional growth in the Goleta-Santa Barbara area.

Congestion Management Program Analysis. The Santa Barbara County Association of Governments (SBCAG) has developed a set of traffic impact thresholds to assess the impacts of land use decisions made by local jurisdictions on regional transportation facilities located within the Congestion Management Program (CMP) roadway system. The following guidelines were developed by SBCAG to determine the significance of Project-generated traffic impacts on the regional CMP system.

1. For any roadway or intersection operating at LOS A or B, a decrease of two levels of service resulting from the addition of project-generated traffic.

2. For any roadway or intersection operating at LOS C, project-added traffic that results in LOS D or worse.

3. For intersections within the CMP system with existing congestion, the following table defines significant impacts.

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Project-Added Peak Hour Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS D</td>
<td>20</td>
</tr>
<tr>
<td>LOS E</td>
<td>10</td>
</tr>
<tr>
<td>LOS F</td>
<td>10</td>
</tr>
</tbody>
</table>

4. For Highway or Highway segments with existing congestion, the following table defines significant impacts.

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Project-Added Peak Hour Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS D</td>
<td>100</td>
</tr>
<tr>
<td>LOS E</td>
<td>50</td>
</tr>
<tr>
<td>LOS F</td>
<td>50</td>
</tr>
</tbody>
</table>
Significance Thresholds. Based on Appendix G of the CEQA Guidelines, a significant impact related to public services could occur under the following scenarios:

1. **Would the project conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?**

2. **Would the project conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?**

3. **Would the project result in a change in air traffic pattern, including either an increase in traffic levels or a change in location that results in substantial safety risks?**

4. **Would the project substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?**

5. **Would the project result in inadequate emergency access?**

6. **Would the project conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities?**

Impacts associated with air traffic patterns, design hazards, and emergency access, which are addressed in CEQA Appendix G Thresholds 3, 4, and 5 were determined to be less than significant, and are discussed in Section 4.15, *Effects Found Not to be Significant*.

In order to assess whether these thresholds are exceeded, the City of Goleta's CEQA traffic impact thresholds were used for this analysis, and include the following criteria:

A. The project would result in a significant impact on transportation and circulation if project traffic increases the volume to capacity (V/C) ratio at local intersections by the values provided in Table 4.13-4.

B. The project's access to a major road or arterial road would require access that would create an unsafe situation, a new traffic signal, or major revisions to an existing traffic signal.

C. The project would add traffic to a roadway that has design features (e.g., narrow width, roadside ditches, sharp curves, poor sight distance, inadequate pavement structure) that would become a potential safety problem with the addition of project traffic.

D. Project traffic would utilize a substantial portion of an intersection's capacity where the intersection is currently operating at acceptable levels of service, but with cumulative traffic would degrade to or approach LOS D (V/C 0.80) or lower. Substantial is defined as a minimum change of 0.03 for an intersection which would operate from 0.80 to 0.85, a change of 0.02 for an intersection which would operate from 0.86 to 0.90 and a change of 0.01 for an intersection which would operate greater than 0.90 (LOS E or worse).
b. Project Impacts and Mitigation Measures.

Trip Generation. A.M. and P.M. peak hour trip rates for the apartment units were developed from driveway counts conducted at the existing Willow Springs I apartments (refer to Appendix I). These rates better reflect local data and are slightly higher than the ITE average rates for apartment units. Table 4.13-5 presents the trip generation estimates for the Project.

As shown in Table 4.13-5, the Project would generate an estimated 1,970 average daily trips, 174 A.M. peak hour trips, and 183 P.M. peak hour trips.

Table 4.13-5

Project Trip Generation

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Size</th>
<th>Average Daily Rate</th>
<th>Average Daily Trips</th>
<th>A.M. Peak Hour Rate</th>
<th>A.M. Peak Hour Trips (In/Out)</th>
<th>P.M. Peak Hour Rate</th>
<th>P.M. Peak Hour Trips (In/Out)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Apartments</td>
<td>132 units</td>
<td>3.44</td>
<td>454</td>
<td>0.20</td>
<td>26 (9/17)</td>
<td>0.25</td>
<td>33 (18/15)</td>
</tr>
<tr>
<td>Apartments a</td>
<td>228 units</td>
<td>6.65</td>
<td>1,516</td>
<td>0.65</td>
<td>148 (25/123)</td>
<td>0.66</td>
<td>150 (105/45)</td>
</tr>
<tr>
<td>Totals</td>
<td>360 units</td>
<td>3.65</td>
<td>1,970</td>
<td>0.70</td>
<td>174 (34/140)</td>
<td>0.70</td>
<td>183 (123/60)</td>
</tr>
</tbody>
</table>

(a) ADT rate based on ITE average rate for Apartments, A.M. and P.M. rates based on Willow Springs I study.

Trip Distribution. Trip distribution percentages were developed for the Project based on existing traffic patterns observed at the Willow Springs I apartment complex. The distribution pattern assumes recent improvements to the local roadway network, including the extension of Camino Vista from Calle Koral to Aero Camino, which was recently constructed as part of the Willow Springs II Project and is now open for vehicular access. Traffic from the Project site would leave the site via Calle Koral, and then travel either north on Los Carneros Road toward U.S. 101, Calle Real, and Cathedral Oaks, or south on Los Carneros Road toward Hollister Avenue. Table 4.13-6 presents the trip distribution percentages developed for the Project. Figure 4.13-3 shows the trip distribution pattern and shows the assignment of Project-added traffic.
Project Trip Distribution and Assignment

Legend:
- (A.M.)P.M. Peak Hour Volume
- Average Daily Traffic Volume
- Distribution Percentage
Table 4.13-6
Project Trip Distribution

<table>
<thead>
<tr>
<th>Origin/Destination</th>
<th>Direction</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. 101</td>
<td>East</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>West</td>
<td>5%</td>
</tr>
<tr>
<td>Hollister Avenue</td>
<td>East</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>West</td>
<td>20%</td>
</tr>
<tr>
<td>Los Carneros Road</td>
<td>South of Hollister</td>
<td>15%</td>
</tr>
<tr>
<td>Cathedral Oaks Road</td>
<td>East</td>
<td>5%</td>
</tr>
<tr>
<td>Calle Real</td>
<td>East</td>
<td>5%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

(a) Via Aero Camino.

Impact T-1 Project-generated traffic would increase existing traffic volumes on area roadways. Roadway volumes would remain within the City's Acceptable Capacity ratings. Impacts related to roadway segment volume increases would be Class III, less than significant [Threshold 1].

As shown in Table 4.13-5, the Project would generate an estimated 1,970 daily trips, including 174 trips during A.M. peak hours and 183 trips during P.M. peak hours. Figure 4.13-4 shows the estimated ADT volumes on roadways near the Project site after adding Project-generated traffic to existing traffic. Table 4.13-7 presents the Existing and Existing + Project roadway volumes and identifies the potential impacts of the Project's traffic additions based on the City of Goleta's Acceptable Capacity thresholds.

The data presented in Table 4.13-7 show that the Existing + Project roadway volumes would remain within the City's Acceptable Capacity ratings with the addition of Project traffic. The Project would therefore not generate Project-specific impacts to the study-area roadway segments.

Table 4.13-7
Existing + Project Roadway Volumes

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Acceptable Capacity</th>
<th>Existing ADT</th>
<th>Existing + Project ADT</th>
<th>% Change</th>
<th>Significant Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Carneros Road south of U.S. 101 SB Ramp</td>
<td>47,000</td>
<td>23,300</td>
<td>24,384</td>
<td>4.7%</td>
<td>No</td>
</tr>
<tr>
<td>Los Carneros Road south of Hollister Avenue</td>
<td>34,000</td>
<td>17,700</td>
<td>17,996</td>
<td>1.7%</td>
<td>No</td>
</tr>
<tr>
<td>Hollister Avenue west of Los Carneros Road</td>
<td>34,000</td>
<td>17,300</td>
<td>17,694</td>
<td>2.3%</td>
<td>No</td>
</tr>
<tr>
<td>Hollister Avenue east of Los Carneros Road</td>
<td>34,000</td>
<td>14,400</td>
<td>14,744</td>
<td>2.4%</td>
<td>No</td>
</tr>
</tbody>
</table>
Mitigation Measures. Mitigation is not required because impacts would be less than significant.

Residual Impact. Impacts would be less than significant without mitigation.

Impact T-2 Project-generated traffic would increase existing turning volumes at intersections in the study area. However, Existing + Project traffic levels at intersections would operate at LOS C or better. Impacts would be Class III, less than significant [Threshold 1].

Existing Plus Project Intersection Operations. Levels of service were calculated for the study-area intersections assuming the Existing + Project traffic volumes presented on Figure 4.13-4. As noted previously, the calculations assume completion of the Los Carneros Road Overhead Bridge Replacement Project that was recently completed, and the opening of the Camino Vista extension from Calle Koral to Aero Camino. The Camino Vista extension provides a new connection between Aero Camino and the Los Carneros Road interchange that alters the existing traffic patterns within the study area. These traffic patterns are accounted for in the analysis (refer to Appendix I). Table 4.13-8 compares the Existing and Existing+ Project levels of service and identifies Project-specific impacts for intersections during the A.M peak hours based on City thresholds.

Table 4.13-9 compares the Existing and Existing + Project levels of service and identifies Project-specific impacts for intersections during P.M peak hours based on City thresholds.

The data presented in Table 4.13-8 and Table 4.13-9 show that the study area intersections are forecast to operate at LOS C or better with the addition of Project traffic during both the A.M. and P.M. peak hours. The Project would not generate significant impacts to the study-area intersections based on the City's Project-specific traffic impact thresholds.

Village at Los Carneros Project Improvements. The Village at Los Carneros Project is programmed to build the western leg of the Los Carneros Road/Calle Koral intersection in order to provide access to that Project site. Levels of service were calculated for the Los Carneros Road/Calle Koral intersection assuming completion of the western leg to determine the effects of Project traffic on the intersection (refer to Appendix I). Table 4.13-10 presents the Existing+ Project levels of service for the Los Carneros Road/Calle Koral intersection assuming construction of the western leg.
Table 4.13-8
Existing + Project Intersection Operations – A.M. Peak Hour

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Existing</th>
<th>Existing + Project</th>
<th>Project-Added</th>
<th>Significant Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICU/delay LOS</td>
<td>ICU/delay LOS</td>
<td>Trips V/C</td>
<td></td>
</tr>
<tr>
<td>Los Carneros Road/Calle Real</td>
<td>6.4 sec LOS A</td>
<td>6.5 sec LOS A</td>
<td>18 0.020</td>
<td>No</td>
</tr>
<tr>
<td>Los Carneros Road/U.S. 101 NB Ramp</td>
<td>0.54 LOS A</td>
<td>0.55 LOS A</td>
<td>38 0.011</td>
<td>No</td>
</tr>
<tr>
<td>Los Carneros Road/U.S. 101 SB Ramp a</td>
<td>0.55 LOS A</td>
<td>0.56 LOS A</td>
<td>96 0.005</td>
<td>No</td>
</tr>
<tr>
<td>Los Carneros Road/Calle Koral</td>
<td>0.46 LOS A</td>
<td>0.46 LOS A</td>
<td>125 0.001</td>
<td>No</td>
</tr>
<tr>
<td>Calle Koral/Los Carneros Way</td>
<td>8.1 sec LOS A</td>
<td>8.3 sec LOS A</td>
<td>157 0.040</td>
<td>No</td>
</tr>
<tr>
<td>Calle Koral/Camino Vista b</td>
<td>N/A N/A</td>
<td>N/A N/A</td>
<td>157 N/A</td>
<td>No</td>
</tr>
<tr>
<td>Hollister Avenue/Los Carneros Road</td>
<td>0.39 LOS A</td>
<td>0.40 LOS A</td>
<td>61 0.008</td>
<td>No</td>
</tr>
<tr>
<td>Hollister Avenue/Los Carneros Way b</td>
<td>0.26 LOS A</td>
<td>0.27 LOS A</td>
<td>32 0.006</td>
<td>No</td>
</tr>
<tr>
<td>Hollister Avenue/Aero Camino b</td>
<td>0.29 LOS A</td>
<td>0.30 LOS A</td>
<td>17 0.009</td>
<td>No</td>
</tr>
</tbody>
</table>

(a) Assumes completion of the Los Carneros Road Overhead Bridge Replacement Project.

(b) Level of Service not applicable, no conflicting movements.

Table 4.13-9
Existing + Project Intersection Operations – P.M. Peak Hour

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Existing</th>
<th>Existing + Project</th>
<th>Project-Added</th>
<th>Significant Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICU/delay LOS</td>
<td>ICU/delay LOS</td>
<td>Trips V/C</td>
<td></td>
</tr>
<tr>
<td>Los Carneros Road/Calle Real</td>
<td>9.4 sec LOS A</td>
<td>9.5 sec LOS A</td>
<td>18 0.020</td>
<td>No</td>
</tr>
<tr>
<td>Los Carneros Road/U.S. 101 NB Ramp</td>
<td>0.49 LOS A</td>
<td>0.51 LOS A</td>
<td>70 0.021</td>
<td>No</td>
</tr>
<tr>
<td>Los Carneros Road/U.S. 101 SB Ramp a</td>
<td>0.72 LOSC</td>
<td>0.73 LOSC</td>
<td>100 0.013</td>
<td>No</td>
</tr>
<tr>
<td>Los Carneros Road/Calle Koral</td>
<td>0.51 LOS B</td>
<td>0.56 LOS C</td>
<td>131 0.052</td>
<td>No</td>
</tr>
<tr>
<td>Calle Koral/Los Carneros Way</td>
<td>9.5 sec LOS A</td>
<td>10.2 sec LOS B</td>
<td>164 0.072</td>
<td>No</td>
</tr>
<tr>
<td>Calle Koral/Camino Vista b</td>
<td>N/A N/A</td>
<td>N/A N/A</td>
<td>164 N/A</td>
<td>No</td>
</tr>
<tr>
<td>Hollister Avenue/Los Carneros Road</td>
<td>0.59 LOS A</td>
<td>0.60 LOS A</td>
<td>64 0.008</td>
<td>No</td>
</tr>
<tr>
<td>Hollister Avenue/Los Carneros Way b</td>
<td>0.42 LOS A</td>
<td>0.43 LOS A</td>
<td>33 0.015</td>
<td>No</td>
</tr>
<tr>
<td>Hollister Avenue/Aero Camino b</td>
<td>0.44 LOS A</td>
<td>0.44 LOS A</td>
<td>19 0.006</td>
<td>No</td>
</tr>
</tbody>
</table>

(a) Assumes completion of the Los Carneros Road Overhead Bridge Replacement Project.

(b) Level of Service not applicable, no conflicting movements.

Table 4.13-10
Existing + Project Levels of Service –
Los Carneros Road/Calle Koral Intersection w/ Western Leg

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Existing</th>
<th>Existing + Project</th>
<th>Project-Added Trips</th>
<th>Significant Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICU/delay LOS</td>
<td>ICU/delay LOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Carneros Road/Calle Real – A.M.</td>
<td>0.59 LOS A</td>
<td>0.61 LOS B</td>
<td>125</td>
<td>No</td>
</tr>
<tr>
<td>Los Carneros Road/Calle Real – P.M.</td>
<td>0.57 LOS A</td>
<td>0.62 LOS B</td>
<td>131</td>
<td>No</td>
</tr>
</tbody>
</table>
The data presented in Table 4.13-10 indicate that the Los Carneros Road/Calle Koral Intersection with the western leg is forecast to operate at LOS B during the peak hour periods with Existing+ Project traffic volumes. Therefore, the Project would not generate significant impacts to this location.

Mitigation Measures. Mitigation is not required because impacts would be less than significant.

Residual Impact. Impacts would be less than significant without mitigation.

Impact T-3 Three intersections and a highway segment in the CMP network are located in the vicinity of the Project site. With the addition of Project-generated traffic to existing traffic volumes, CMP intersections are forecast to operate at LOS C or better. Therefore, impacts to the CMP network would be Class III, less than significant [Threshold 2].

Potential Intersection Impacts. The Los Carneros Road/U.S. 101 NB Ramps, Los Carneros Road/U.S. 101 SB Ramps, and Los Carneros Road/Hollister Avenue intersections are located within the CMP network. As shown on Table 4.13-8 and Table 4.13-9, the CMP intersections are forecast to operate at LOS C or better with Existing+ Project traffic volumes. Therefore, the Project would not generate a significant impact to the CMP network based on CMP impact criteria.

Potential Freeway Impacts. The Project is forecast to add 9 P.M. peak hour trips to U.S. 101 north of Los Carneros Road and 73 P.M. peak hour trips to U.S. 101 south of Los Carneros Road. The CMP threshold for freeway impacts is 50 trips for segments operating at LOS E or LOS F and 100 trips for segments operating at LOS D. Data provided by SBCAG indicates that the segment of U.S. 101 between Los Carneros Road and Fairview Avenue currently operates at LOS C (refer to Appendix I). Based on these CMP impact criteria, the Project would not generate a significant impact to the freeway segment located between Los Carneros Road and Fairview Avenue.

Mitigation Measures. Mitigation is not required because impacts would be less than significant.

Residual Impact. Impacts would be less than significant without mitigation.

Impact T-4 The Project would generate additional demand for public transit services and alternative transportation infrastructure. The Project would not substantially increase transit ridership or impact the operations of bicycle facilities in the Project site vicinity. Impacts to alternative transportation would be Class III, less than significant [Threshold 6].

The Project would generate an estimated 776 residents, which would increase demand for alternative transportation facilities.

Transit. Census data collected in 2010 show that 5% of commuters in the Goleta area utilize public transportation (refer to Appendix I). Therefore, the Project would result in approximately 11 new transit users during the peak periods (7:00 to 9:00 A.M. and 4:00 to 6:00 P.M.) (refer to Appendix I). There are currently 22 busses that serve the site during the weekday peak hour periods; thus, the Project would add less than 1 rider per bus. The new bus riders generated by the Project would not
measurably impact the operations of the transit routes that serve the site. Therefore, impacts related to
transit would be less than significant.

Bicycling. The Project would result in approximately 14 new bicycle riders that would commute
during the peak hour periods (refer to Appendix I). The Project would facilitate bicycle riding among site
residents by providing a bicycle parking area at each residential building and the recreational building
with a total of approximately 77 bicycle parking spaces. An additional 8 bicycle parking spaces would be
provided at the park. The increase in bicycle ridership generated by the Project would not significantly
impact the operations of the bicycle facilities in the vicinity of the Project site. Therefore, impacts
related to bicycling and bicycling infrastructure would be less than significant.

Mitigation Measures. Mitigation is not required because impacts would be less than significant.

Residual Impact. Impacts would be less than significant without mitigation.

Impact T-5
Pre-Construction soil export activity would add temporary employee
and heavy truck trips to intersections in the Project vicinity. Affected
intersections would continue to operate at LOS C or better under the
Existing + Project and Cumulative scenarios. However, haul trucks
using Aero Camino east of the Project site may result in traffic impacts.
Therefore, traffic impacts due to pre-construction soil hauling would
be Class II, **significant but mitigable [Threshold 1].**

As described in Section 2.0, *Project Description*, the Project would require 115,000 cubic yards (CY) of
soil export prior to construction. The removal of this soil is expected to follow one of two pre-
construction export scenarios:

1. **Revised Pre-Construction Export Scenario 1:** Total of 25,556 one-way haul truck trips (12,778
round truck trips) assuming a truck capacity of 9 CY (typically 3- to 4-axle trucks) over a 27-week
export phase.
2. **Revised Pre-Construction Export Scenario 2:** Total of 11,500 one-way haul truck trips (5,750
round truck trips) assuming a truck capacity of 20 CY (typically 4- to 5-axle trucks) over a 24-
week export phase.

Heavy truck trips contribute to both traffic congestion and wear & tear on area roadways. Potential
traffic impacts associated with the pre-construction soil hauling are described below. Wear & tear on
area roadways does not constitute an environmental impact under CEQA. The applicant would be
required by the City to pay their fair share contribution to repairing wear & tear associated with the pre-
construction soil hauling activity as a condition of approval for the Project.

Trip Generation. Soil hauling activities would also require three workers on site to load
material and two trucks driven to the site daily. LLG prepared a Pre-Construction Soil Removal Phase
Traffic Impact Analysis for the Project in November 2015 (refer to Appendix I). For this analysis, the
Project trip generation forecast was based on the development of employee and truck forecasts given
the expected hauling capacities as well as the application of passenger car equivalency (PCE) factors. The
forecast of employee vehicle trips was provided and accounts for the employees that will be on-site
during the soil removal phase. Three inbound trips during the A.M. peak hour and three outbound trips
during the P.M. peak hour are anticipated for the employees. In developing the forecast of truck trip
generation, several factors were taken into consideration:

- Hours of Hauling Operation (8:30 A.M. to 3:30 P.M. on weekdays)
- Capacity of Haul Trucks (9 or 20 CY per truck)
- Application of PCE Factors (2.0 or 3.0)
- Amount of Anticipated Export (115,000 cy)

Based on information provided by the City, a maximum of 12 inbound and 12 outbound truck trips per
hour are expected using trucks with a hauling capacity of 9 CY while a maximum of six inbound and six
outbound truck trips per hour are expected using trucks with a 20 cubic yard hauling capacity. In order
to account for the effect that trucks have on overall intersection operations, PCE factors were accounted
for in the analysis of potential short-term traffic impacts. Based on a review of the size of haul trucks
expected to be utilized, a PCE factor of 2.0 or 3.0 was incorporated into the traffic analysis (i.e., it is
assumed that a single 9 cubic yard haul truck has the same overall effect on traffic operations as two
passenger cars and that a single 20 cubic yard haul truck has the same overall effect on traffic
operations as three passenger cars). This assumption is conservative and accounts for the heavy vehicle
type and slower speeds when fully loaded. The traffic generation forecast for the pre-construction soil
removal phase is summarized in Table 4.13-11.

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Daily Trip Ends 2</th>
<th>A.M. Peak Hour Volumes 2</th>
<th>P.M. Peak Hour Volumes 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A] Employees</td>
<td>6</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>[B] 9 CY Truck Trips (unadjusted)</td>
<td>192</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>[C] 20 CY Truck Trips (unadjusted)</td>
<td>96</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>[D] PCE Adjusted 9 CY Truck Trips</td>
<td>384</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>[E] PCE Adjusted 20 CY Truck Trips</td>
<td>288</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 4.13-11

Pre-Construction Soil Removal Phase Trip Generation 1

1. Source: Based on coordination with City (a total of 115,000 CY of soil to be exported.
2. Trips are one-way traffic movements, entering or leaving.
3. Peak hour and daily truck trips were derived based on the following, using 9 CY capacity per haul truck:
 12 trucks inbound / 12 trucks outbound per hour between 8:00 A.M. and 5:00 P.M. on weekdays.
 Daily Truck Trips = 12 Peak Hour Truck Trips x 8 hours = 192 total truck trips per day (i.e., 96 inbound trips + 96 outbound trips).
4. Peak hour and daily truck trips were derived based on the following, using 20 CY capacity per haul truck:
 6 trucks inbound / 6 trucks outbound per hour between 8:00 A.M. and 5:00 P.M. on weekdays.
 Daily Truck Trips = 12 Peak Hour Truck Trips x 8 hours = 96 total truck trips per day (i.e., 48 inbound trips + 48 outbound trips).
5. A PCE factor of 2.0 was employed for analysis purposes. This accounts for the assumption that a single 9 CY capacity haul truck has the
 same overall effect on intersection traffic as 2.0 passenger cars.
6. A PCE factor of 3.0 was employed for analysis purposes. This accounts for the assumption that a single 20 CY capacity haul truck has the
 same overall effect on intersection traffic as 3.0 passenger cars.

As presented in Table 4.13-11, using haul trucks with a capacity of 9 CY, the proposed short-term soil
removal phase is expected to generate 51 PCE-adjusted vehicle trips (27 inbound trips and 24 outbound
trips) during the weekday A.M. peak hour, 51 PCE-adjusted vehicle trips (24 inbound trips and 27
outbound trips) during the weekday P.M. peak hour, and 390 PCE-adjusted daily trip ends during a
typical weekday (195 inbound trips and 195 outbound trips). As presented in Table 4.13-11, using haul
trucks with a capacity of 20 CY, the proposed short-term soil removal phase is expected to generate 39 PCE-adjusted vehicle trips (21 inbound trips and 18 outbound trips) during the weekday A.M. peak hour, 39 PCE-adjusted vehicle trips (18 inbound trips and 21 outbound trips) during the weekday P.M. peak hour, and 294 PCE-adjusted daily trip ends during a typical weekday (147 inbound trips and 147 outbound trips). By comparison, using haul trucks with a capacity of 9 CY will provide a slightly higher and more conservative assessment of potential Project trip generation.

Project Trip Distribution and Assignment. Haul trucks are anticipated to utilize U.S. 101 to access the Project site via the Los Carneros Road interchange onto Calle Koral and Camino Vista. Based on information provided by the City, 50% of the haul trucks would access U.S. 101 to/from the south while the remaining 50% of the haul trucks would access U.S. 101 to/from the north. The following study intersections have been identified for evaluation (note: the intersection numbers/references coincide with the ATE study):

1. Los Carneros Road/U.S. 101 Northbound Ramp
2. Los Carneros Road/U.S. 101 Southbound Ramp
3. Los Carneros Road/Calle Koral
4. Los Carneros Way/Calle Koral

Based on a review of the existing traffic count data included in the ATE study, the highest one-hour total of overall traffic volumes traversing through the above study intersections generally occurs between 7:45 A.M. and 8:45 A.M. during the morning commute peak period and between 4:45 P.M. and 5:45 P.M. during the afternoon commute peak period. As stated previously, the anticipated hours of truck hauling operations during the pre-construction soil removal phase will begin at 8:00 A.M. and end at 5:00 P.M. on weekdays. Therefore, this traffic analysis provides a conservative assessment of potential impacts since only a portion of the truck hauling activities will overlap with the actual 7:45-8:45 A.M. and 4:45-5:45 P.M. commute peak hours.

Traffic Analysis. The traffic impact analyses were prepared for the study intersections using the ICU and the HCM methodologies as well as the City of Goleta’s significant traffic impact criteria, consistent with the Project analysis conducted by ATE study for Project operation (Appendix I). Additionally, the existing and cumulative without Project A.M. and P.M. peak hour traffic volumes were obtained from the ATE study. Tables 4.13-12 and 4.13-13 summarize the traffic analysis assuming utilization of haul trucks with a capacity of 9 CY for the existing and cumulative analysis conditions, respectively. Tables 4.13-14 and 4.14-15 summarize the traffic analysis assuming utilization of haul trucks with a capacity of 20 CY for the existing and cumulative analysis conditions. The corresponding weekday A.M. and P.M. peak hour level of service data worksheets are contained in Appendix I.

Existing with Project Conditions. As shown in Table 4.13-12 (which assumes utilization of 9 CY haul trucks) and Table 4.13-14 (which assumes utilization of 20 CY haul trucks), application of the City of Goleta’s threshold criteria to the Existing With Project scenarios indicates that the pre-construction soil removal phase is not expected to create any short-term significant traffic impacts at the four study intersections.
Table 4.13-12

Summary of Volume to Capacity Ratios and Levels of Service, A.M. and P.M. Peak Hours
Pre-Construction Soil Removal Using 9 CY Haul Trucks, Existing Traffic

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Carneros Road/ U.S. 101</td>
<td>A.M.</td>
<td>0.54</td>
<td>A</td>
<td>0.56</td>
<td>A</td>
<td>0.012</td>
<td>26</td>
<td>NO</td>
</tr>
<tr>
<td>Northbound Ramps</td>
<td>P.M.</td>
<td>0.49</td>
<td>A</td>
<td>0.50</td>
<td>A</td>
<td>0.013</td>
<td>26</td>
<td>NO</td>
</tr>
<tr>
<td>Los Carneros Road/ U.S. 101</td>
<td>A.M.</td>
<td>0.55</td>
<td>A</td>
<td>0.55</td>
<td>A</td>
<td>0.004</td>
<td>51</td>
<td>NO</td>
</tr>
<tr>
<td>Southbound Ramps</td>
<td>P.M.</td>
<td>0.72</td>
<td>C</td>
<td>0.73</td>
<td>C</td>
<td>0.009</td>
<td>51</td>
<td>NO</td>
</tr>
<tr>
<td>Los Carneros Road/ Calle Koral</td>
<td>A.M.</td>
<td>0.46</td>
<td>A</td>
<td>0.47</td>
<td>A</td>
<td>0.010</td>
<td>51</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>0.51</td>
<td>A</td>
<td>0.54</td>
<td>A</td>
<td>0.032</td>
<td>51</td>
<td>NO</td>
</tr>
<tr>
<td>Los Carneros Way/ Calle Koral</td>
<td>A.M.</td>
<td>8.4</td>
<td>A</td>
<td>8.5</td>
<td>A</td>
<td>0.000</td>
<td>51</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>10.5</td>
<td>B</td>
<td>10.7</td>
<td>B</td>
<td>0.015</td>
<td>51</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>A.M.</td>
<td>0.25</td>
<td>B</td>
<td>0.25</td>
<td>B</td>
<td>0.000</td>
<td>51</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>0.31</td>
<td>B</td>
<td>0.33</td>
<td>B</td>
<td>0.000</td>
<td>51</td>
<td>NO</td>
</tr>
</tbody>
</table>

1. Two-Way Stop Control intersection.

Table 4.13-13

Summary of Volume to Capacity Ratios and Levels of Service, A.M. and P.M. Peak Hours
Pre-Construction Soil Removal Using 9 CY Haul Trucks, Cumulative Traffic

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Peak Hour</th>
<th>[1] Cumulative w/o Project V/C or Delay</th>
<th>LOS</th>
<th>[1] Cumulative w/ Project V/C or Delay</th>
<th>LOS</th>
<th>[2] Change in V/C ([2]-[1])</th>
<th>Cumulative Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Carneros Road/ U.S. 101</td>
<td>A.M.</td>
<td>0.68</td>
<td>B</td>
<td>0.69</td>
<td>B</td>
<td>0.012</td>
<td>NO</td>
</tr>
<tr>
<td>Northbound Ramps</td>
<td>P.M.</td>
<td>0.57</td>
<td>B</td>
<td>0.58</td>
<td>A</td>
<td>0.013</td>
<td>NO</td>
</tr>
<tr>
<td>Los Carneros Road/ U.S. 101</td>
<td>A.M.</td>
<td>0.67</td>
<td>B</td>
<td>0.68</td>
<td>B</td>
<td>0.005</td>
<td>NO</td>
</tr>
<tr>
<td>Southbound Ramps</td>
<td>P.M.</td>
<td>0.84</td>
<td>D</td>
<td>0.85</td>
<td>D</td>
<td>0.008</td>
<td>NO</td>
</tr>
<tr>
<td>Los Carneros Road/ Calle Koral</td>
<td>A.M.</td>
<td>0.70</td>
<td>B</td>
<td>0.70</td>
<td>B</td>
<td>0.000</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>0.66</td>
<td>B</td>
<td>0.69</td>
<td>B</td>
<td>0.032</td>
<td>NO</td>
</tr>
<tr>
<td>Los Carneros Way/ Calle Koral</td>
<td>A.M.</td>
<td>11.0</td>
<td>B</td>
<td>11.3</td>
<td>B</td>
<td>0.000</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>14.8</td>
<td>B</td>
<td>15.8</td>
<td>C</td>
<td>0.015</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>A.M.</td>
<td>0.40</td>
<td>B</td>
<td>0.40</td>
<td>C</td>
<td>0.015</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>0.48</td>
<td>B</td>
<td>0.49</td>
<td>C</td>
<td>0.015</td>
<td>NO</td>
</tr>
</tbody>
</table>

1. Two-Way Stop Control intersection.
Table 4.13-14
Summary of Volume to Capacity Ratios and Levels of Service, A.M. and P.M. Peak Hours
Pre-Construction Soil Removal Using 20 CY Haul Trucks, Existing Traffic

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Peak Hour</th>
<th>V/C or Delay</th>
<th>LOS</th>
<th>V/C or Delay</th>
<th>LOS</th>
<th>Change in V/C ([2]–[1])</th>
<th>Added Project Trips</th>
<th>Project Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Carneros Road/ U.S. 101</td>
<td>A.M.</td>
<td>0.54</td>
<td>A</td>
<td>0.55</td>
<td>A</td>
<td>0.009</td>
<td>20</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>0.49</td>
<td>A</td>
<td>0.50</td>
<td>A</td>
<td>0.010</td>
<td>20</td>
<td>NO</td>
</tr>
<tr>
<td>Los Carneros Road/ U.S. 101</td>
<td>A.M.</td>
<td>0.55</td>
<td>A</td>
<td>0.55</td>
<td>A</td>
<td>0.003</td>
<td>39</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>0.72</td>
<td>C</td>
<td>0.72</td>
<td>C</td>
<td>0.007</td>
<td>39</td>
<td>NO</td>
</tr>
<tr>
<td>Los Carneros Road/ Calle Koral</td>
<td>A.M.</td>
<td>0.46</td>
<td>A</td>
<td>0.47</td>
<td>A</td>
<td>0.006</td>
<td>39</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>0.51</td>
<td>A</td>
<td>0.54</td>
<td>A</td>
<td>0.024</td>
<td>39</td>
<td>NO</td>
</tr>
<tr>
<td>Los Carneros Way/ Calle Koral(^1)</td>
<td>A.M.</td>
<td>8.4</td>
<td>A</td>
<td>8.5</td>
<td>A</td>
<td>0.000</td>
<td>39</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>10.5</td>
<td>B</td>
<td>10.6</td>
<td>B</td>
<td>0.011</td>
<td>39</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>A.M.</td>
<td>0.25</td>
<td>C</td>
<td>0.25</td>
<td>C</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>0.31</td>
<td>D</td>
<td>0.33</td>
<td>D</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Two-Way Stop Control intersection.

Table 4.13-15
Summary of Volume to Capacity Ratios and Levels of Service, A.M. and P.M. Peak Hours
Pre-Construction Soil Removal Using 20 CY Haul Trucks, Cumulative Traffic

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Peak Hour</th>
<th>Cumulative w/o Project</th>
<th>Cumulative w/ Project</th>
<th>Change in V/C ([2]–[1])</th>
<th>Cumulative Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V/C or Delay</td>
<td>LOS</td>
<td>V/C or Delay</td>
<td>LOS</td>
</tr>
<tr>
<td>Los Carneros Road/ U.S. 101</td>
<td>A.M.</td>
<td>0.68</td>
<td>B</td>
<td>0.69</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>0.57</td>
<td>B</td>
<td>0.58</td>
<td>A</td>
</tr>
<tr>
<td>Los Carneros Road/ U.S. 101</td>
<td>A.M.</td>
<td>0.67</td>
<td>B</td>
<td>0.68</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>0.84</td>
<td>D</td>
<td>0.84</td>
<td>D</td>
</tr>
<tr>
<td>Los Carneros Road/ Calle Koral</td>
<td>A.M.</td>
<td>0.70</td>
<td>B</td>
<td>0.70</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>0.66</td>
<td>B</td>
<td>0.68</td>
<td>B</td>
</tr>
<tr>
<td>Los Carneros Way/ Calle Koral(^1)</td>
<td>A.M.</td>
<td>11.0</td>
<td>B</td>
<td>11.3</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>14.8</td>
<td>B</td>
<td>15.5</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>A.M.</td>
<td>0.40</td>
<td>C</td>
<td>0.40</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>0.48</td>
<td>C</td>
<td>0.49</td>
<td>C</td>
</tr>
</tbody>
</table>

1. Two-Way Stop Control intersection.

For informational purposes, a supplemental analysis was also prepared to evaluate the Los Carneros Road/Calle Koral intersection by incorporating the traffic associated with the Village at Los Carneros Project and the construction of the west leg of this intersection. Table 4.13-16 summarizes the corresponding traffic analyses for the existing and existing with Project conditions. The corresponding weekday A.M. and P.M. peak hour level of service data worksheets are included in Appendix I. As shown in Table 4.13-16, application of the City of Goleta’s threshold criteria to the Existing With Project scenarios indicates that the pre-construction soil removal phase is not expected to create any short-term/temporary significant traffic impacts at the Los Carneros Road/Calle Koral intersection.

Cumulative with Project Conditions. As shown in Table 4.13-13 (which assumes utilization of 9 CY haul trucks) and Table 4.13-15 (which assumes utilization of 20 CY haul trucks), application of the City of Goleta’s threshold criteria to the Cumulative With Project scenarios indicates that the pre-construction...
soil removal phase is not expected to create any short-term/temporary significant contribution to cumulative impacts at the four study intersections.

Table 4.13-16
Summary of Volume to Capacity Ratios and Levels of Service, A.M. and P.M. Peak Hours

Analysis of Los Carneros Road/Calle Koral Intersection Including West Leg

Pre-Construction Soil Removal

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Peak Hour</th>
<th>[1]</th>
<th>Existing</th>
<th>Existing w/ Project</th>
<th>Change in V/C ([2]-[1])</th>
<th>Added Project Trips</th>
<th>Project Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Carneros Way/ Calle Koral</td>
<td>A.M.</td>
<td>0.59</td>
<td>A</td>
<td>0.59</td>
<td>0.000</td>
<td>51</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>0.57</td>
<td>A</td>
<td>0.60</td>
<td>0.032</td>
<td>51</td>
<td>NO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Peak Hour</th>
<th>[2]</th>
<th>(Utilizing 9 CY Capacity Trucks)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Existing w/ Project</td>
<td>Change in V/C</td>
<td>Added Project Trips</td>
<td>Project Impact</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V/C Delay LOS</td>
<td>([2]-[1])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Carneros Way/ Calle Koral</td>
<td>A.M.</td>
<td>0.59</td>
<td>A</td>
<td>0.59</td>
<td>0.000</td>
<td>51</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>0.57</td>
<td>A</td>
<td>0.60</td>
<td>0.032</td>
<td>51</td>
<td>NO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Peak Hour</th>
<th>[3]</th>
<th>(Utilizing 20 CY Capacity Trucks)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Existing w/ Project</td>
<td>Change in V/C</td>
<td>Added Project Trips</td>
<td>Project Impact</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V/C Delay LOS</td>
<td>([3]-[1])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Carneros Way/ Calle Koral</td>
<td>A.M.</td>
<td>0.59</td>
<td>A</td>
<td>0.59</td>
<td>0.000</td>
<td>39</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>P.M.</td>
<td>0.57</td>
<td>A</td>
<td>0.59</td>
<td>0.024</td>
<td>39</td>
<td>NO</td>
</tr>
</tbody>
</table>

1. The Existing and Existing With Project analysis conditions also include traffic associated with the completion/occupancy of the Village at Los Carneros Project and the construction of the west leg of this intersection.

Potential Use of Aero Camino During the Pre-Construction Soil Removal Phase. Based on the traffic distribution pattern used in this analysis, haul trucks associated with the pre-construction soil removal operation have been distributed and assigned to utilize Camino Vista, Calle Koral, and Los Carneros Road for access to and from U.S. 101. As these roadways offer the most direct path of travel between the Project site and U.S. 101, use of Aero Camino east of the Project site for haul truck access is not expected. Nonetheless, if haul trucks use Aero Camino east of the Project site temporary traffic impacts in excess of those described above may result. This would be a potentially significant impact requiring mitigation.

Mitigation Measure. Mitigation Measure T-5 would reduce temporary traffic impacts during the pre-construction soil removal phase to a less than significant level.

T-5 Pre-Construction Traffic Management Control Plan. The Project applicant must submit a Pre-Construction Traffic Management Control Plan that describes the hours during which hauling may occur (presumed to be 8:30 AM to 3:30 PM), haul route, and size of trucks to be used for the pre-construction hauling activity. Construction contractors must notify truck operators that all haul trucks associated with the pre-construction soil removal phase are restricted from using Aero Camino for access to the Project site.

Plan Requirements and Timing. The Pre-Construction Traffic Management Control Plan must be reviewed and approved by City Planning and Public Works staff before issuance of a Haul Permit for the Project. The approved
haul route(s) must be used for soil hauling trips prior to construction as well as for the duration of construction.

Monitoring. City Planning and Environmental Review staff and Public Works must periodically inspect the site to ensure compliance.

Residual Impact. Implementation of Mitigation Measure T-5 would ensure that haul trucks during the pre-construction soil removal phase would not use Aero Camino east of the Project site, which would ensure that temporary traffic impacts would remain less than significant.

c. **Cumulative Impacts.** Cumulative traffic volumes were forecast using the City's traffic model. The cumulative forecasts include traffic generated by the approved and pending projects proposed within the City of Goleta (refer to Appendix I) as well as development of the UCSB Long Range Development Plan (LRDP), the Santa Barbara Airport Specific Plan and terminal expansion, and regional growth in the Goleta-Santa Barbara area. Cumulative ADT growth was developed by applying a 10% factor to the P.M. peak hour cumulative traffic additions to the study-area intersections. It is noted that the City’s traffic model has been updated since the time the traffic study (refer to Appendix I) was first submitted. The current traffic model does not include the Target Project previously proposed in Goleta which was assumed under the initial model run. Cumulative traffic volumes are shown on Figure 4.13-5. The planned improvements that are assumed in the City’s traffic model that would affect traffic patterns within the study area include construction of the western leg at the Los Carneros Road/Calle Koral intersection to provide access to the Village at Los Carneros Project located west of the intersection.

Cumulative Plus Project Roadway Segments. Average daily traffic volumes after development of cumulative projects in the Goleta area were modeled and quantified as shown in Figure 4.13-5. Cumulative + Project ADT volumes are shown on Figure 4.13-6. Table 4.13-17 compares the Cumulative and Cumulative + Project roadway volumes and identifies the impact of Project-added traffic based on the City of Goleta’s Acceptable Capacity thresholds.

Table 4.13-17 shows that the Cumulative + Project roadway volumes would remain within the City's Acceptable Capacity ratings with the addition of Project traffic. The Project would therefore not generate cumulative impacts to the study-area roadway segments.

Table 4.13-17
Cumulative + Project Roadway Volumes

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Acceptable Capacity</th>
<th>Cumulative ADT</th>
<th>Project Added ADT</th>
<th>Cumulative + Project ADT</th>
<th>% Change</th>
<th>Significant Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Carneros Road south of U.S. 101 SB</td>
<td>47,000</td>
<td>28,700</td>
<td>1,084</td>
<td>29,784</td>
<td>3.8%</td>
<td>No</td>
</tr>
<tr>
<td>Ramps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Carneros Road south of Hollister</td>
<td>34,000</td>
<td>21,200</td>
<td>296</td>
<td>23,496</td>
<td>1.4%</td>
<td>No</td>
</tr>
<tr>
<td>Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hollister Avenue west of Los Carneros</td>
<td>34,000</td>
<td>20,900</td>
<td>394</td>
<td>21,294</td>
<td>1.9%</td>
<td>No</td>
</tr>
<tr>
<td>Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hollister Avenue east of Los Carneros</td>
<td>34,000</td>
<td>16,400</td>
<td>344</td>
<td>16,744</td>
<td>2.1%</td>
<td>No</td>
</tr>
<tr>
<td>Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

City of Goleta
Cumulative Traffic Volumes

Figure 4.13-5

City of Goleta

Source: Associated Transportation Engineers, 2015.
Source: Associated Transportation Engineers, 2015.

Cumulative Project Traffic Volumes

Figure 4.13-6

City of Goleta
Cumulative Plus Project Intersections. Cumulative and Cumulative + Project levels of service were calculated for the study-area intersections assuming the traffic volumes presented on Figure 4.13-5 and Figure 4.13-6. Table 4.13-18 and Table 4.3-19 compare the Cumulative and Cumulative + Project levels of service and identify cumulative impacts based on City of Goleta thresholds.

Table 4.13-18 and Table 4.3-19 indicate that all of the study area intersections are forecast to operate at LOS C or better with Cumulative + Project traffic volumes during the A.M. and P.M. peak hours.

Mitigation Measures. Mitigation is not required because cumulative impacts would be less than significant.

Residual Impact. Cumulative impacts would be less than significant without mitigation.

Table 4.13-18
Cumulative + Project A.M. Peak Hour Levels of Service

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Cumulative</th>
<th>Cumulative + Project</th>
<th>Project-Added</th>
<th>Significant Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICU</td>
<td>LOS</td>
<td>ICU</td>
<td>LOS</td>
</tr>
<tr>
<td>Los Carneros Road/Calle Real a</td>
<td>7.3 sec</td>
<td>LOS A</td>
<td>7.5 sec</td>
<td>LOS A</td>
</tr>
<tr>
<td>Los Carneros Road/U.S. 101 NB Ramp</td>
<td>0.68</td>
<td>LOS B</td>
<td>0.69</td>
<td>LOS B</td>
</tr>
<tr>
<td>Los Carneros Road/U.S. 101 SB Ramp</td>
<td>0.67</td>
<td>LOS B</td>
<td>0.68</td>
<td>LOS B</td>
</tr>
<tr>
<td>Los Carneros Road/Calle Koral</td>
<td>0.70</td>
<td>LOS B</td>
<td>0.72</td>
<td>LOS C</td>
</tr>
<tr>
<td>Calle Koral/Los Carneros Way a</td>
<td>9.5 sec</td>
<td>LOS A</td>
<td>10.2 sec</td>
<td>LOS B</td>
</tr>
<tr>
<td>Hollister Avenue/Los Carneros Road</td>
<td>0.56</td>
<td>LOS A</td>
<td>0.58</td>
<td>LOS A</td>
</tr>
<tr>
<td>Hollister Avenue/Los Carneros Way</td>
<td>0.41</td>
<td>LOS A</td>
<td>0.42</td>
<td>LOS A</td>
</tr>
<tr>
<td>Hollister Avenue/Aero Camino</td>
<td>0.34</td>
<td>LOS A</td>
<td>0.35</td>
<td>LOS A</td>
</tr>
</tbody>
</table>

(a) Unsignalized intersection. Data shown is % change in entering volumes.

Table 4.13-19
Cumulative + Project P.M. Peak Hour Levels of Service

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Cumulative</th>
<th>Cumulative + Project</th>
<th>Project-Added</th>
<th>Significant Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICU</td>
<td>LOS</td>
<td>ICU</td>
<td>LOS</td>
</tr>
<tr>
<td>Los Carneros Road/Calle Real a</td>
<td>11.8 sec</td>
<td>LOS B</td>
<td>12.1 sec</td>
<td>LOS B</td>
</tr>
<tr>
<td>Los Carneros Road/U.S. 101 NB Ramp</td>
<td>0.57</td>
<td>LOS A</td>
<td>0.59</td>
<td>LOS A</td>
</tr>
<tr>
<td>Los Carneros Road/U.S. 101 SB Ramp</td>
<td>0.45</td>
<td>LOS A</td>
<td>0.45</td>
<td>LOS A</td>
</tr>
<tr>
<td>Los Carneros Road/Calle Koral</td>
<td>0.66</td>
<td>LOS B</td>
<td>0.71</td>
<td>LOS C</td>
</tr>
<tr>
<td>Calle Koral/Camino Vista a</td>
<td>12.1 sec</td>
<td>LOS B</td>
<td>14.8 sec</td>
<td>LOS B</td>
</tr>
<tr>
<td>Hollister Avenue/Los Carneros Road</td>
<td>0.62</td>
<td>LOS B</td>
<td>0.63</td>
<td>LOS B</td>
</tr>
<tr>
<td>Hollister Avenue/Los Carneros Way</td>
<td>0.52</td>
<td>LOS A</td>
<td>0.54</td>
<td>LOS A</td>
</tr>
<tr>
<td>Hollister Avenue/Aero Camino</td>
<td>0.47</td>
<td>LOS A</td>
<td>0.48</td>
<td>LOS A</td>
</tr>
</tbody>
</table>

(a) Unsignalized intersection. Data shown is % change in entering volumes.

Bolded values exceed City’s LOS C operating standard.
This page intentionally left blank.
4.14 UTILITIES AND SERVICE SYSTEMS

This section analyzes the proposed Project’s potential impacts to the City of Goleta’s water supply, wastewater conveyance infrastructure system, and solid waste management system. Issues pertaining to drainage control facilities and stormwater impacts are discussed in Section 4.8, Hydrology and Water Quality.

4.14.1 Setting

Water Sources, Supply, and Demand. The Goleta Water District (GWD) is the water purveyor for the City of Goleta. The GWD service area is located in the South Coast portion of Santa Barbara County with its western border adjacent to El Capitan State Park, its northern border along the foothills of the Santa Ynez Mountains and the Los Padres National Forest, the City of Santa Barbara to the east, and the Pacific Ocean to the south. The service area encompasses approximately 29,000 acres and includes approximately 86,950 residents. GWD includes the City of Goleta, the University of California Santa Barbara, and Santa Barbara Municipal Airport as well as nearby unincorporated areas of Santa Barbara County.

In November 2011, the GWD adopted its most recent Urban Water Management Plan (UWMP). As discussed in the UWMP, the GWD draws its existing water supplies from four primary sources: Lake Cachuma surface water, the State Water Project, the Goleta Groundwater Basin, and recycled water from wastewater treatment. Table 4.14-1 shows current water supplies from each of these sources for the City and compares overall water supplies to current demand. Currently, the GWD is projected to have a surplus of 1,376 acre-feet per year (AFY) with implementation of demand reductions associated with the Stage III Emergency Drought conditions in the City.

<table>
<thead>
<tr>
<th>Projected Conditions*</th>
<th>Amount (AFY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Demand</td>
<td>9,274</td>
</tr>
<tr>
<td>Supply Sources</td>
<td></td>
</tr>
<tr>
<td>Cachuma Carryover</td>
<td>2,281</td>
</tr>
<tr>
<td>State Water</td>
<td>2,235</td>
</tr>
<tr>
<td>Groundwater</td>
<td>6,134</td>
</tr>
<tr>
<td>Total Supply</td>
<td>10,650</td>
</tr>
<tr>
<td>Current Surplus (Deficit)</td>
<td>1,376</td>
</tr>
</tbody>
</table>

Source: GWD Water Supply and Demand Update, April 15, 2015.

*Projected conditions assuming implementation of Stage III and Stage IV Emergency Drought restrictions and exhaustion of Cachuma Reservoir entitlement in Spring 2016.

In addition to potable water, GWD has had the ability to deliver recycled water for irrigation purposes since 1995. However, the ability to fully utilize recycled water is limited by recycled water use patterns, which are typically condensed into a 12-hour rather than a 24-hour period, and are driven by the irrigation season. While storage is available to address daily needs, storage is not available to address
seasonal variability in irrigation demand. However, under drought conditions and restrictions, City water supply projections do not include recycled water as a supply source (Goleta Water District, April 2015).

Recycled wastewater, distributed by GWD, has gone through tertiary treatment, including the maximum three-levels of wastewater treatment, and contains no live bacterium. This is the same level of water quality treatment that is required by the National Pollutant Discharge Elimination System (NPDES) permit for discharge as surface water, and is considered safe for exposure, but slightly below drinking water standards. Recycled water is approved for use as irrigation for landscaping, which allows the water purveyor to conserve potable water (i.e., meeting drinking water standards) supplies.

Current local GWD customers of recycled wastewater for landscape irrigation include the University of California Santa Barbara, the Camino Real Marketplace, Sandpiper and Glen Annie golf courses, Dos Pueblos High School and residential properties in the City located adjacent to Hollister Avenue. The GWD Recycled Water System does not exist in the vicinity of the Project site.

GWD’s rights to groundwater drawn from the Goleta Groundwater Basin (Basin) were adjudicated through a court case in 1985 entitled Wright v. Goleta Water District [Wright v. Goleta Water Dist. (1985) 174 Cal. App.3d74]. The Wright Judgment gave GWD the right to pump up to 2,000 AFY from the Basin in addition to the right to surplus waters, injected water, return flows, and rights transferred from private pumpers, identified as Exchange Service and Augmented Service. Based on the GWD’s reported amounts of these Exchange and Augmented Services, it has conservatively reported an entitlement of 2,350 AFY from the Basin. The Wright Judgment also gave GWD the right to inject excess surface water supplies into the Basin to recharge the Basin and replenish groundwater supplies (GWD, 2010).

In addition to its fixed adjudicated allotment, GWD safeguards for less-than-normal rainfall years by storing excess water runoff during high rainfall years. This helps to maintain supplies during drought conditions. Excess surface water (e.g., from Cachuma Project “spill”) during high rainfall years is injected into the Basin as “recharge” through GWD maintained injection wells. The injected recharge volumes are then available to GWD in the future, providing a variable increase in the annual allotment that can be tapped, as needed. This is also known as “banking.” Unexercised groundwater rights at the end of a year revert to a stored water right in the Basin. As of 2009, the GWD Groundwater Management Plan (2010) reported that GWD storage in the Basin was 43,253 acre-feet.

In response to the extreme drought conditions throughout California, the GWD Board of Directors declared a Stage III Water Shortage Emergency on May 12, 2015. The District has updated watering times and mandatory water use restrictions to ensure adequate supplies for drinking, health, and public safety within the City. New water restrictions include prohibition of irrigation within 48 hours of measurable rainfall, requirement of water shortage notices and laundry service minimization for hotels, motels, and other lodging facilities, and time constraints on agricultural irrigation spray schedules. Existing water use restrictions to avoid water waste remain in effect. In addition, wasting water is prohibited, including irrigating in a manner resulting in runoff from the property, and allowing water to escape from plumbing breaks for more than 48 hours. Repeated violations will be penalized with fines ranging from $100 up to $500 following a warning and written notice. The GWD Board of Directors also amended the GWD Code to further specify unlawful uses of water, such as through a fire hydrant or fire line, through a waterline with no meter, or from another account holder or property.

Water Agreement. Based upon the Judgement Upon Arbitration Award, Case Number 232281 filed in Santa Barbara Superior Court on February 26, 2002, the combined Willow Springs properties
(Willow Springs I, Willow Springs II, and the Project) have been granted allocation of a total of 100.89 AFY of potable water from the GWD (refer to Appendix J). The Annual Water Demand Report, prepared by MAC Design Associates in July 2015, determined that the Project’s water service demand would total 44.812 AFY. Willow Springs I and Willow Springs II were determined to use a combined total of 55.983 AFY. The total estimated water demand for the three properties is 100.795 AFY.

b. Wastewater. The Goleta West Sanitary District (GWSD) provides sewer service in the Project area via its system of sewer mains that ultimately connect to Goleta Sanitary District’s (GSDs) main treatment plant located at 1 William Moffett Place next to the Santa Barbara Municipal Airport. Treatment of wastewater collected by GWSD is provided through a contract with GSD. The GSD treatment plant has a capacity of 9.7 million gallons per day (based on average daily flow) but is currently limited to a permitted discharge of 7.64 million gallons per day pursuant to a National Pollutant Discharge Elimination System (NPDES) permit issued by the US Environmental Protection Agency (EPA) in concurrence with the States’ Central Coast Regional Water Quality Control Board (CCRWQCB). The GWSD is allocated 40.78 percent of the capacity at the sewage treatment plant, which equates to about 3.12 million gallons per day (mgd). The GWSD currently generates approximately 1.71 mgd of sewage that is treated at the GSD plant, leaving about 1.41 mgd of remaining capacity in the GWSD’s existing system.

Wastewater Collection. The GWSD owns and operates sewer collection infrastructure serving approximately 6,100 customer accounts in its service area. The average annual flow of wastewater through GWSD’s collection system is 1.7 mgd (Mark Nation, General Manager/Superintendent, Goleta West Sanitary District, personal communication, June 2, 2015). The system includes approximately 62 linear miles of pipeline, consisting of a series of lateral sewer pipelines that connect lines from individual properties to a sewer mainline, which connects to a trunk line.

Existing wastewater collection lines in the vicinity of the Project site include an existing 12-inch trunkline running down the eastern edge of the property and existing 8-inch collector lines throughout the adjacent Willow Springs development (Mark Nation, General Manager/Superintendent, Goleta West Sanitary District, personal communication, June 2, 2015). These are public lines, to which the Project site’s privately maintained collector system would connect. As wastewater is predominantly gravity-fed along Los Carneros Road from Hollister Avenue and toward Isla Vista to the GWSD pump house located on the UCSB campus, the wastewater conveyance pipes expand in size to 24 inches. Wastewater is pumped from the pump house to the GSD’s main treatment plant.

Wastewater Treatment. Under contract with GWSD, the GSD provides treatment of wastewater at the Goleta Wastewater Treatment Plan (GWWTP). The GWWTP has a design capacity of 9.7 mgd, based on an average daily flow rate. However, the discharge is restricted under the facility’s National Pollution Discharge Elimination System (NPDES) permit (a Clean Water Act Requirement), to a daily dry weather discharge of 7.64 mgd (RWQCB, 2010). This permit can be renewed regularly to reconsider discharge needs of the facility. It was last renewed in 2010 and will be reconsidered again in the current year (2015).

In September of 2013, the GSD completed a major upgrade of its treatment facility and is now a Full Secondary Treatment Plant. The District plans on obtaining a new Full Secondary Discharge NPDES Permit to match upgraded plant treatment capability. Through the secondary treatment process the District produces effluent that has been treated to full secondary standards.
At the present time, the plant’s treatment system consists of primary settling, biofiltration, aeration, secondary clarification, chlorine disinfection, and dechlorination. Wastewater flows greater than 4.38 mgd receive primary treatment only and are blended with treated secondary wastewater before disinfection and discharge to the ocean. Treated wastewater is discharged to the Pacific Ocean through a diffuser 5,912 feet offshore at a depth of approximately 87 feet. In September of 2013, the GSD completed a major upgrade of its treatment facility and is now a Full Secondary Treatment Plant. The District plans on obtaining a new Full Secondary Discharge NPDES Permit to match upgraded plant treatment capability. The GSD treatment also has capacity to treat wastewater to the tertiary standards required for recycled water use.

c. Solid Waste.

Solid Waste Generation and Collection. MarBorg Industries provides solid waste collection services in Goleta. All non-hazardous solid waste in the City and the surrounding South Coast area is handled at two local facilities: the South Coast Recycling and Transfer Station (SCRTS) and Tajiguas Landfill. Both sites are owned and operated by the Santa Barbara County Public Works Department, Resource Recovery and Waste Management Division.

Based on the General Plan Background Report No. 23, the annual per capita residential waste generation in Goleta is estimated at 0.95 tons per person (City of Goleta, 2004). According to the Goleta General Plan, the City averages about 2,400 tons each month, which is approximately eight percent of the solid waste that goes to the Tajiguas Landfill. Although California’s diversion rates have increased from 10 percent in 1989 to over 50 percent today, annual per capita waste generation rates for solid waste are still increasing.

Tajiguas Landfill. Solid waste generated within Goleta is disposed of at the Tajiguas Landfill (Tajiguas), located approximately 26 miles west of Santa Barbara. Tajiguas is one of five landfills currently operating in the County. Tajiguas's total permitted operation area is 357 acres, with an approved and permitted waste disposal footprint of 118 acres comprised of both lined and unlined areas (CalRecycle, 2015). Waste filling operations are currently being conducted in both the unlined and the lined lateral expansion areas. Santa Barbara County Environmental Health Services permits Tajiguas to accept up to 1,500 tons of municipal solid waste and yard waste per day.

Based on current waste disposal rates, the landfill will reach permitted capacity in approximately 2023. The landfill is classified by the State Water Resources Control Board as a Class III waste management unit, approved for discharge of Nonhazardous Municipal Solid Waste. Municipal solid waste currently delivered to Tajiguas is generated by the residents and businesses of City of Santa Barbara, the City of Goleta, the unincorporated areas of southern Santa Barbara County, and the Santa Ynez and Cuyama Valleys. The County of Santa Barbara has recently proposed the Resources Recovery Project which would include facilities that would process solid waste currently disposed of at the Tajiguas Landfill. This process would decrease the amount of waste occupying the landfill which would result in increased capacity and expanded life of the landfill.

Waste Diversion and Recycling. In February 1992, the Santa Barbara County Board of Supervisors adopted the County's Source Reduction and Recycling Element (SRRE). The goal of the SRRE is to reduce the amount of solid waste entering landfills by implementing, in order of priority: source reduction, recycling and composting, and environmental transformation (incineration, pyrolysis, or biological conversion). The final option is land disposal of waste.
The City of Goleta participates in recycling programs aimed at achieving a minimum 50 percent diversion rate of solid waste. Based on data from 2009, the diversion rate for Santa Barbara County, including Goleta, was most recently identified as 73 percent (County of Santa Barbara Public Works Department, 2013). Green waste collected by City waste haulers is cleaned and ground into mulch, which is then marketed. Recyclables delivered to SCRTS are delivered to Gold Coast Recycling for sorting and marketing. In addition, a minimum of 65 percent of all construction wastes must be diverted.

d. Regulatory Framework.

Water Supply.

Subdivision Map Act, Government Code Sections 66410 et seq. The Subdivision Map Act sets forth general provisions, procedures, and requirements for the division of land including the provision of public services, and roadway and utilities improvements.

Recycled Water Regulations. The EPA, State Water Resources Control Board (SWRCB), Regional Water Quality Control Boards (RWQCB), and California Department of Health Services (CDHS) all have a role in regulating the use of recycled water in the State of California. The SWRCB has adopted Resolution No 77-1 (Policy with Respect to Water Reclamation in California), which empowers the State Board and Regional Boards to encourage and consider funding for water reclamation projects that do not impair water rights or beneficial in-stream uses. The CDHS determines how recycled water may be used in California, and designates the level of treatment required for each of these permitted uses (Title 22, California Code of Regulations).

Urban Water Management Planning Act (Water Code § 10610 et seq.). The Urban Water Management Planning Act was developed to address concerns regarding potential water supply shortages throughout California. It requires information on water supply reliability and water use efficiency measures. Urban water suppliers are required to develop and implement UWMPs to describe their efforts to promote efficient use and management of water resources.

Title 22 of the California Code of Regulations (CCR). The California Water Code requires the California Department of Public Health (CDPH) to promulgate water reclamation criteria. In 1975 the CDPH prepared Title 22 regulations (22 C.C.R. §§ 60303 et seq.) to satisfy this requirement. Title 22 regulates production and use of reclaimed water in California by establishing three categories of reclaimed water: primary effluent, secondary effluent, and tertiary effluent. In addition to defining reclaimed water uses, Title 22 also defines requirements for sampling and analysis of effluent and specifies design requirements for treatment facilities.

Senate Bill (SB) 610. SB 610 (Water Code §§ 10910 et seq.) was adopted in 2001 and reflects the growing awareness of the need to incorporate water supply and demand analysis at the earliest possible stage in the land use planning process. SB 610 amended the Urban Water Management Planning Act (Water Code §§ 10610 et seq.) to add Section 10910 et seq.

Water supply planning under SB 610 requires reviewing and identifying adequate available water supplies necessary to meet the demand generated by a project, as well as the cumulative demand for the general region over the next 20 years, under a broad range of water conditions. This information is typically found in the current UWMP for the project area. SB 610 requires the identification of the public
water supplier. Under SB 610, a Water Supply Assessment (WSA) is needed only if a project exceeds 500 dwelling units thereby relieving smaller projects from the requirements of the bill (Water Code § 10910).

City of Goleta Inland Zoning Ordinance. Section 35-317.7(1)(d) of Article 3, Chapter 35 of the Municipal Code (the City of Goleta Inland Zoning Ordinance) includes a requirement for finding of adequate public services to serve new developments.

Goleta Water District Ordinance No. 91-01, The SAFE Water Supplies Ordinance of 1991. The Safe Water Supplies Ordinance (SAFE) was approved by GWD voters in 1991 and amended in 1994. SAFE sets certain restrictions on GWD use of groundwater, including the creation of a “Drought Buffer” of water that is stored in the Central Basin, which may be pumped and distributed by the GWD to existing customers only in the event that a drought causes a reduction in the District’s annual deliveries from Lake Cachuma. The Drought Buffer supplies may not be used as a source of supplemental water supply to serve new or additional demands for District water. SAFE also restricts deliveries to new developments by limiting the release of water to new customers to one percent of its total potable water supply.

The SAFE Ordinance also contains a prohibition on new service connections until water supplies for existing customers were secured. Those conditions were met in 1997. When new releases are authorized they must be offset by increases to the Drought Buffer equivalent to two-thirds of the amount of the water supplied to new customers. A determination of available water allocation for new uses is made on an annual basis.

Goleta Water District Resolution No. 2014-31 and Resolution No. 2014-32. The GWD Board of Directors adopted a Stage Two Water Shortage Emergency (September 2014) This Resolution outlined ways customers could save water and is to be in effect until the Safe Ordinance triggers are no longer met. Resolution No.2014-32 established a denial of applications for new and additional water services. This Resolution includes four categories of exemptions:

1) Customers who are currently receiving water from the District and who are not seeking to expand or change the use or development on their property;
2) Customers with preexisting water use history that is recognized in the District Code and that is equal to or greater than the water use that is needed for the proposed project;
3) Customers who have already paid a new water supply charge for a proposed project; and
4) Customers with a pre-existing water service contract or agreement with the District.

Goleta Water District Water Conservation Plan (2010). The GWD has adopted an interim Water Conservation Plan (2010) requiring implementation of Best Management Practices (BMPs) to conserve water, which would reduce demand on the GWD’s potable water treatment facility capacity. Proposed developments are required to incorporate feasible BMPs into its water system design, including the use of water conserving fixtures and water efficient landscape and irrigation.

Wastewater Treatment.

The Subdivision Map Act, Government Code Section 66410 et seq. Division 2 of the Government Code of the State of California (referred to as the Subdivision Map Act) sets forth general provisions,
procedures, and requirements for the division of land including the provision of public services, and roadway and utilities improvements.

City of Goleta Inland Zoning Ordinance. Section 35-317.7(1)(d) of Article 3, Chapter 35 of the Municipal Code (the City of Goleta Inland Zoning Ordinance) includes a requirement for finding of adequate public services to serve new developments as a condition precedent to project approval.

Solid Waste.

The Subdivision Map Act, Government Code Sections 66410 et seq. California Government Code Sections 66410 et seq. (referred to as the Subdivision Map Act) set forth general provisions, procedures, and requirements for the division of land including the provision of public services, and roadway and utilities improvements.

California Integrated Waste Management Act of 1989 (AB 939). This law was enacted to reduce, recycle, and reuse solid waste generated in the State to the maximum extent feasible (Pub. Res. Code §§ 40050-40063). Specifically, the Act required cities and counties to adopt a Source Reduction and Recycling Element of their Waste Management Plans to describe actions to be implemented to achieve waste reduction goals (Pub. Res. Code § 41750).

California Solid Waste Reuse and Recycling Access Act of 1991 (AB 1327). California Solid Waste Reuse and Recycling Access Act of 1991, as amended, requires each local jurisdiction to adopt an ordinance requiring commercial, industrial, or institutional building, marina, or residential buildings having five or more living units to provide an adequate storage area for the collection and removal of recyclable materials (Pub. Res. Code Chapter 18). The sizes of these storage areas are to be determined by the appropriate jurisdictions’ ordinance. If no such ordinance exists with the jurisdiction, the CalRecycle model ordinance shall take effect (Pub. Res. Code § 42911).

Goleta Municipal Code Chapter 8.10 (Solid Waste Services). Chapter 8.10 establishes authority, rules, and regulations, subject to the approval of the City Council, regarding all aspects of solid waste handling services as necessary for the effective and reasonable administration and enforcement of this chapter. In March 2013, the Chapter was amended to require any project involving the construction of new structures must divert from disposal at least 65 percent of all construction and demolition waste by weight regulates the collection and disposal of solid wastes.

City of Goleta Inland Zoning Ordinance. Section 35-317.7(1)(d) of Article 3, Chapter 35 of the Municipal Code (the City of Goleta Inland Zoning Ordinance) includes a requirement for finding of adequate public services to serve new developments.
4.14.2 Impact Analysis

a. Methodology and Significance Thresholds. To analyze impacts to utilities, the anticipated development potential under the Project was compared to the available capacity of facilities that serve the Project site. Stormwater impacts are addressed in Section 4.8, Hydrology and Water Quality.

Water Supply. The Project would have a significant effect on water supplies if demand associated with projected growth would result in any of the following conditions, as listed in Appendix G of the CEQA Guidelines:

1. The Project would require or result in the construction of new water facilities or expansion of existing facilities, the construction of which could cause significant environmental effects.
2. The Project would fail to have sufficient water supplies available to serve the project from existing entitlements and resources, or require new or expanded entitlements.

The City of Goleta’s Environmental Thresholds and Guidelines Manual includes thresholds pertaining to groundwater supply for projects involving groundwater wells. The Project does not involve groundwater wells; therefore, these thresholds are not applicable.

Wastewater. The City of Goleta’s Environmental Thresholds and Guidelines Manual does not provide thresholds for impacts related to sewer service and wastewater treatment. The following thresholds are based on Appendix G of the CEQA Guidelines. The Project would have a significant impact related to wastewater if it would result in any of the following conditions:

1. The Project would exceed the wastewater treatment requirements of the applicable Regional Water Quality Control Board.
2. The Project would require or result in the construction of new wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects.
3. The Project would result in a determination that the wastewater treatment provider does not have adequate capacity to serve projected demand in addition to existing commitments.

The environmental impacts of the Project with respect to wastewater are determined based on the potential increase in wastewater generation from buildout of the Project and the capacity of existing and proposed wastewater treatment facility and infrastructure. Project-generated wastewater is estimated using GWSD’s rate of 184 gallons/day (gpd) per equivalent residential unit (ERU). The Project’s estimated wastewater generation was then compared to the utility’s existing sewer capacity and wastewater flow.

Solid Waste. The Project would have significant impacts on solid waste collection and disposal if development facilitated by the Project would result in any of the following conditions, as listed in Appendix G of the State CEQA Guidelines:

1. The Project would be served by a landfill with insufficient permitted capacity to accommodate the project’s solid waste disposal needs.
2. The Project would fail to comply with federal, state, and local statutes and regulations related to solid waste.

The City of Goleta’s *Environmental Thresholds and Guidelines Manual* also provides both project-specific and cumulative thresholds for solid waste generation from discretionary development. A project would result in a significant impact on the City’s landfill capacity if it would generate more than 196 tons of solid waste per year, after a 50 percent reduction credit is given due to recycling efforts.

The generation of solid waste from construction of the Project is estimated based on a generation factor for residential construction of 4.38 pounds per square foot, derived from the U.S. EPA report *Characterization of Building-Related Construction and Demolition Debris in the United States*. The generation of solid waste from operation of the Project is calculated using the City’s *Environmental Thresholds and Guidelines Manual* estimate for multi-family residential developments: \[(2.76 \text{ people/workforce unit} \times \# \text{ of units} \times 0.95 \text{ tons/year})+(1.11 \text{ people/senior unit} \times \# \text{ of units} \times 0.95 \text{ tons/year})\].

The City’s *Environmental Thresholds and Guidelines Manual* also provides a cumulative threshold for solid waste. Projects with a project-specific impact as identified above (196 tons/year or more) are also considered to have a cumulatively significant contribution, as the project specific threshold of significance is based on a cumulative growth scenario. However, because landfill space is already limited, any increase in solid waste of one percent or more of the estimated increase accounted for in the SRRE would be considered a less than significant but adverse contribution (Class III) to regional solid waste impacts. One percent of the SRRE projected increase in solid waste equates to 40 tons per year. To reduce adverse cumulative impacts and to be consistent with the SRRE, mitigation should be recommended for projects that generate between 40 and 195 tons of solid waste.

b. Project Impacts and Mitigation Measures.

Impact UTL-1 The Project would generate water demand of approximately 44.812 AFY. This level of demand is within the GWD’s current 1,376 AFY surplus. Therefore, impacts to water supply would be Class III, less than significant [Thresholds 1 and 2].

At present, the 17.36-gross acre Project site is vacant and generates no water demand. However, Willow Springs I, Willow Springs II, and the Project are entitled to a combined 100.89 AFY in accordance with the Court judgement described above. Water service to the Project site would be provided by the GWD.

In July 2015, MAC Design Associates prepared an Annual Demand Water Report for Willow Springs I, Willow Springs II, and the Project. The calculations for water usage were derived from the actual water use data from 2007 to 2015 for Willow Springs I and Willow Springs II, provided by GWD. For the most current Project domestic water use, a 24 month period (January 2012 through December 2013) was used as the base period. The water meters were categorized as either domestic, landscape, or commercial meters. As domestic water use varies substantially based on the type of unit, the domestic meters were further separated by the following unit types: 1BR/1BA, 2BR/1BA, 2BR/2BA, and 3BR/2BA. To determine the average water consumption rate by unit type, the water usage for each month of the base period was totaled and then converted to a monthly average based on the data for the 24 month period. The monthly average was then converted to AFY per month. The total AFY was divided by the...
number of a single unit type. This method was then replicated for all unit types in the development. There was insufficient water use history to utilize actual figures for the Project. Therefore, the actual water usage for Willow Springs I was utilized to project water usage at the Project site. The Project units are smaller than Willow Springs I, so actual water usage would be expected to be lower. The GWD has reviewed and approved the MAC Design Associates water demand for the project. (Appendix J).

Based on the water use study, the Project’s domestic water demand, landscaping water demand, and commercial water demand are estimated at 30.657 AFY, 12.540 AFY, and 1.616 AFY, respectively. The calculations for Project-generated water demand are shown in Table 4.14-2. The total water demand generated by the Project would be 44.812 AFY (not accounting for recycling and other water savings). This represents approximately 0.04 percent of the 10,650 AFY of water available from GWD (not accounting for unused recycled water). As the Project is part of the Willow Springs project (Willow Springs I, Willow Springs II, and Heritage Ridge [formerly North Willow Springs]), it is considered an existing customer of GWD and would meet the criteria for an exemption as outlined in Resolution No. 2014-32.

Table 4.14-2

<table>
<thead>
<tr>
<th>Proposed Use</th>
<th>Amount</th>
<th>Water Use Rate</th>
<th>Total Use (AFY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workforce Domestic Water Use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1BR/1BA</td>
<td>149 units</td>
<td>0.079 AFY/unit</td>
<td>11.850</td>
</tr>
<tr>
<td>2BR/1BA</td>
<td>33 units</td>
<td>0.114 AFY/unit</td>
<td>3.761</td>
</tr>
<tr>
<td>2BR/2BA</td>
<td>22 units</td>
<td>0.110 AFY/unit</td>
<td>2.425</td>
</tr>
<tr>
<td>3BR/2BA</td>
<td>24 units</td>
<td>0.163 AFY/unit</td>
<td>3.907</td>
</tr>
<tr>
<td>Senior Apartments Domestic Water Use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1BR/1BA</td>
<td>108 units</td>
<td>0.063 AFY/unit</td>
<td>6.786</td>
</tr>
<tr>
<td>2BR/1BA</td>
<td>18 units</td>
<td>0.083 AFY/unit</td>
<td>1.497</td>
</tr>
<tr>
<td>2BR/2BA</td>
<td>6 units</td>
<td>0.072 AFY/unit</td>
<td>0.430</td>
</tr>
<tr>
<td>Landscape Water Use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site landscape and public park</td>
<td>7.264 acres</td>
<td></td>
<td>12.540</td>
</tr>
<tr>
<td>Commercial Water Use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.616</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>44.812 AFY</td>
</tr>
</tbody>
</table>

1. Landscape water was calculated by the landscape architect in a preliminary water calculation study dated September 28, 2015.
2. The commercial water usage was calculated by using the total actual commercial usage from Willow Springs I and Willow Springs II of 1.504 AFY, and multiplying by a factor of 360 units/335 units or 1.0746.

Water for domestic uses and landscaping on the Project site could potentially be supplied by different sources. However, the recycled water system is not in the vicinity of the Project site. The nearest water main for recycled water, located at the corner of Storke Road and Hollister Avenue, will extend to Cortona Drive and Hollister Avenue in the future, but will remain out of vicinity for use at the Project site (Jim Heaton, Senior Water Resource Analyst, personal communication, June 4, 2015).

The 44.812 AFY of water demand generated by the Project represents 3.3 percent of GWD’s projected surplus of 1,376 AFY in water supply above current demand levels (GWD UWMP, 2011). Accordingly, the GWD currently has sufficient water supply to provide potable water to the Project and Project impacts...
to water supply would be less than significant. The GWD’s Stage III declaration would not change the water availability to Heritage Ridge because the Stage II exemptions would apply to the Project. Based on the total allocation of 100.89 AFY for Willow Springs I, Willow Springs II, and the Project, and water use by the Willow Springs properties of 55.983 AFY, there is 44.907 AFY available to serve the Project. Therefore, the Project’s use of 44.812 AFY would be within the allocated water supply.

In accordance with GWD’s Water Conservation Plan from 2010, the Project also would be required to incorporate feasible Best Management Practices (BMPs) into its water system design. Such practices include the use of water conserving fixtures and water efficient landscape and irrigation.

Mitigation Measures. Impacts related to water supply would be less than significant. Therefore, mitigation is not required.

Residual Impact. Impacts would be less than significant without mitigation since the Project’s water demand is within the current GWD surplus. Nevertheless, the City recommends the following conditions of approval to further reduce impacts on water supplies.

- **Outdoor Water Conservation.** Minimize outdoor water use through the following:
 a. Use of native and/or drought tolerant species in the final landscaping;
 b. Installation of drip irrigation or other water-conserving irrigation;
 c. Grouping of plant material by water needs;
 d. Limiting turf to less than 20% of the total landscaped area if proposed under the final landscape plan or use of artificial turf in place of living grass (this may exceed the 20% maximum);
 e. No turf is allowed on slopes of over 4%;
 f. Use of extensive mulching (2" minimum) in all landscaped areas to improve the water holding capacity of the soil by reducing evaporation and soil compaction;
 g. Installation of soil moisture sensing devices to prevent unnecessary irrigation;
 h. Use of only recycled water for landscape irrigation if the Project site is connected to a recycled water line;
 i. Use of plant materials that can withstand high salinity levels, if recycled water is used for irrigation; and
 j. Use of plant materials that are compatible with the Goleta climate pursuant to Sunset Western Garden Book’s Zone 24, published by Sunset Books, Inc., Revised and Updated 2001 edition.

- **Indoor Water Conservation.** Minimize indoor water use through the following:
 a. Insulation of all hot water lines;
 b. Installation of re-circulating, point-of-use, or on-demand water heaters;
 c. Prohibition of self-regenerating water softening in all structures;
 d. Use of lavatories and drinking fountains with self-closing valves; and
 e. Installation of water sense specification toilets in each unit.

Impact UTL-2 Wastewater generated by future residents on the Project site would flow through GWSD’s conveyance system and into GSD’s wastewater treatment plant. Existing wastewater conveyance and treatment facilities have sufficient capacity to accommodate Project-related
flows. Therefore, impacts would be Class III, less than significant [Thresholds 3, 4, and 5].

Future Project site residents would generate wastewater that would feed into GWSD’s conveyance system and ultimately flow to GSD’s treatment plant. As discussed in Section 4.14.1(b), GWSD owns 40.78 percent of the capacity rights at the GSD treatment plant, which gives GWSD an allotment of 3.12 mgd of treatment capacity. GWSD currently collects approximately 1.7 mgd of sewage and its system has a remaining allocated capacity of 1.42 mgd pursuant to its contract with GSD. Applying GWSD’s wastewater generation rate of 184 gpd per equivalent residential unit (ERU), the proposed 360 housing units would generate 66,240 gpd of wastewater. Project-generated wastewater represents approximately two percent of the GWSD’s allocated capacity of 3.12 mgd. As shown in Table 4.14-3, the combination of existing wastewater flow in GWSD’s service area and Project-generated flow would represent 56.7 percent of total allocated capacity. Thus, GWSD’s treatment plant would have sufficient capacity to treat Project-generated wastewater. The Project would have a less than significant impact with respect to wastewater service.

<table>
<thead>
<tr>
<th>Wastewater Generation</th>
<th>Allocated Capacity</th>
<th>% of Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing in GWSD Service Area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7 mgd</td>
<td></td>
<td>54.5%</td>
</tr>
<tr>
<td>Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.07 mgd</td>
<td></td>
<td>2.2%</td>
</tr>
<tr>
<td>Existing + Project</td>
<td>3.12 mgd</td>
<td>56.7%</td>
</tr>
</tbody>
</table>

In order for the Project to connect to the wastewater system, payment of fees to reserve capacity and contribute to costs of plant upgrades would be required. A Sewer Service Connection Permit from the GWSD also would be necessary to ensure that the District’s excess capacity can be utilized to serve this Project (Nation, 2015). The Project would be required to obtain a District Sewer Service Connection Permit from GWSD and pay applicable fees.

Mitigation Measures. Impacts would be less than significant, and no mitigation is required.

Residual Impact. Impacts would be less than significant without mitigation.

Impact UTL-3 Construction of the proposed structures is anticipated to take approximately 30 months and result in approximately 724 tons of construction waste or 101 tons per year. Construction waste would not exceed the City’s threshold of 196 tons per year. Therefore, impacts would be Class III, less than significant [Thresholds 6 and 7].

During the construction phase of development, a project can generate solid waste from the demolition of existing structures and the erection of new buildings. The Project would not involve demolition, but construction of new residential structures would generate solid waste. The proposed structures on-site,
including 360 residential units in eight buildings, two recreational facilities, a maintenance building, and a maintenance/storage building, would total 330,777 gross square feet. According to the U.S. EPA report *Characterization of Building-Related Construction and Demolition Debris in the United States*, residential construction has a solid waste generation factor of 4.38 pounds per square foot (U.S. EPA, 1998). Based on this estimate, Project construction would generate a total of about 1.45 million pounds of debris (approximately 724 tons). The construction period (excluding pre-construction soil hauling, which is not expected to generate substantial waste) is estimated at 30 months. Therefore, construction activity would result in an average waste generation rate of approximately 290 tons/year.

As described under the Regulatory Framework, the Goleta Municipal Code was updated in March 2013 to increase the required diversion rate for construction and demolition waste. Pursuant to Chapter 8.10 of the Goleta Municipal Code, any project involving the construction of new structures must divert from disposal at least 65 percent of all construction and demolition waste by weight. To attain this diversion rate, the applicant would be required to submit a Pre-Construction Waste Reduction and Recycling Plan as part of the application for a building permit. By complying with the City’s requirement for diversion of solid waste, construction of the Project would generate an estimated 253 tons of non-recyclable waste during the 30-month construction period, or approximately 101 tons/year. This amount of non-recyclable construction waste would not exceed the City’s Project-specific threshold of 196 tons per year. Therefore, impacts would be less than significant.

Mitigation Measure. With compliance with the City’s construction waste reduction and recycling requirements, impacts related to solid waste would be less than significant. No mitigation is necessary to further reduce impacts.

Residual Impact. Impacts would be less than significant without mitigation.

Impact UTL-4 The Project would generate an estimated 199 tons of non-recyclable solid waste per year during operation. This amount exceeds the City’s Project-specific threshold of 196 tons per year. Implementation of a Solid Waste Management Plan would be required to implement waste diversion in order to reduce the amount of solid waste generated. However, impacts would remain Class I, *significant and unavoidable [Threshold 6]*.

As discussed in Section 4.14.3, *Methodology and Significance Thresholds*, the City’s CEQA thresholds manual includes a formula to estimate solid waste generation from multi-family residential development. Using this formula \((2.76 \text{ people/workforce unit} \times 228 \text{ units} \times 0.95 \text{ tons/year})+(1.11 \text{ people/senior unit} \times 132 \text{ units} \times 0.95 \text{ tons/year})\), the Project would generate approximately 737 tons of solid waste per year. According to the City’s *Environmental Thresholds and Guidelines Manual*, the quantity of solid waste to be disposed of at landfills (non-recycled waste) is estimated at 50 percent of the total volume of solid waste generated. Based on a 50 percent diversion rate, the non-recycled waste from the Project would be estimated at 369 tons per year. This amount exceeds the City’s Project-specific threshold of 196 tons per year. The current diversion rate for Santa Barbara County, including the City of Goleta was most recently identified as 73 percent (County of Santa Barbara Public Works, 2013). Assuming that the Project would divert recyclable waste at a rate consistent with the City’s current average, 27 percent of the Project’s estimated 737 tons of solid waste per year would be disposed of at landfills. Thus, based on this assumption, the Project would generate an estimated 199 tons per year of non-recyclable waste. This amount would exceed the City’s project-specific threshold of...
196 tons per year. Therefore, impacts on solid waste disposal capacity at the Tajiguas Landfill would be significant and unavoidable.

Mitigation Measures. The City’s *Environmental Thresholds and Guidelines Manual* includes example mitigation measures for projects which would exceed City solid waste thresholds.

UTL-4 Solid Waste Management Plan. The Project applicant must develop and implement a Solid Waste Management Plan (SWMP) to be reviewed and approved by Public Works Director, or designee, and include one or more of the following measures:

- Provision of space and/or bins for storage of recyclable materials within the Project site.
- Establishment of a recyclable material pickup area for commercial/industrial projects (i.e., loading docks, etc.).
- Implementation of a curbside recycling program to serve the new development.
- Development of a plan for accessible collection of materials on a regular basis (may require establishment of private pick-up depending on availability of County-sponsored programs).
- Implementation of a monitoring program (quarterly, bi-annually) to ensure a 33 percent to 50 percent minimum participation in recycling efforts.
- Development of Source Reduction measures, indicating method and amount of expected reduction.
- Implementation of a program to purchase recycled materials used in association with the Project (paper, newsprint, etc.). This should include requesting suppliers to show recycled material content.
- Implementation of a backyard composting yard waste reduction program.

Plan Requirements and Timing: The applicant must coordinate with the Planning and Environmental Review Director, or designee, and prepare SWMP as specified in the measure.

Monitoring: The Planning and Environmental Review Director, or designee, must inspect the Project site periodically for the first five (5) years after completion of Project occupancy to verify compliance with the SWMP.

Residual Impact. County waste characterization studies estimate that implementation of the measures included in the required SWMP can reduce the 737 tons per year of waste generation by 50 percent. The actual reduction in waste generation cannot be fully determined until implementation of the SWMP. Therefore, impacts would remain significant and unavoidable.

c. Cumulative Impacts.

Water Supply. Cumulative development in the City would add 1,344 residential units and more than 1.8 million square feet of commercial and industrial space (City of Goleta, Cumulative Project List, 346)
February 2015). Using conservative water demand rates for single-family residences, multi-family residences, and non-residential development, as identified in the City’s *Environmental Thresholds and Guidelines Manual*, the total additional water demanded (should all pending projects in the City of Goleta be approved) is estimated at 1,344 AFY, as shown in Table 4.14-4.

Table 4.14-4
Estimated Water Demand from Cumulative Projects in the City of Goleta

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Size</th>
<th>Demand Rate</th>
<th>Water Demand (AFY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-family residential</td>
<td>194 dwelling units</td>
<td>0.70 AFY/unit</td>
<td>136</td>
</tr>
<tr>
<td>Multi-family residential</td>
<td>1,150 dwelling units</td>
<td>0.50 AFY/unit</td>
<td>575</td>
</tr>
<tr>
<td>Commercial</td>
<td>1,822,767 square feet</td>
<td>0.30 AFY/1,000 square feet</td>
<td>547</td>
</tr>
<tr>
<td>Proposed Project</td>
<td>360 dwelling units</td>
<td>Refer to Table 4.14-2</td>
<td>45</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>1,303</td>
</tr>
</tbody>
</table>

1. The general commercial rate was conservatively applied to all non-residential development.

The total estimated water demand of 1,303 AFY would be approximately 95 percent of the current surplus of 1,376 AFY and 12 percent of the 10,650 AF of water available to the GWD annually through the year 2030 (not including GWD’s unused recycled water capacity or other potential sources). Therefore, the cumulative water supply impact associated with planned and pending development in Goleta would be less than significant.

Wastewater. As discussed under Impact UTL-2 above, cumulative development within the City of Goleta would add 1,344 residential units and more than 1.8 million square feet of commercial and industrial space, resulting in increased generation of wastewater. Assuming that wastewater generation is 90 percent of water demand, cumulative development would generate about 1,132 AFY or 1.01 million gallons of wastewater per day. This is about 71 percent of the 1.42 mgd of wastewater treatment capacity that GWSD maintains. Wastewater generated by cumulative development would therefore be within GWSD’s available capacity. In addition, ongoing upgrades to wastewater treatment facilities would improve treatment capacity. As discussed in Section 4.14.1(b), in September of 2013, the GSD completed a major up-grade of its treatment facility and is now a Full Secondary Treatment Plant. Two 5-year NPDES permit extensions were to be granted to GWSD given satisfactory progress made in completing the design and construction of the wastewater treatment facility upgrades to full secondary treatment standards. These upgrades were designed to eliminate constraints on the growing wastewater treatment demand of the City. In order for the Project and other related developments to connect to the wastewater system, payment of fees to reserve capacity and contribute to costs of plant upgrades would be required. With the payment of fees toward the construction of improvements to wastewater infrastructure, as discussed under Impact UTL-2, the Project would not contribute to a cumulative impact on wastewater infrastructure. Therefore, cumulative impacts would be less than significant.

Solid Waste. The Project’s solid waste generation, assuming 73 percent waste diversion as discussed under Impact UTL-4, is estimated at 199 tons/year. According to the City’s *Environmental Thresholds and Guidelines Manual*, if solid waste generation exceeds 40 tons/year, it is considered an adverse contribution to cumulative impacts to solid waste facilities. Despite implementation of a required SWMP as discussed under Impact UTL-4, the Project would have a significant and unavoidable contribution to cumulative solid waste impacts.
This page intentionally left blank.

4.15 EFFECTS FOUND NOT TO BE SIGNIFICANT

This section addresses the potential environmental effects of the Project that have been found not to be significant. The items listed below that were found not to be significant are contained in the City’s Environmental Thresholds and Guidelines Manual and the environmental checklist form included in Appendix G of the most recent update of the CEQA Guidelines. Any items not addressed in this section were addressed in Section 4.0, Environmental Impact Analysis, of this EIR. Section 4.0 also includes an expanded discussion of the settings under each environmental factor discussed therein.

4.15.1 Agriculture and Forestry

Historically, the Project site was used for grazing and agriculture (including row crops and orchards). Since that time the site has been substantially altered by grading, surrounding urban development including industrial, research park and office development, on-site residential development, and significant stockpiling of fill soils. Initial grading on-site consisted of clearing and grubbing of orchard trees and root structures. Surface material was scraped and placed in windrows. The site is no longer designated for agricultural uses, and is not zoned for agricultural use. Currently, the Project site consists of 13 undeveloped lots. There is no structural development on site; however, there are pieces of construction equipment and containers stored on site, as well as stockpiled soil. The site is not actively farmed, and conversion of the Project site to residential development would not result in the loss of significant, viable, local farmland. The project site has not been identified as timber or forest land, and there is no timber or forest on the site. Consequently, the Project would not interfere with or convert existing farmlands or forest lands to urban uses. Therefore, no impacts related to agriculture and forestry would occur.

4.15.2 Biological Resources (Habitat and Natural Community Conservation Plans)

No adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan applies to the Project site. Therefore, the Project would not conflict with any such plans. No impact would occur.

4.15.3 Cultural Resources (Historic, Paleontological)

The Project site is undeveloped. Consequently, there are no State or locally listed or eligible historic structures or resources on-site, and Project implementation would not result in any impact on such resources in Goleta. There are no unique paleontological resources or sites, or unique geologic features on the Project site. No such impacts to these types of resources would occur as a result of Project implementation.

4.15.4 Geology and Soils (Surface Rupture, Landslides, Lateral Spreading, Septic Systems)

Based on the Geotechnical Engineering Report conducted by Earth Systems Pacific on July 8, 2014 and a review of geologic hazards mapping in the Goleta General Plan, no active or potentially active faults or landslide hazard areas are located onsite, nor are onsite soils susceptible to lateral spreading. Impacts related to these geologic hazards would be less than significant.
The Project would not be located on slopes exceeding a 20 percent grade and the Project grading would not result in construction of cut slopes exceeding a grade of 1.5 horizontal to 1 vertical or 15 feet in height. Therefore, impacts related to slopes would be less than significant.

The Project would connect to the existing municipal waste disposal system and would not require the use of septic tanks or alternative waste water disposal systems. Therefore, impacts related to soils incapable of adequately supporting the use of septic tanks would not occur.

4.15.5 Hazards and Hazardous Materials (Airports, Emergency Evacuation and Response)

The Project site is not located near a private airstrip, but is located within two miles of the Santa Barbara Municipal Airport. However, the property is not located within any of the airport’s approach or clear zones and is not subject to review by the Airport Land Use Commission. Therefore, the Project would not be exposed to significant airport safety hazards. Given the Project’s location within an urbanized area and outside of the tsunami run-up area or any flood hazard area, the Project site is not within any adopted emergency response or evacuation plan.

4.15.6 Hydrology and Water Quality (Flooding, Seiche, Mudflow)

No portion of the Project site is within or adjacent to a local 100-year flood hazard area. The Project site is not within a levee, dam inundation area and is not at risk of inundation by seiche or mudflow. Therefore, no impacts related to identified flood hazard areas or exposure of people to a risk of loss, injury, or death involving flooding would occur.

4.15.7 Land Use (Divide an Established Community, Habitat & Conservation Plans)

No habitat conservation or natural community conservation plans apply to the Project site or would be affected by the Project. The Project is in an infill area and would not divide an established community. No impacts would occur.

4.15.8 Mineral Resources

No known mineral resources are located within the Project site. Therefore, no impacts related to mineral resources would occur.

4.15.9 Noise (Airports)

Pursuant to the Goleta General Plan, the Project site is located outside of the current and the anticipated 2030 60 dBA noise contour of the Santa Barbara Municipal Airport. Therefore, airport noise impacts on the Project, either in the near or foreseeable future, would be less than significant. No private airport impacts on the Project would occur since there are no private airports within the vicinity of the City.
4.15.10 Objectionable Odors

The Project would construct 360 residential units and associated amenities and merge 13 existing lots into 3 lots. This use would not create objectionable odors that would affect a substantial number of people.

4.15.11 Population and Housing

The Project site is currently undeveloped. The Project would not displace any existing housing units or cause the displacement of any people. Therefore, no impacts related to displacement would occur.

4.15.12 Transportation/Traffic (Airports, Design Hazards, Emergency Access)

The Project would not have an impact on airport operations and/or flight patterns because the Project site does not lie within the clear or approach zone of any public or private airports. The Project would be required to be designed in accordance with applicable Santa Barbara County Fire Department standards, including those that address minimum driveway width, roadway naming, building height, signage and addressing, fire hydrants, fire sprinklers, and emergency access. Compliance with applicable development standards would ensure that the Project would not result in significance design hazards, and that it would have no impact on the provision of emergency access to either the project site or surrounding development.
This page intentionally left blank.
5.0 OTHER CEQA DISCUSSIONS

This section discusses growth inducing impacts and irreversible environmental impacts that would be caused by the Project.

5.1 GROWTH INDUCING IMPACTS

CEQA Guidelines § 15126.2(d) requires a discussion of a proposed project’s potential to induce growth by, for example, fostering economic or population growth, including ways in which a project could remove an obstacle to growth. Growth does not necessarily create significant physical changes to the environment. However, depending upon the type, magnitude, and location of growth, it can result in significant adverse environmental effects. The Project’s growth-inducing potential is therefore considered significant if growth induced by the Project could result in significant physical effects in one or more environmental issue areas. The most commonly cited example of how an economic effect might create a physical change is where economic growth in one area could create blight conditions elsewhere by causing existing competitors to go out of business and the buildings to be left vacant.

5.1.1 Population and Economic Growth

The Project would add 360 new residential units to Goleta’s housing stock. The current population of Goleta is 30,765. Based on an average household size of 2.76 persons for workforce housing (228 units proposed) and 1.11 persons for senior housing (132 units proposed), development of the Project would accommodate approximately 776 persons (Department of Finance, 2015). Therefore, the Project would be expected to increase the City’s population to 31,541. Consequently, the population generated by the Project would not exceed the Santa Barbara County Association of Government’s (SBCAG) 2040 population forecast of 34,600 for Goleta (SBCAG, December 2012, Figure 2). The Project is not expected to induce any additional population growth beyond that associated with the Project itself.

According to Table 3-1 in Section 3.0, Related Projects, cumulative development in Goleta involves 1,344 residential units. Assuming 2.76 persons per household, this amount of residential development would add 3,709 residents (1,344 dwelling units x 2.76 people/dwelling unit). Cumulative development and the Project would increase the City’s population to 35,250 (current population of 30,765+ 3,709 + 776), which would exceed the SBCAG 2040 population forecast by 650. The physical environmental effects of cumulative development are addressed in Section 4.0 of this EIR as well as in the environmental documents prepared for each individual project.

The Project includes residential development rather than commercial development. As such, the Project would not directly contribute to economic growth by providing additional space for business. Under the Project, 360 new residential units could be developed, which may indirectly contribute to economic growth. The additional population associated with the Project would likely contribute to the local economy as demand for general goods increases, which in turn could result in economic growth for various sectors. Project residents would increase the City population by about 2.5% and would be expected to primarily use existing City commercial services, creating only a minor need for expanded services. The Project would not be expected to induce economic expansion to the extent that significant environmental impacts directly associated with the Project’s contribution would occur.
5.1.2 Removal of Obstacles to Growth

The Project would facilitate residential development on an undeveloped property historically used for agriculture and soil stockpiling in Goleta (for additional detail on the historical use of the project site, refer to Section 2.3.1, Historical and Current Uses, in Section 2.0, Project Description. The Project is surrounded by existing urban development and would rely upon existing roadways (primarily Camino Vista, Los Carneros Way, and S. Los Carneros Road) for site access. No new roads would be required. The existing Camino Vista that fronts on the south side of the Project site will be widened to 43-feet curb to curb allowing on-street parking on the north side of the road. Access to the Project site would be provided via three driveway connections providing ingress and egress to Camino Vista. However, neither of these changes would result in new roadways, or would open any new areas to potential development. In addition, the Project would utilize existing water, wastewater and solid waste facilities that serve the urban areas of Goleta (see Section 4.14, Utilities and Service Systems). Service would be provided through minor extensions of existing utility infrastructure. No additional infrastructure or facilities beyond those necessary to accommodate the Project would be required. No other undeveloped land in the vicinity of the Project would benefit in terms of growth from the extension/provision of urban services to the Project site. Because the Project constitutes infill development within an urbanized area and does not require the extension of new infrastructure that would open up additional undeveloped areas to potential future development, Project implementation would not remove an obstacle to growth.

5.2 SIGNIFICANT, IRREVERSIBLE CHANGES

CEQA Guidelines § 15126.2(b) requires EIRs to identify those significant impacts that cannot be reduced to a less than significant level with the application of mitigation measures. The implications and reasons why the Project is being proposed, notwithstanding, must be described. As discussed in Section 4.0, Environmental Impact Analysis, the Project result in significant and unavoidable impacts related to obstruction of Scenic Views (Impact AES-1 in Section 4.1, Aesthetics), Risk of Upset (Impact HAZ-2 in Section 4.7, Hazardous Materials/Risk of Upset), and Land Use Plan Consistency (Impact LU-1 in Section 4.9, Land Use and Planning).

Because the Project includes a General Plan Amendment (14-049-GPA), CEQA Guidelines § 15126.2(c) requires a discussion of any significant irreversible environmental changes which would be caused by the Project should it be implemented. Such significant irreversible environmental changes may include the following:

- Use of non-renewable resources during the initial and continued phases of the Project which would be irreversible because a large commitment of such resources makes removal or non-use unlikely.
- Primary impacts and, particularly secondary impacts (such as highway improvement which provides access to a previously inaccessible area) which generally commit future generations to similar uses.
- Irreversible damage which may result from environmental accidents associated with the Project.

Construction of the Project would require building materials and energy, some of which are non-renewable resources. Consumption of these resources would occur with any development in the region and are not unique to the Project. The addition of new residential units would irreversibly
increase local demand for non-renewable energy resources such as petroleum and natural gas. Additional vehicle trips associated with the Project would incrementally increase local traffic and regional air pollutant and greenhouse gas emissions. As discussed in Section 4.13, Transportation/Circulation, Section 4.2, Air Quality, and Section 4.6, Greenhouse Gas Emissions, impacts resulting from traffic generated by future development would be less than significant or could be mitigated to a less than significant level.

Growth accommodated under the Project would require an irreversible commitment of law enforcement, fire protection, water supply, wastewater treatment, and solid waste disposal services. However, these impacts would be less than significant or would be reduced to a less than significant level with mitigation.

5.3 ENERGY EFFECTS

The CEQA Guidelines Appendix F requires that EIRs include a discussion of the potential energy consumption and/or conservation impacts of Project, with particular emphasis on avoiding or reducing inefficient, wasteful or unnecessary consumption of energy.

As discussed previously, the Project would involve the use of energy during the construction and operational phases of the Project. Energy use during the construction phase would be in the form of fuel consumption (e.g.: gasoline and diesel fuel) to operate heavy equipment, light-duty vehicles, machinery, and generators for lighting. In addition, temporary grid power may also be provided to any temporary construction trailers or electric construction equipment. Long-term operation of the Project would require permanent grid connections for electricity and natural gas service to power internal and exterior building lighting, and heating and cooling systems. In addition, the increase in vehicle trips associated with the Project would increase fuel consumption within the City.

The Project would be subject to the energy conservation requirements of the Title 24 of the California Code of Regulations, known as the California Building Standards Code or Title 24, and Chapter 15.13 of the Goleta Municipal Code, “Energy Efficiency Standards,” which require energy savings measures that exceed the Title 24 standards by 15%. Adherence to the City’s Energy Efficiency Standards and other energy conservation requirements would ensure that energy is not used in an inefficient or wasteful manner. In addition, the location of the Project site in proximity to existing job opportunities and commercial services would generally limit vehicle miles traveled (VMT) and associated travel-related energy use.
This page intentionally left blank.
6.0 ALTERNATIVES

As required by Section 15126.6 of the CEQA Guidelines, this EIR examines a range of reasonable alternatives to the Project. The following alternatives are evaluated in this EIR:

- Alternative 1: No Project/No Development
- Alternative 2: Avoid CA-SBA-56 and Buffer
- Alternative 3: Increase Railroad/Freeway Buffer and Higher Sound Barrier
- Alternative 4: Reduced Building Height
- Alternative 5: Mixed Use Development

This section also includes a discussion of the “environmentally superior alternative” among the alternatives analyzed.

The following are the Project objectives as described in Section 2.0, Project Description.

1. Complete development of residential units in the Central Hollister Residential Development area on Affordable Housing Opportunity Site.
2. Construct 132 senior apartment units and 228 market rate/workforce apartment units.
3. Create an infill development of high density senior and workforce rental housing to be at lower rental rates than the adjacent Willow Springs I and Willow Springs II multifamily housing projects.
4. Fully utilize the existing public infrastructure (Camino Vista and all utilities) provided by Willow Springs and Willow Springs II.
5. Promote City planning goals by developing a high density residential project located conveniently close to a major transportation corridor and to employment and recreational areas.
6. Provide a public neighborhood park in the location shown in General Plan Figure 3-2 (Park and Recreation Plan Map).
7. Protect, and preserve on-site cultural resources.
8. Develop multifamily residential housing while maintaining visual resources.

6.1 ALTERNATIVE 1: NO PROJECT/NO DEVELOPMENT

6.1.1 Alternative Description

Alternative 1, the “No Project/No Development” alternative, assumes that no residential development would occur on the Project site and that environmental conditions would not change. The Project site would remain vacant. This alternative would not add residents to the City’s population. Absent additional housing, population growth in the City would be accommodated through other proposed residential development projects within the City.

This alternative would not meet any of the Project objectives, including those related to the development of affordable rental housing to meet the City’s Regional Housing Needs Assessment (RHNA) requirements.
6.1.2 Impacts

Implementation of this alternative would not result in any physical changes to the Project site since it would not accommodate any new development. This alternative would remove the unavoidably significant impacts with respect to obstruction of scenic views from S. Los Carneros Road (refer to Section 4.1, Aesthetics), the known undisturbed human burial site (refer to Section 4.4, Cultural Resources), risk of upset (refer to Section 4.7, Hazardous Materials/Risk of Upset), General Plan consistency (refer to Section 4.9, Land Use), construction noise (refer to Section 4.10, Noise), and solid waste (refer to Section 4.14, Utilities and Service Systems). This alternative would also remove other significant, but mitigable impacts with respect to visual character (refer to Section 4.1, Aesthetics), light and glare (refer to Section 4.1, Aesthetics), health risk (refer to Section 4.2, Air Quality), special status plant and animal species and habitats (refer to Section 4.3, Biological Resources), intact CA-SBA-56 deposits (refer to Section 4.4, Cultural Resources), geotechnical impacts (refer to Section 4.5, Geology and Soils), site drainage (refer to Section 4.8, Hydrology and Water Quality), on-site noise conflicts (refer to Section 4.10, Noise), and pre-construction soil export haul trips (refer to Section 4.13, Transportation/Circulation). However, the site would retain the existing Design Residential (DR-20) zoning and the Affordable Housing Opportunity Site designation pursuant to the City’s General Plan, which would accommodate future residential development on the site.

6.2 ALTERNATIVE 2: AVOID CA-SBA-56 AND BUFFER

6.2.1 Alternative Description

Alternative 2, the “Avoid CA-SBA-56 and Buffer” alternative would eliminate the portion of the proposed development that lies within the boundary of the CA-SBA-56 archaeological site and the 50-foot buffer surrounding CA-SBA-56, which includes Buildings 3, 4, 5, and 6 and on-site parking. In order to avoid impacting CA-SBA-56 and the 50-foot buffer, some or all of four proposed residential buildings in Area B (Buildings 3, 4, 5, and 6) and approximately 21 uncovered parking spaces and 9 carport parking spaces would be eliminated from the plan. A potential layout for the site that eliminates structural development within the boundary of the CA-SBA-56 archaeological site, and minimizes structural development within the 50-foot buffer surrounding CA-SBA-56 is shown in Figure 6-1.

Under this alternative, the total number of proposed units on the Project site would be reduced by 111 to 249 units, compared to the Project’s 360 units. The elimination of development within the 50-foot buffer surrounding CA-SBA-56 would reduce the net developable area of the Project site from 14.24 acres to approximately 12.42 acres. Based on the minimum density of 20 units/acre associated with the Affordable Housing Opportunity Site designation, a minimum of 249 units would need to be provided on the 12.42-acre site. The reduction of residential units would be approximately proportional between proposed workforce housing and senior units, resulting in 158 workforce units and 91 senior units under this alternative. Based on an average household size of 2.76 persons for workforce housing (158 units proposed) and 1.11 persons for senior housing (91 units proposed), this alternative would add an estimated 537 new residents (Department of Finance, 2015). The site plan for this alternative would require reconfiguration of the residential structures, site access, and parking, on the remainder of the Project site to accommodate 249 units. This may require most if not all of the residential buildings to be three stories in height. Depending on the design, this change may affect the bedroom mix. The park in the central portion of the site would remain and would be expanded to cap the remainder of CA-SBA-56 and the 50-foot buffer.
Heritage Ridge Residential Project EIR
Section 6.0 Alternatives

Alternative 2: Avoid CA-SBA-56

- 168 Homes
 - 93 One-bedroom Homes
 - 55 Two-bedroom Homes

Parking per City of Goleta
Zoning: 333 Spaces (See Note 1)
Parking Provided: 228 Spaces
(See Notes 2 and 3)
- 120 carport (incl. 3 accessible)
- 108 Open (incl. 6 accessible + 1 van accessible)

Area A
Senior Housing
- 182 Homes
 - 108 One-bedroom Homes
 - 74 Two-bedroom Homes

Parking per City of Goleta
Zoning: 143 Spaces (See Note 1)
Parking Provided: 152 Spaces
- 112 carport (incl. 3 accessible)
- 40 Open (incl. 1 accessible + 1 van accessible)

Note: Apartments to be located in the Lobby

Source: The Treesby Group, September 2014
Under this alternative, Objective 2 would not be fully met due to the reduced number of residential units on the Project site. Objectives 1, 3, 4, and 5, which relate to providing residential development on the site that completes the development of the Central Hollister Residential Development area, would continue to be met at the minimum density anticipated by the Affordable Housing Overlay. Objectives 6 and 7 to provide a public park consistent with the General Plan for the Project site and to protect on-site cultural resources would continue to be met. As this alternative may require additional buildings to be 3-story, rather than 2-story as with the Project, Objective 8 to maintain visual resources may not be met.

6.2.2 Impact Analysis

a. Aesthetics. Under this alternative, the Project site would be developed with structures that would alter views of and through the Project site. Eliminating all or part of Buildings 3, 4, 5, and 6 would result in a smaller footprint of development than the Project. However, in order to maintain the minimum density associated with the Affordable Housing Opportunity Site designation, some or all of the remaining buildings on the Project site would increase from two to three stories. As with the Project, this alternative would involve construction of buildings at a height that would substantially affect public views of the Santa Ynez Mountains from S. Los Carneros Road at Calle Koral looking northward, which is a City-designated view corridor. Views from the Los Carneros Road overpass to the south and southeast are also designated view corridors. However, as with the Project, structures would rise nearly to the level of the horizon, but would not obstruct scenic views of the Pacific Ocean. Thus, similar to the Project, Alternative 2 would result in a significant and unavoidable impact to the designated scenic view corridor looking northward from S. Los Carneros Road at Calle Koral. In addition, as this alternative may require additional buildings to be 3-story, rather than 2-story as with the Project, Objective 8 to maintain visual resources may not be met.

This alternative would still result in the removal of native shrub vegetation on most of the site. However, as with the Project, this impact would be less than significant. This alternative would have a smaller footprint of development compared to the Project; nevertheless, it would permanently alter the existing visual character of the Project site. This alternative involves replacing open and undeveloped land with residential development. As with the Project, this impact would remain potentially significant, and this alternative would continue to require mitigation to reduce potentially significant impacts from the Project’s massing and architectural style and to ensure that building heights remain consistent with adjacent development (Mitigation Measures AES-4[a] and AES-4[b]).

New sources of light and glare on and around the Project site due to the introduction of new structures, hardscape and associated lighting would be similar to the Project. Therefore, this impact would remain potentially significant, and this alternative would continue to require mitigation related to potential impacts associated with new sources of light and glare (Mitigation Measure AES-5).

b. Air Quality. As with the Project, this alternative would include construction of new residential units which would generate temporary increases in localized air pollutant emissions. Ozone precursors NOx and ROG, as well as carbon monoxide (CO), would be still emitted by construction equipment such as graders, backhoes, and generators, while fugitive dust (PM10) would still be emitted by activities that disturb the soil, such as grading and excavation, road construction and building construction. Impacts would be incrementally lower due to the reduction in overall building footprint and required grading. By reducing the number of residential units by 111 to 249 units, this alternative would incrementally reduce the duration and amount of construction activity. Nevertheless, standard emission control measures as required by the SBCAPCD would still apply. This impact would remain less than significant.
This alternative involves 111 fewer residential units compared to the Project (a reduction of approximately 31%), and would therefore result in reduced energy demand and fewer motor vehicle trips. Therefore, operational emissions would be commensurately lower than those of the Project. Emissions would be below SPCAPCD thresholds and this impact would remain less than significant.

Because this alternative involves fewer residential units than the Project, it would remain consistent with the 2010 Clean Air Plan (CAP). This would be a less than significant impact.

As with the Project, this alternative would expose residents on the Project site to a health risk that would exceed SBCAPCD’s recommended health risk criteria. Because this alternative involves fewer residential units, fewer people would be exposed to health risks. Nevertheless, this alternative would continue to require mitigation related to potential health risk impacts to residential receptors on the Project site (Mitigation Measure AQ-4). As with the Project, this impact would be less than significant with mitigation.

c. Biological Resources. This alternative would reduce the overall building footprint, but would not avoid impacts related to the removal of habitat that could support nesting and/or foraging birds protected under State and federal law. As with the Project, landscaping for this alternative could introduce invasive plant species that may escape into natural areas. This alternative, like the Project, would be located within a local wildlife linkage area, which could result in indirect impacts to wildlife movement. These impacts would remain potentially significant, and this alternative would continue to require mitigation related to potential impacts associated with nesting birds and raptors, invasive species, and wildlife movement (Mitigation Measures BIO-1, BIO-2, BIO-4[a], BIO-4[b], and BIO-4[c]) to reduce these impacts to a less than significant level.

Similar to the Project, this alternative would not impact wetlands or sensitive habitat. As with the Project, these impacts would be less than significant.

d. Cultural Resources. This alternative is designed to reduce impacts related to CA-SBA-56, which is an area of prehistoric archaeological significance that is eligible for listing on the National Register of Historic Places (NRHP), and is therefore considered a significant archaeological resource pursuant to CEQA Guidelines Section 15064.5(a)(3). Elimination of development within the area of CA-SBA-56 and the 50-foot buffer would reduce the potential for disturbance to the resource by eliminating components of the project that would overlie the resource and buffer. In order to avoid impacting CA-SBA-56 and the 50-foot buffer, some or all of four of the proposed residential buildings in Area B (Buildings 3, 4, 5, and 6) and approximately 21 uncovered parking spaces and 9 carport parking spaces would be eliminated from the plan (refer to Figure 6-1). This alternative would eliminate the need for mitigation related to excavation within CA-SBA-56 (Mitigation Measure CR-1[a]). Due to the proposed plan to cap the remainder of CA-SBA-56 and the 50-foot buffer, this alternative would continue to require mitigation related to potential impacts to surface resources within CA-SBA-56 (Mitigation Measures CR-1[b], and CR-1[c]). Additionally, this alternative would continue to require mitigation related to potential impacts to previously undiscovered resources (Mitigation Measures CR-1[d], CR-1[e], and CR-1[f]) to reduce this impact to a less than significant level, especially in light of the work that would be required in close proximity to the known resources CA-SBA-56. Finally, Alternative 2 would not reduce the significant and unavoidable impact associated with the identified human burial site within CA-SBA-56. Overall, impacts to cultural resources would be less than the Project, and but would remain significant and unavoidable.
e. Geology. This alternative would reduce the overall building footprint and would incrementally reduce the amount of grading required compared to the Project; nevertheless, the Project site would remain subject to the same potential geological impacts as the Project. Therefore, the potential for adverse effects caused by seismic settlement, liquefaction, erosion, and expansive soils would be fundamentally the same under this alternative as the Project. This alternative would continue to require mitigation related to potential geologic impacts (Mitigation Measure GEO-1). Therefore, this alternative would result in geological impacts that would be less than significant with mitigation, and similar to the Project.

f. Greenhouse Gas Emissions. This alternative would reduce the building footprint and the number of new residential units on the Project site by approximately 31%. Thus, the Project’s long-term GHG emissions from transportation and non-transportation sources would be reduced commensurately. As with the Project, GHG-related impacts would be less than significant.

g. Hazardous Materials/Risk of Upset. Like the Project, this alternative includes housing units near the U.S. 101 and UPRR corridors, a high-pressure natural gas line, and businesses that store and use hazardous materials. Eliminating Buildings 3, 4, 5, and 6, and relocating some of the proposed dwelling units to Buildings 1, 2, would move those residential units further from the U.S. 101 and UPRR. This would incrementally reduce exposure to risk of upset conditions associated with those facilities. As with the Project, compliance with applicable federal, state, and local regulations pertaining to hazardous materials use, storage, and transport would minimize the potential risk of upset. However, Buildings 7 and 8 would remain on the portion of the property closest to U.S. 101 and UPRR. Therefore, risk of upset impacts would remain significant and unavoidable under this alternative.

h. Hydrology and Water Quality. This alternative would reduce the building footprint and the number of new residential units on the Project site by approximately 31%. Therefore, there would be less overall impervious surface area under this alternative and surface water runoff and the erosion/sedimentation potential would be incrementally reduced. Nonetheless, as with the Project, this alternative would increase impermeable surfaces compared to existing conditions. Mitigation Measure HWQ-2 would be required to reduce impacts to site drainage. Implementation of required mitigation measure would reduce impacts to a less than significant level. Under this alternative, as with the Project, compliance with NPDES requirements and implementation of Best Management Practices (BMPs) would be required and would ensure that hydrologic impacts from construction and water pollutants would remain less than significant.

i. Land Use. As this alternative would have 111 fewer residential units, the result would be fewer additional vehicle trips than the Project and a smaller increase in roadway noise and traffic. Therefore, this alternative may pose slightly fewer compatibility conflicts with surrounding uses than would the Project. This alternative would maintain the minimum density of 20 units/acre associated with the Affordable Housing Opportunity Site designation. As described above, Alternative 2 would continue to result in a significant and unavoidable impact to the designated scenic view corridor looking northward from S. Los Carneros Road at Calle Koral. Therefore, Alternative 2 would remain inconsistent with several policies related to preservation of views, including VH 1.1, VH 1.4, VH 2.2, VH 2.3, and VH 4.15. However, this alternative would continue to require mitigation related to a temporary noise incompatibility impact (Mitigation Measure N-1). Effects related to compatibility with adjacent businesses may be incrementally greater than those of the Project due to the increased number of three-story buildings, but would continue to be significant but mitigable.
j. Noise. The overall footprint of development and area of required grading would be incrementally reduced under this alternative. Therefore, overall construction noise would be slightly reduced. Nevertheless, as with the Project, construction activities would occur within 50 feet of sensitive receptors. This alternative would continue to require a similar scale of pre-construction soil hauling to prepare the site for construction. Therefore, this alternative would continue to require Mitigation Measures N-1(a) through N-1(h) for construction impacts. However, as with the Project, temporary construction noise impacts would remain significant and unavoidable.

The potential long-term noise increase resulting from development of this alternative would be less than the Project since this alternative would result in 111 fewer residential units (a reduction of approximately 31%), with a commensurate reduction in overall traffic generation. As with the Project, the potential long-term noise increase would remain less than significant.

As with the Project, this alternative would place residential uses near the U.S. 101 and UPRR rights-of-way. By eliminating Buildings 4 and 5, fewer residential units would be located adjacent to the U.S. 101 and UPRR. Nevertheless, this impact would remain significant and Mitigation Measures N-5(a) and N-5(b) would continue to apply. These measures would reduce the on-site noise impact associated with this alternative to a less than significant level. Vibration impacts generated by passing trains would remain less than significant, similar to the Project.

k. Public Services. This alternative would have a smaller building footprint than the Project and would result in fewer residential units and amenities on the Project site as compared to the Project. As a result, the demand for impacts associated with the potential need for new public service infrastructure would be lower under this alternative than the Project. As with the Project, impacts to public services would remain less than significant.

l. Recreation. This alternative would result in fewer residential units, and therefore fewer new residents than the Project. As a result, this alternative would result in a lower demand for public parks than the Project. As with the Project, this alternative would provide private recreational facilities for residents. In addition, the two-acre public park in the central portion of the property would be expanded to cover a greater extent of the CA-SBA-56 archaeological resource under this alternative. As with the Project, payment of parks development impact fees would be required and impacts to recreation would be less than significant.

m. Transportation/Circulation/Parking. This alternative would reduce the building footprint and the number of residential units on the Project site by approximately 31%, and therefore would result in commensurately lower daily traffic than the Project (1,359 average daily trips [ADT] under this alternative, as compared to 1,970 ADT under the Project). As with the Project, impacts to traffic volumes, public transportation, intersections, and the highway segment in the CMP network would remain less than significant.

This alternative would continue to require a similar scale of pre-construction soil hauling to prepare the site for construction. Therefore, this alternative would remain potentially significant, and would require Mitigation Measure T-5, Pre-Construction Traffic Management Control Plan, to reduce this impact to a less than significant level.

This alternative would reconfigure the Project site to avoid impacting CA-SBA-56 and would remove approximately 30 parking spaces. Some or all of these parking spaces could be replaced if the buildings
are reconfigured or if open space is removed to accommodate new parking areas. Even absent the addition of parking spaces, this alternative would include approximately 480 parking spaces, which is greater than the 380 spaces required by the Goleta Municipal Code. Impacts related to parking would remain less than significant. As with the Project, impacts to alternative transportation would remain less than significant.

n. Utilities and Service Systems. This alternative would reduce the building footprint and the number of new residential units on the Project site by approximately 31%. As a result, the demand for utilities and services (water demand, wastewater generation, and solid waste generation) on the Project site would be commensurately lower under this alternative than the Project. Demand for water under this alternative would decrease from approximately 45 acre feet per year (AFY) to approximately 31 AFY. Wastewater generation under this alternative would decrease from approximately 0.07 million gallons per day (mgd) to approximately 0.05 mgd. Non-recyclable solid waste generation under this alternative would decrease from approximately 199 tons per year to approximately 137 tons per year. Therefore, this alternative would have a reduced overall impact with respect to utilities and service systems. The amount of non-recyclable solid waste generated under this alternative would not exceed the City's project-specific threshold of 196 tons per year, and Mitigation Measure UTL-4 (Solid Waste Management Plan) would no longer be required. As with the Project, impacts associated with water and wastewater generation would remain less than significant, and impacts associated with solid waste generation would be reduced to a less than significant level.

6.3 ALTERNATIVE 3: INCREASED RAILWAY/FREeway BUFFER AND HIGHER SOUND BARRIER

6.3.1 Alternative Description

Alternative 3, the “Increased Railway/Freeway Buffer and Higher Sound Barrier” alternative, would reconfigure the development to provide a larger buffer between the railroad and the U.S. 101, and increase the height of the masonry wall to reduce noise impacts. As stated in Section 4.10, Noise, Buildings 4, 5, 7, and 8 are as close as 120 feet from the railroad tracks and 300 feet from the centerline of U.S. 101. The combined noise exposure from U.S. 101 and the UPRR was determined to be as high as 72 dBA at the most affected residence on the third floor of Building 7, and would also be above the City’s 65 dBA CNEL standard at the second floor of Building 3, the first and second floors of Building 4, the first and second floors of Building 5, the first and second floors of Building 7, and the first, second, and third floors of Building 8 (Dudek, May 2014; refer to Appendix H).

In this alternative, the height of the proposed noise barrier would be increased to 12 feet and would consist of a six-foot tall masonry wall on top of a six-foot tall berm. With the sound attenuation expected from a 12-foot high barrier, the residential units would need to be approximately 200 feet from the UPRR alignment to reduce the exterior noise level at affected residences to under 65 dBA CNEL, which is the maximum “acceptable” noise exposure for multi-family housing according to the Goleta General Plan. Therefore, in this alternative the Project would be reconfigured so that buildings are set back a minimum of 200 feet from the railroad (refer to Figure 6-2). To achieve this setback, Buildings 4, 5, and 8 would be removed, and Building 7 would be reduced in size. This would result in the loss of up to 128 of the proposed units.
This page intentionally left blank.
Section 6.0 Alternatives

Alternative 3:

Increased Railway/Freeway Buffer & Higher Sound Wall

- **2-Story Workforce Housing**
 - 60 Homes
 - 56 One Bedroom Homes
 - 4 Two Bedroom Homes
 - Parking per City of Goleta
 - Zoning: 132 Spaces (See Note 1)
 - Parking Provided: 117 Spaces (See Notes 2 and 3)
 - 60 Carport (3 incl. 2 accessible)
 - 87 Open (incl. 3 accessible)

- **3-Story Workforce Housing**
 - 146 Homes
 - 93 One Bedroom Homes
 - 53 Two Bedroom Homes
 - Parking per City of Goleta
 - Zoning: 333 Spaces (See Note 1)
 - Parking Provided: 225 Spaces (See Notes 2 and 3)
 - 125 Carport (incl. 3 accessible)
 - 108 Open (incl. 6 accessible + 1 van accessible)

Open Space

Area A:
- Senior Housing
 - 132 Homes
 - 106 One Bedroom Homes
 - 24 Two Bedroom Homes
 - Two Story
 - Parking per City of Goleta
 - Zoning: 183 Spaces (See Note 1)
 - Parking Provided: 152 Spaces (See Notes 2 and 3)
 - 122 Carport (incl. 3 accessible)
 - 49 Open (incl. 1 accessible + 1 van accessible)
 - Mailboxes to be located in the Lobby

Area B

Figure 6-2

Source: The Treeses Group, September 2014
Because the Project site is designated as an Affordable Housing Opportunity Site, the minimum allowable density is 20 units/acre. Therefore, this alternative also assumes that Building 3 would increase to three stories and the bedroom mix would shift toward 1-bedroom and 2-bedroom units, rather than the 3-bedroom units included in the Project, in order to accommodate 53 additional units in the remaining buildings. This would result in a total of 285 units (approximately 21% reduction from the proposed 360 units), which would meet the minimum allowable density of 20 units/acre associated with the site’s Affordable Housing Opportunity Site designation.

The additional space between the residential units and UPRR could be used for parking and/or open space. Site access and the 2-acre park would be the same as under the Project. Although still significant and unavoidable, exposure to risk of upset hazards from the UPRR or U.S. 101 would be incrementally lessened.

Under this alternative, Objective 2 would not be fully met due to the reduced number of residential units on the Project site. Objectives 1, 3, 4, and 5, which relate to providing residential development on the site that completes the development of the Central Hollister Residential Development Area, is accessible to nearby transportation corridors, and utilizes existing public infrastructure would continue to be generally met, although at a slightly reduced density when compared to the Project. Objectives 6 and 7 to provide a public park consistent with the General Plan for the Project site and to protect on-site cultural resources would continue to be met. As this alternative may require additional buildings to be 3-story, rather than 2-story as with the Project, Objective 8 to maintain visual resources may not be met.

6.3.2 Impact Analysis

a. Aesthetics. This alternative would involve developing the Project site with new structures that would alter views of and through the Project site. As with the Project, this alternative would involve construction of buildings at a height that would substantially affect public views of the Santa Ynez Mountains from S. Los Carneros Road at Calle Koral looking northward, which is a City-designated view corridor. Elimination of the buildings in the northern portion of the site may incrementally reduce view blockage from S. Los Carneros Road looking northward. However, increasing the height of Building 3 from two to three stories would incrementally increase view blockage of the Santa Ynez Mountains from S. Los Carneros Drive looking northward. Views from the Los Carneros Road overpass to the south and southeast are also designated view corridors. However, as with the Project, structures would rise nearly to the level of the horizon, but would not obstruct scenic views of the Pacific Ocean. This alternative would increase the height of the proposed masonry wall along the western and northern property boundary from eight feet to twelve feet. However, the proposed structures would continue to dominate the visual changes caused by the Project. The increased height of the masonry wall would not result in further blocking of views, beyond that which would be caused by the proposed on-site structures. Thus, similar to the Project, Alternative 3 would result in a significant and unavoidable impact to the designated scenic view corridor looking northward from S. Los Carneros Road at Calle Koral. In addition, as this alternative may require additional buildings to be 3-story, rather than 2-story as with the Project, Objective 8 to maintain visual resources may not be met.

This alternative would still result in the removal of native shrub vegetation on most of the site. However, as with the Project, this impact would be less than significant. This alternative would have a smaller footprint of development compared to the Project; nevertheless, it would permanently alter the existing visual character of the Project site. This alternative involves replacing open and undeveloped land with a residential development. As with the Project, this impact would remain potentially significant, and this
alternative would continue to require mitigation to reduce potentially significant impacts from the
Project’s massing and architectural style and to ensure that building heights remain consistent with
adjacent development (Mitigation Measures AES-4[a] and AES-4[b]).

New sources of light and glare on and around the Project site due to the introduction of new structures,
hardscape and associated lighting would be similar to the Project. Therefore, this impact would remain
potentially significant, and this alternative would continue to require mitigation related to potential
impacts associated with new sources of light and glare (Mitigation Measure AES-5).

b. Air Quality. As with the Project, this alternative would include construction of new residential
units, which would generate temporary increases in localized air pollutant emissions. Ozone precursors
NOx and ROG, as well as carbon monoxide (CO), would be still emitted by construction equipment such
as graders, backhoes, and generators, while fugitive dust (PM_{10}) would still be emitted by activities that
disturb the soil, such as grading and excavation, road construction and building construction. By
reducing the number of residential units by 75, this alternative would incrementally reduce the duration
and amount of construction activity. Nevertheless, standard SBCAPCD emission control requirements
would apply. This impact would remain less than significant.

This alternative involves 75 fewer residential units compared to the Project (a reduction of
approximately 21%), and would therefore result in reduced energy demand and fewer motor vehicle
trips. Therefore, operational emissions would be commensurately lower than those of the Project. This
impact would remain less than significant.

Because this alternative involves fewer residential units than the Project, it would remain consistent
with the 2010 CAP. This would be a less than significant impact.

Under this alternative, residential units would be set back approximately 200 feet from the railroad
compared to 120 feet under the Project. However, this alternative would still expose residential units on
the Project site to a carcinogenic health risk that would exceed SBCAPCD’s recommended health risk
criteria. Because this alternative involves fewer residential units, fewer people would be exposed to
health risks. Nevertheless, the health risk impact would be significant and this alternative would
continue to require mitigation related to potential health risk impacts to residential receptors on the
Project site (Mitigation Measure AQ-4). With mitigation, health risk impacts would be less than
significant.

c. Biological Resources. This alternative would reduce the overall building footprint but would
not avoid impacts related to removal of habitat that could support nesting and/or foraging birds
protected under State and federal law. As with the Project, landscaping for this alternative could
introduce invasive plant species that may escape into natural areas. This alternative, like the Project,
would be located within a local wildlife linkage area, which could result in indirect impacts to wildlife
movement. These impacts would remain potentially significant, and this alternative would continue to
require mitigation related to potential impacts associated with nesting birds and raptors, invasive
species, and wildlife movement (Mitigation Measures BIO-1, BIO-2, BIO-4[a], BIO-4[b], and BIO-4[c]) to
reduce these impacts to a less than significant level.

Similar to the Project, this alternative would not impact wetlands, or sensitive habitat and these impacts
would remain less than significant.
d. Cultural Resources. Under Alternative 3, Buildings 3, 4, and 8 would be eliminated and Building 7 would be reduced in size to provide a larger buffer between the railroad and the U.S. 101. However, this revision to the Project footprint would not result in a reduction in the potential for ground disturbing activity within the area of CA-SBA-56 and the 50-foot buffer. Impacts would remain potentially significant, and this alternative would continue to require mitigation related to potential impacts to known resources within CA-SBA-56 and previously undiscovered resources (Mitigation Measures CR-1[a], CR-1[b], CR-1[c], CR-1[d], CR-1[e], and CR-1[f]). Alternative 3 would not reduce the significant and unavoidable impact associated with the identified human burial site within CA-SBA-56. Overall, impacts to cultural resources would be similar to the Project, and would remain significant and unavoidable.

e. Geology. This alternative would reduce the overall building area and would incrementally reduce the amount of grading required compared to the Project; nevertheless, the Project site would remain subject to the same potential geological impacts as the Project. Therefore, the potential for adverse effects caused by seismic settlement, liquefaction, erosion, and expansive soils would be fundamentally the same under this alternative as under the Project. This alternative would continue to require mitigation related to potential geologic impacts (Mitigation Measure GEO-1). Therefore, this alternative would result in geological impacts that would be less than significant with mitigation, and similar to the Project.

f. Greenhouse Gas Emissions. This alternative would reduce the building footprint and the number of new residential units on the Project site by approximately 21%. Thus, the Project’s long-term GHG emissions from transportation and non-transportation sources would be commensurately reduced. As with the Project, GHG-related impacts would be less than significant.

g. Hazardous Materials/Risk of Upset. Like the Project, this alternative includes housing units near the U.S. 101 and UPRR corridors, a high-pressure natural gas pipeline, and businesses that store and use hazardous materials. Eliminating Buildings 4, 5, and 8, and reducing the size of Building 7, would result in residential units set back a minimum of 200 feet from UPRR and U.S. 101. This would incrementally reduce exposure to risk of upset conditions associated with those facilities. As with the Project, compliance with applicable federal, state, and local regulations pertaining to hazardous materials use, storage, and transport would minimize the potential risk of upset. Nevertheless, this alternative would involve development of residential units on a site located in close proximity to UPRR and U.S. 101 and multiple facilities that store and use hazardous materials, and risk of upset impacts would remain significant and unavoidable.

h. Hydrology and Water Quality. This alternative would reduce the building footprint and the number of new residential units on the Project site by approximately 21%. Therefore, there would be less impervious surface area under this alternative and overall surface water runoff and erosion/sedimentation potential would be incrementally reduced. Nonetheless, as with the Project, this alternative would increase impermeable surfaces compared to existing conditions. This alternative would be required to implement mitigation measure HWQ-2 to reduce impacts to site drainage. Implementation of required mitigation measure would reduce impacts to a less than significant level. Under this alternative, as with the Project, compliance with NPDES requirements and implementation of Best Management Practices (BMPs) would be required and would ensure that hydrologic impacts from construction and water pollutants would remain less than significant.
Heritage Ridge Residential Project EIR
Section 6.0 Alternatives

i. Land Use. This alternative would have 75 fewer residential units and would result in fewer new vehicle trips than the Project, resulting in a smaller increase in roadway noise and traffic. Therefore, this alternative may pose slightly fewer compatibility conflicts with surrounding uses than would the Project. This alternative would maintain the minimum density of 20 units/acre associated with the Affordable Housing Opportunity Site designation. As described above, Alternative 3 would continue to result in a significant and unavoidable impact to the designated scenic view corridor looking northward from S. Los Carneros Road at Calle Koral. Therefore, Alternative 3 would remain inconsistent with several policies related to preservation of views, including VH 1.1, VH 1.4, VH 2.2, VH 2.3, and VH 4.15. However, this alternative would continue to require mitigation related to a temporary noise incompatibility impact (Mitigation Measure N-1). Effects related to compatibility with adjacent businesses may be incrementally greater than those of the Project due to the increased number of three-story buildings, but would continue to be significant but mitigable.

j. Noise. The overall footprint of development and area of required grading would be incrementally reduced under this alternative. Therefore, overall construction noise would be slightly reduced. Nevertheless, as with the Project, construction activities would occur within 50 feet of sensitive receptors. This alternative would continue to require a similar scale of pre-construction soil hauling to prepare the site for construction. Therefore, this alternative would continue to require Mitigation Measures N-1(a) through N-1(h) for construction impacts. However, as with the Project, temporary construction noise impacts would remain significant and unavoidable.

The potential long-term operational noise increase resulting from this alternative would be less than those of the Project since this alternative would involve 75 fewer new residential units (a reduction of approximately 21%), with a commensurate reduction in overall traffic generation. As with the Project, the potential long-term noise increase would remain less than significant.

As with the Project, this alternative would place residential uses near the U.S. 101 and UPRR corridors. However, this alternative would increase the setback between new residential units and the U.S. 101 and UPRR corridors to 200 feet and increase the height of the sound barrier along the northern property line so that exterior noise levels around the residential buildings would remain below 65 dBA CNEL. This would reduce both exterior and interior noise levels in Project site residences. Mitigation Measure N-5(b) required for the Project to reduce interior noise levels would continue to apply under this alternative. However, Mitigation Measure N-5(a), related to reducing residential exterior noise at balconies and patios, would no longer be required. Impacts related to noise exposure would be reduced in comparison to the Project but, would remain significant but mitigable. Vibration impacts generated by passing trains would remain less than significant, similar to the Project.

k. Public Services. This alternative would have a smaller building footprint than the Project, and would result in fewer residential units and amenities on the Project site as compared to the Project. As a result, the demand for impacts associated with the potential need for new public service infrastructure would be lower under this alternative than the Project. As with the Project, impacts to public services would remain less than significant.

I. Recreation. This alternative would result in fewer residential units, and therefore fewer new residents than the Project. However, this alternative would retain the proposed 2-acre park on the Project site. As noted above, the additional space between the residential units and UPRR under Alternative 3 could be used for additional open space. As a result, this alternative would result in a lower
demand for public parks than the Project. As with the Project, payment of parks development impact fees would be required, and impacts to recreation would be less than significant.

m. Transportation/Circulation/Parking. This alternative would reduce the building footprint and the number of new residential units on the Project site by approximately 21%, and therefore would result in commensurately lower daily traffic than the Project (1,556 ADT under this alternative, as compared to 1,970 ADT under the Project). As with the Project, impacts to traffic volumes, public transportation, intersections, and the highway segment in the CMP network would remain less than significant.

This alternative would continue to require a similar scale of pre-construction soil hauling to prepare the site for construction. Therefore, this alternative would remain potentially significant, and would require Mitigation Measure T-5, Pre-Construction Traffic Management Control Plan, to reduce this impact to a less than significant level.

This alternative would reconfigure the Project site to locate residences farther from U.S. 101 and the UPRR. Due to the construction of the six-foot berm with a six-foot masonry wall on top, the area available for parking would be reduced along the rear property line. However, this alternative would not remove any parking spaces and there would be ample space between residential buildings and the northern site boundary to provide additional parking to meet the requirements of the Goleta Municipal Code. Therefore, this impact would remain less than significant.

As with the Project, impacts to alternative transportation would remain less than significant.

n. Utilities and Service Systems. This alternative would reduce the building footprint and the number of new residential units on the Project site by approximately 21%. As a result, the demand for utilities and services (water demand, wastewater generation, and solid waste generation) on the Project site would be commensurately lower under this alternative than the Project. Demand for water under this alternative would decrease from approximately 45 acre feet per year (AFY) to approximately 36 AFY. Wastewater generation under this alternative would decrease from approximately 0.07 mgd to approximately 0.06 mgd. Non-recyclable solid waste generation under this alternative would decrease from approximately 199 tons per year to approximately 157 tons per year. Therefore, this alternative would have reduced overall impacts with respect to utilities and service systems. The amount of non-recyclable solid waste generated under this alternative would not exceed the City’s project-specific threshold of 196 tons per year, and Mitigation Measure UTL-4 (Solid Waste Management Plan) would no longer be required. As with the Project, impacts associated with water and wastewater generation would remain less than significant, and impacts associated with solid waste generation would be reduced to a less than significant level.

6.4 ALTERNATIVE 4: REDUCED BUILDING HEIGHT

6.4.1 Alternative Description

Alternative 4, the “Reduced Building Height” alternative, would involve changing the five three-story buildings to two-story buildings and modifying the bedroom mix of the remaining units in order to meet the minimum density of 20 units/acre. Under this alternative, there would be 75 fewer residential units or 285 units provided (approximately a 21% decrease). The bedroom mix would shift towards 1-bedroom and 2-bedroom units, rather than the 3-bedroom units included in the Project. Site access and
the configuration of buildings, the 2-acre park, parking areas, and roadways would be the same as under the Project. This alternative would reduce the significant and unavoidable impact associated with obstructing scenic views of the Santa Ynez Mountains from S. Los Carneros Road described in Section 4.1, Aesthetics/Visual Resources to a less than significant level.

Under this alternative, Objective 2 would not be fully met due to the reduced number of residential units on the Project site. Objectives 1, 3, 4, and 5, which relate to providing residential development on the site that completes the development of the Central Hollister Residential Development area, is accessible to nearby transportation corridors, and utilizes existing public infrastructure would continue to be met, although at a slightly reduced density when compared to the Project. Objectives 6 and 7 to provide a public park consistent with the General Plan for the Project site and to protect on-site cultural resources would continue to be met. Objective 8 to maintain visual resources would be met.

6.4.2 Impact Analysis

a. Aesthetics. Similar to the Project, under this alternative the Project site would be developed with new structures that would alter views of the Project site and through the Project site. However, with this alternative, structures would be two stories instead of three. By limiting the heights of the residential buildings to two stories (approximately 20 feet), this alternative would incrementally reduce the Project’s aesthetic impacts with respect to scenic vistas, visual character, and scenic resources. As a result of reduced scale and building mass, impacts to public and private views from surrounding areas and roadways, in particular S. Los Carneros Road at Calle Koral looking both northward and southward, would be reduced. In contrast to the Project, impacts to views of the scenic Santa Ynez Mountains under this alternative would be less than significant. As this alternative would require buildings to be limited to two stories, Objective 8 to maintain visual resources would be met.

This alternative would still result in the removal of native shrub vegetation on most of the site. However, as with the Project, this impact would be less than significant. This alternative would have the same footprint of development as the Project and would permanently alter the existing visual character of the Project site. This alternative involves replacing open and undeveloped land with a residential development. As with the Project, this impact would remain potentially significant, and this alternative would continue to require mitigation to reduce potentially significant impacts from the Project’s massing and architectural style and to ensure that building heights remain consistent with adjacent development (Mitigation Measures AES-4[a] and AES-4[b]).

By reducing the height of the structures compared to the Project, this alternative would incrementally reduce new sources of light and glare on and around the Project site due to introduction of new structures, hardscape and associated lighting. Nevertheless, this impact would remain potentially significant, and this alternative would continue to require mitigation related to potential impacts associated with new sources of light and glare (Mitigation Measure AES-5).

b. Air Quality. As with the Project, this alternative would include construction of new residential units, which would generate temporary increases in localized air pollutant emissions. Ozone precursors NOx and ROG, as well as carbon monoxide (CO), would be still emitted by construction equipment such as graders, backhoes, and generators, while fugitive dust (PM10) would still be emitted by activities that disturb the soil, such as grading and excavation, road construction and building construction. By reducing the number of residential units by 75, this alternative would incrementally reduce the duration
and amount of construction activity. Nevertheless, standard emission control measures as required by the SBCAPCD would apply. This impact would remain less than significant.

This alternative involves 75 fewer residential units compared to the Project (a reduction of approximately 21%), and would therefore result in reduced energy demand and fewer vehicles trips. Therefore, operational emissions would be commensurately lower than those of the Project. This impact would remain less than significant.

Because this alternative involves fewer residential units than the Project, it would remain consistent with the 2010 CAP. This would be a less than significant impact.

As with the Project, this alternative would expose new residential units on the Project site to a carcinogenic health risk that would exceed SBCAPCD’s recommended health risk criteria. Because this alternative involves fewer residential units, fewer people would be exposed to health risks. Nevertheless, this alternative would continue to require mitigation related to potential health risk impacts to residential receptors on the Project site (Mitigation Measure AQ-4). As with the Project, this impact would be less than significant with mitigation.

c. Biological Resources. This alternative would reduce the overall building height, but would not avoid impacts related to removal of habitat that could support nesting and/ or foraging birds protected under State and federal law. As with the Project, landscaping for this alternative could introduce invasive plant species that may escape into natural areas. This alternative, like the Project, would be located within a local wildlife linkage area, which could result in indirect impacts to wildlife movement. These impacts would remain potentially significant, and this alternative would continue to require mitigation related to potential impacts associated with nesting birds and raptors, invasive species, and wildlife movement (Mitigation Measures BIO-1, BIO-2, BIO-4[a], BIO-4[b], and BIO-4[c]) to reduce these impacts to a less than significant level.

Similar to the Project, this alternative would not impact wetlands, or sensitive habitat and these impacts would remain less than significant.

d. Cultural Resources. Although the number of units would be reduced with this alternative, the configuration and footprint of buildings on the Project site would remain the same, and the potential for ground disturbing activity within the area of CA-SBA-56 and the 50-foot buffer would be similar. Therefore, cultural resource impacts would be similar to those of the Project and this alternative would continue to require mitigation related to potential impacts to known resources within CA-SBA-56 and previously undiscovered resources (Mitigation Measures CR-1[a], CR-1[b], CR-1[c], CR-1[d], CR-1[e], and CR-1[f]). Alternative 4 would not reduce the significant and unavoidable impact associated with the identified human burial site within CA-SBA-56. Overall, impacts to cultural resources would be similar to the Project, and would remain significant and unavoidable.

e. Geology. This alternative would reduce the overall building height and involve fewer units; nevertheless, the Project site would remain subject to the same potential geological impacts as the Project. Therefore, the potential for adverse effects caused by seismic settlement, liquefaction, erosion, and expansive soils would be fundamentally the same under this alternative as the Project. This alternative would continue to require mitigation related to potential geologic impacts (Mitigation Measure GEO-1). Therefore, this alternative would result in geological impacts that would be less than significant with mitigation, and similar to the Project.
f. Greenhouse Gas Emissions. This alternative would reduce the building footprint and the number of new residential units on the Project site by approximately 21%. Thus, the Project’s long-term GHG emissions from transportation and non-transportation sources would be commensurately reduced. As with the Project, GHG-related impacts would be less than significant.

g. Hazardous Materials/Risk of Upset. Like the Project, this alternative involves housing units near the U.S. 101 and UPRR corridors, a high-pressure natural gas pipeline, and businesses that store and use hazardous materials. This alternative would reduce the number of new residential units on the Project site by 75 (a reduction of 21%). This would reduce the number of people exposed to risk of upset conditions associated with the U.S. 101 and UPRR corridors. As with the Project, compliance with applicable federal, state, and local regulations pertaining to hazardous materials use, storage, and transport would minimize the potential risk of upset. Nevertheless, this alternative would involve development of residential units on a site located in close proximity to UPRR and U.S. 101 and multiple facilities that store and use hazardous materials, and impacts associated with the risk of upset would remain significant and unavoidable.

h. Hydrology and Water Quality. This alternative would include 75 fewer units than the Project, but the building footprint would be identical. Therefore, the total area of impervious surfaces under this alternative, and resulting surface water runoff and erosion/ sedimentation potential would be substantially similar to the Project. As with the Project, this alternative would increase impermeable surfaces compared to existing conditions and would be required to implement mitigation measures HWQ-2 to reduce impacts to site drainage. Implementation of required mitigation measure would reduce impacts to a less than significant level. Under this alternative, as with the Project, compliance with NPDES requirements and implementation of Best Management Practices (BMPs) would be required and would ensure that hydrologic impacts from construction and water pollutants would remain less than significant.

i. Land Use. This alternative would have 75 fewer residential units, would limit building height to two stories, and would result in fewer new vehicle trips than the Project, resulting in a smaller increase in roadway noise and traffic and less obstructed view of scenic resources. Therefore, this alternative may pose slightly fewer compatibility conflicts with surrounding uses than would the Project. This alternative would maintain the minimum density of 20 units/acre associated with the Affordable Housing Opportunity Site designation. As described above, Alternative 4 would not result in a significant impact to the designated scenic view corridor looking northward from S. Los Carneros Road at Calle Koral. Therefore, this alternative would be consistent with the City’s General Plan. However, this alternative would continue to require mitigation related to a temporary noise incompatibility impact (Mitigation Measure N-1). This alternative would result in site access and the configuration of buildings, the 2-acre park, parking areas, and roadways which would be the same as under the Project. Effects related to privacy for adjacent businesses would remain significant but mitigable, similar to the Project.

j. Noise. The number of units would be reduced by 75 (21%) under this alternative. Therefore, overall construction noise would be slightly reduced. Nevertheless, as with the Project, construction activities would occur within 50 feet of sensitive receptors. This alternative would continue to require a similar scale of pre-construction soil hauling to prepare the site for construction. Therefore, this alternative would continue to require Mitigation Measures N-1(a) through N-1(h) for construction impacts. However, as with the Project, temporary construction noise impacts would remain significant and unavoidable.
The potential long-term operational noise increase resulting from this alternative would be less than those of the Project since this alternative would involve 75 fewer new residential units (a reduction of approximately 21%), with a commensurate reduction in overall traffic generation. As with the Project, the potential long-term noise increase would remain less than significant.

As with the Project, this alternative would place residential uses near the U.S. 101 and UPRR corridors. However, as this alternative involves fewer new residential units, fewer residents would be exposed to rail and freeway noise. Nevertheless, impacts would remain potentially significant and Mitigation Measures N-5(a) and N-5(b) would continue to apply. Vibration impacts generated by passing trains would remain less than significant, similar to the Project.

k. Public Services. This alternative would reduce the number of residential units as compared to the Project. As a result, the demand for impacts associated with the potential need for new public service infrastructure would be lower under this alternative than the Project. As with the Project, impacts to public services would remain less than significant.

l. Recreation. This alternative would result in fewer residential units, and therefore fewer new residents than the Project. As a result, this alternative would result in a lower demand for public parks than the Project. Like the Project, this alternative would provide private recreational facilities for residents, as well as a two-acre public park. As with the Project, payment of parks development impact fees would be required, and impacts to recreation would be less than significant.

m. Transportation/Circulation/Parking. This alternative would reduce the building height and the number of new residential units on the Project site by approximately 21%, and therefore would result in commensurately lower daily traffic than the Project (1,556 ADT under this alternative, as compared to 1,970 ADT under the Project). Traffic impacts would therefore be incrementally reduced. As with the Project, impacts to traffic volumes, public transportation, intersections, and the highway segment in the CMP network would remain less than significant.

This alternative would continue to require a similar scale of pre-construction soil hauling to prepare the site for construction. Therefore, this alternative would remain potentially significant, and would require Mitigation Measure T-5, Pre-Construction Traffic Management Control Plan, to reduce this impact to a less than significant level.

This alternative would not remove any of the proposed 510 parking spaces onsite. As with the Project, the supply of parking under this alternative would be sufficient to meet anticipated demand from future residents and visitors to the Project site. Therefore, this impact would remain less than significant.

As with the Project, impacts to alternative transportation would remain less than significant.

n. Utilities and Service Systems. This alternative would reduce the building footprint and the number of new residential units on the Project site by approximately 21%. As a result, the demand for utilities and services (water demand, wastewater generation, and solid waste generation) on the Project site would be commensurately lower under this alternative than the Project. Demand for water under this alternative would decrease from approximately 45 acre feet per year (AFY) to approximately 36 AFY. Wastewater generation under this alternative would decrease from approximately 0.07 mgd to approximately 0.06 mgd. Non-recyclable solid waste generation under this alternative would decrease from approximately 199 tons per year to approximately 157 tons per year. Therefore, this alternative...
would have reduced overall impacts with respect to utilities and service systems. The amount of non-
recyclable solid waste generated under this alternative would not exceed the City’s project-specific
threshold of 196 tons per year, and Mitigation Measure UTL-4 (Solid Waste Management Plan) would no
longer be required. As with the Project, impacts associated with water and wastewater generation
would remain less than significant, and impacts associated with solid waste generation would be
reduced to a less than significant level.

6.5 ALTERNATIVE 5: MIXED USE DEVELOPMENT

6.5.1 Alternative Description

Alternative 5, the “Mixed Use Development” alternative, would involve residential as well as business
park development in place of the Project’s proposed residential development along the eastern and
northern portions of the site. Business park development (under the City’s MRP zone) is proposed as a
transition from industrial uses on Aero Camino and a buffer from U.S. 101 and the UPRR. This alternative
assumes that buildout of the Project site would be the maximum amount allowed by the Goleta General
Plan and Goleta Municipal Code if assessor’s parcel numbers (APN) 073-060-039 through -043 were re-
zoned to MRP and designated for General Plan Business Park uses, similar to business park properties in
the vicinity. It also assumes that the business park development would encompass 35% of the site and
be two stories in height. This alternative is intended to address compatibility with industrial uses on
Aero Camino to the east, and U.S. 101 and UPRR to the north, and would also reduce impacts associated
with noise and risk of upset on the residential units.

The development assumptions for this alternative assume the maximum residential build-out that could
be accommodated on the Project site under a combination of Design Residential, Affordable Housing
Opportunity Site (25 units/acre) and Business Park designation. Since the eastern and northern parcels
have 5.72 net developable acres, the maximum size of the business park structures would be
approximately 179,400 square feet (89,700 square foot footprint and two stories tall) based on build-out
of 35% of the business park site. The remaining 8.52 acres of net developable area on the Project site
would be developed with residential uses. At the maximum density of 25 units/acre, the residential
component of this alternative would be designed to accommodate 213 units within two- and three-story
buildings.

A smaller business park development could also be constructed, which would reduce the overall impact
of this alternative. For example, a one-story alternative with the same overall building footprint in the
Business Park parcels as described above would involve 89,700 square feet of development. The site
plan for this alternative would require that the residential structures, business park use, site access, and
parking, be reconfigured on the remainder of the Project site to accommodate required residential
density. In order to maintain the minimum density of 20 units/acre associated with the Affordable
Housing Opportunity Site designation, the residential component of this alternative would be designed
to accommodate 171 units, which this configuration assumes would be accommodated in two-story
buildings. This alternative also assumes that the 2-acre park would be the same as proposed in the
Project. This alternative also assumes that adequate parking would be provided to meeting parking
regulations. Table 6-1 compares Alternative 5 to the Project.

This alternative would be consistent with the General Plan land use designation and zoning on the
residential portion of the site (8.52 acres), but inconsistent with existing General Plan and zoning
designations on the remaining portion (5.72 acres). As this alternative may require additional buildings

City of Goleta

378
to be 3-story, rather than 2-story as with the Project, Objective 8 to maintain visual resources may not be met.

Table 6-1

<table>
<thead>
<tr>
<th></th>
<th>Alternative 5a (Maximum Density 25 units/acre)</th>
<th>Alternative 5b (Lower Density 20 units/acre)</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential Units</td>
<td>213</td>
<td>171</td>
<td>360</td>
</tr>
<tr>
<td>Business Park Development</td>
<td>179,400 sf<sup>2</sup></td>
<td>89,700 sf</td>
<td>0</td>
</tr>
<tr>
<td>Building Height</td>
<td>2-story business park, 3-story residential</td>
<td>1-story business park, 2-story residential</td>
<td>2-3 stories</td>
</tr>
<tr>
<td>Total landscaping/open space</td>
<td>2 acres</td>
<td>2 acres</td>
<td>2 acres</td>
</tr>
</tbody>
</table>

¹ This alternative assumes that the reduction of residential units would remain approximately proportional between proposed workforce housing and senior units.

² Represents the maximum amount of development allowed within the Business Park designation.

6.5.2 Impact Analysis

a. Aesthetics. Under this alternative, the Project site would be developed with mixed uses, including residential and business park uses. As with the Project, the Project site would be developed with new structures that alter views of and through the Project site. However, by limiting the heights of the residential buildings to two stories, Alternative 5b would incrementally reduce the project’s aesthetic impacts with respect to scenic vistas, visual character, and scenic resources. Because there would be reduced scale and building mass, impacts to public and private views from surrounding areas and roadways, in particular S. Los Carneros Road at Calle Koral looking both northward and southward, would be reduced. In contrast to the Project, impacts to views of the scenic Santa Ynez Mountains under Alternative 5b would be less than significant. Under Alternative 5a, residential buildings would be built to 3 stories and impacts to views of the Santa Ynez Mountains would remain equal to those of the Project. In addition, as Alternative 5a may require additional buildings to be 3-story, rather than 2-story as with the Project, Objective 8 to maintain visual resources may not be met. Alternative 5b would require buildings to be limited to two stories, so Objective 8 to maintain visual resources would be met.

This alternative would still result in the removal of native shrub vegetation on most of the site. However, as with the Project, this impact would be less than significant. This alternative would permanently alter the existing visual character of the Project site. This alternative involves replacing open and undeveloped land with residential and business park development. As with the Project, this impact would remain potentially significant, and this alternative would continue to require mitigation to reduce potentially significant impacts from the Project’s massing and architectural style and to ensure that building heights remain consistent with adjacent development (Mitigation Measures AES-4[a] and AES-4[b]).

This alternative involves mixed use development which would create new sources of light and glare on and around the Project site due to introduction of new structures, hardscape and associated lighting. Nevertheless, this impact would remain potentially significant, and this alternative would continue to require mitigation related to potential impacts associated with new sources of light and glare (Mitigation Measure AES-5).
b. **Air Quality.** This alternative would involve construction of a business park and residential development, which would generate temporary increases in localized air pollutant emissions. Ozone precursors NO\(_x\) and ROG, as well as carbon monoxide (CO), would be emitted by equipment such as graders, backhoes, and generators, while fugitive dust (PM\(_{10}\)) would be emitted by activities that disturb the soil, such as grading and excavation, road construction and building construction. Similar to the Project, it is assumed that construction would occur over approximately 2.5 years and standard emission control measures as required by the SBCAPCD would still apply. This impact would remain less than significant.

This alternative would involve fewer residential units compared to the Project (either 147 fewer units under Alternative 5a or 189 fewer units under Alternative 5b). However, this alternative would include business park uses, which would result in increased vehicle trips and use more energy compared to the Project. Based on the California Emissions Estimator Model (CalEEMod) output (refer to Appendix K), Alternative 5a would generate vehicular emissions that would exceed the SBCAPCD mobile significance thresholds for NO\(_x\) of 25 pounds per day. Alternative 5b would not generate emissions exceeding any SBCAPCD operational emissions thresholds. Therefore, under Alternative 5, operational emissions would be commensurately increased and Alternative 5a would result in emissions that would exceed local air quality thresholds. In contrast to the Project, this impact would be potentially significant and would require mitigation.

Because alternative involves fewer residential units than the Project, it would remain consistent with the 2010 CAP. This would be a less than significant impact.

As with the Project, this alternative would expose residents on the Project site to a carcinogenic health risk that would exceed SBCAPCD’s recommended health risk criteria. Because this alternative involves fewer residential units, fewer people would be exposed to health risks. Nevertheless, this alternative would continue to require mitigation related to potential health risk impacts to residential receptors on the Project site (Mitigation Measure AQ-4).

c. **Biological Resources.** Depending on the configuration of the business park and residential development, this alternative could avoid impacts related to removal of habitat that could support nesting and/or foraging birds protected under State and federal law. However, it is likely that at least some sensitive habitat would be affected. As with the Project, landscaping for this alternative could introduce invasive plant species which may escape into natural areas. This alternative, like the Project, would be located within a local wildlife linkage area, which could result in indirect impacts to wildlife movement. These impacts would remain potentially significant, and this alternative would continue to require mitigation related to potential impacts associated with nesting birds and raptors, invasive species, and wildlife movement (Mitigation Measures BIO-1, BIO-2, BIO-4[a], BIO-4[b], and BIO-4[c]) to reduce these impacts to a less than significant level.

Similar to the Project, this alternative would not impact wetlands, or sensitive habitat and these impacts would remain less than significant.

d. **Cultural Resources.** Depending on the configuration of the business park and parking area, this alternative could potentially avoid the significant, but mitigable impact related to CA-SBA-56, which is an area of prehistoric archaeological significance. However, it is assumed that, at a minimum, parking lot and landscaped areas would overlie the resource, similar to the Project. Thus, impacts would be similar to those of the Project. This alternative would continue to require mitigation related to potential...
impacts to known resources within CA-SBA-56 and previously undiscovered resources (Mitigation Measures CR-1[a], CR-1[b], CR-1[c], CR-1[d], CR-1[e], and CR-1[f]). Alternative 5 would not reduce the significant and unavoidable impact associated with the identified human burial site within CA-SBA-56. Overall, impacts to cultural resources would be similar to the Project, and would remain significant and unavoidable.

e. Geology. This alternative would involve business park uses and residential uses, but the Project site would remain subject to the same potential geological impacts as the Project. Therefore, the potential for adverse effects caused by seismic settlement, liquefaction, erosion, and expansive soils would be similar to the Project under this alternative. This alternative would continue to require mitigation related to potential geologic impacts (Mitigation Measure GEO-1). Therefore, this alternative would result in geological impacts that would be less than significant with mitigation, and similar to the Project.

f. Greenhouse Gas Emissions. This alternative would reduce the size of the Project by at least 147 units. However, this alternative would involve business park development on a portion of the Project site. Business park development would result in increased GHG emissions from transportation and non-transportation sources. Based on CalEEMod output for Alternative 5a and 5b (refer to Appendix K), GHG emissions would exceed the annual efficiency threshold of 4.9 MT CO₂e per service population. Therefore, in contrast to the Project, this alternative would generate emissions exceeding applicable thresholds. This impact would be potentially significant and would require mitigation.

g. Hazardous Materials/Risk of Upset. Like the Project, this alternative involves housing units and business park development near the U.S. 101 and UPRR corridors, a high-pressure natural gas pipeline, and businesses that store and use hazardous materials. Although this alternative would reduce the number of residential units on the Project site by at least 147 units, new business park uses and employees would be introduced on the site. As with the Project, compliance with applicable federal, state, and local regulations pertaining to hazardous materials use, storage, and transport would minimize the potential risk of upset. Nevertheless, this alternative would involve development of residential units on a site located in close proximity to UPRR and U.S. 101 and multiple facilities that store and use hazardous materials, and impacts associated with the risk of upset would remain significant and unavoidable.

h. Hydrology and Water Quality. As with the Project, this alternative would involve structural development and paved area on the majority of the Project site. Therefore, there would similar impervious surface area and associated surface water runoff and the potential for erosion and sedimentation under this alternative. As with the Project, this alternative would be required to implement mitigation measure HWQ-2 to reduce impacts to site drainage. Implementation of required mitigation measure would reduce impacts to a less than significant level. Under this alternative, as with the Project, compliance with NPDES requirements and implementation of Best Management Practices (BMPs) would be required and would ensure that hydrologic impacts from construction and water pollutants would remain less than significant.

i. Land Use. This alternative involves development of a business park and reduced number of residential units on the Project site (either 147 fewer units under Alternative 5a or 189 fewer units under Alternative 5b). The Project site has a General Plan land use designation of Medium-Density Residential (R-MD) and is designated as an Affordable Housing Opportunity Site. The Project site is zoned Design Residential (DR-20). Therefore, the business park portion of this alternative would be
inconsistent with the City’s General Plan and the Goleta Municipal Code’s zoning regulations, and would require a General Plan amendment and zone change. However, this alternative would maintain the minimum density of 20 units/acre associated with the Affordable Housing Opportunity Site designation. This alternative would continue to require mitigation related to a temporary noise incompatibility impact (Mitigation Measure N-1). Effects related to privacy for adjacent businesses would remain significant but mitigable, similar to the Project.

j. Noise. Because this alternative would involve full development of the Project site with a different mix of uses than the Project, the anticipated duration of construction activity under this alternative would be generally similar to that of the Project. As with the Project, construction activities would occur within 50 feet of sensitive receptors. This alternative would continue to require a similar scale of pre-construction soil hauling to prepare the site for construction. Therefore, this alternative would continue to require Mitigation Measures N-1(a) through N-1(h) for construction impacts. However, as with the Project, temporary construction noise impacts would remain significant and unavoidable.

Operational noise associated with this alternative would include typical noise associated with business park development such as vehicular movement, conversations, HVAC systems, loading, unloading, forklifts, and other equipment. These sources of operational noise would be comparable to surrounding business park uses and would not result in a significant noise impact. As discussed below under m. Transportation/Circulation/Parking, this alternative would generate 180 to 1,480 more vehicle trips than the Project. Therefore, traffic-related noise would increase in comparison to the Project and may require mitigation.

This alternative would replace a portion of the proposed residential units on the Project with business park uses along the U.S. 101 and UPRR corridors. Business park uses are less noise-sensitive than residential uses. However, because residential uses would still be developed on the Project site, impacts related to on-site noise exposure would be similar to the Project. Therefore, this alternative would continue to require mitigation related to potential exterior and interior noise at onsite residences (Mitigation Measures N-5[a] and N-5[b]). Vibration impacts generated by passing trains would remain less than significant, similar to the Project.

k. Public Services. This alternative would involve development of a business park and residential uses on the Project site. This alternative would result in fewer residential units than the Project; however, the same Santa Barbara County Fire Protection District requirements pertaining to defensible space, serviceable access, fire hydrants, and sprinkler systems would apply. Therefore, this alternative would have the same overall impacts to public services as the Project. As with the Project, impacts to public services would be less than significant.

l. Recreation. This alternative would result in fewer residential units, and therefore fewer new residents than the Project. As a result, this alternative would result in a lower demand for public parks than the Project. Like the Project, this alternative would provide private recreational facilities for residents, as well as a two-acre public park. As with the Project, payment of parks development impact fees would be required, and impacts to recreation would be less than significant.

m. Transportation/Circulation/Parking. This alternative includes a mix of uses, which would include in fewer residential units than the Project, but would include business park development. The potential traffic that would result under this alternative, measured in ADT, was estimated using trip
generation rates from the Institute of Transportation Engineers (ITE) *Trip Generation Manual*. Estimated trip generation associated with Alternative 5a and Alternative 5b, as compared to trip generation associated with the Project (refer to Section 4.13, *Transportation/Circulation*, and the Project traffic study in Appendix I) is shown in Table 6-2.

Table 6-2
Comparison of Alternative 5 and the Project Vehicle Trip Generation

<table>
<thead>
<tr>
<th></th>
<th>Land Use</th>
<th>Units</th>
<th>Rate</th>
<th>Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Apartments</td>
<td>132 Units</td>
<td>3.44 trips/day/unit</td>
<td>454</td>
<td></td>
</tr>
<tr>
<td>Apartments</td>
<td>228 Units</td>
<td>6.65 trips/day/unit</td>
<td>1,516</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>1,970</td>
</tr>
<tr>
<td>Alternative 5a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Apartments</td>
<td>78 Units</td>
<td>3.44 trips/day/unit</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>Apartments</td>
<td>135 Units</td>
<td>6.65 trips/day/unit</td>
<td>898</td>
<td></td>
</tr>
<tr>
<td>Business Park</td>
<td>179.4 ksf</td>
<td>12.44 trips/day/ksf</td>
<td>2,232</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>3,398</td>
</tr>
<tr>
<td>Alternative 5b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Apartments</td>
<td>63 Units</td>
<td>3.44 trips/day/unit</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>Apartments</td>
<td>108 Units</td>
<td>6.65 trips/day/unit</td>
<td>718</td>
<td></td>
</tr>
<tr>
<td>Business Park</td>
<td>89.7 ksf</td>
<td>12.44 trips/day/ksf</td>
<td>1,116</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>2,051</td>
</tr>
</tbody>
</table>

1. This alternative assumes that the reduction of residential units would remain approximately proportional between proposed workforce housing and senior units.

As shown in Table 6-2, due to the replacement of residential uses with business park uses, this alternative would generate approximately 1,428 more ADT than the Project under Alternative 5a and approximately 81 more ADT than the Project under Alternative 5b. Traffic impacts would therefore be incrementally increased. The mix of uses proposed under this alternative may also result in internal trips within the Project site, which would somewhat reduce off-site vehicle trip generation. Like the Project, impacts to traffic volumes, public transportation, intersections, and the highway segment in the CMP network under this alternative would be expected to stay within acceptable levels and impacts would remain less than significant.

This alternative would continue to require a similar scale of pre-construction soil hauling to prepare the site for construction. Therefore, this alternative would remain potentially significant, and would require Mitigation Measure T-5, Pre-Construction Traffic Management Control Plan, to reduce this impact to a less than significant level.

This alternative assumes that the mixed-use site layout would be designed to provide adequate parking to meet parking regulations. As with the Project, the supply of parking under this alternative would be
sufficient to meet anticipated demand from future residents and visitors to the Project site. Therefore, impacts would remain less than significant.

As with the Project, impacts to alternative transportation would remain less than significant.

n. **Utilities and Service Systems.** This alternative would involve development of a business park and residential uses on the Project site. This alternative would result in 147 (Alternative 5a) to 189 (Alternative 5b) fewer residential units than the Project. However, business park uses that would replace residential units on the Project site would result in increased reliance on utilities and services systems which serve the site. Estimated water demand, wastewater generation, and solid waste generation associated with Alternative 5a and Alternative 5b, based on factors from the City’s *Environmental Thresholds and Guidelines Manual*, and assumptions used in Section 4.14, *Utilities and Service Systems*, are shown in Table 6-3.

Table 6-3

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Units</th>
<th>Water Demand</th>
<th>Wastewater Generation</th>
<th>Non-Recyclable Solid Waste Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td>360 Units</td>
<td>45 AFY</td>
<td>0.07 mgd</td>
<td>199 tpy</td>
</tr>
<tr>
<td>Alternative 5a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td>213 Units</td>
<td>27 AFY</td>
<td>0.04 mgd</td>
<td>118 tpy</td>
</tr>
<tr>
<td>Business Park</td>
<td>179.4 ksf</td>
<td>54 AFY</td>
<td>0.05 mgd</td>
<td>44 tpy</td>
</tr>
<tr>
<td>Total</td>
<td>80 AFY</td>
<td>0.09 mgd</td>
<td></td>
<td>161 tpy</td>
</tr>
<tr>
<td>Alternative 5b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td>171 Units</td>
<td>21 AFY</td>
<td>0.03 mgd</td>
<td>95 tpy</td>
</tr>
<tr>
<td>Business Park</td>
<td>89.7 ksf</td>
<td>27 AFY</td>
<td>0.02 mgd</td>
<td>22 tpy</td>
</tr>
<tr>
<td>Total</td>
<td>48 AFY</td>
<td>0.06 mgd</td>
<td></td>
<td>116 tpy</td>
</tr>
</tbody>
</table>

1. *Water demand of 0.30 AFY/ksf. Solid waste generation rate of 0.9 tons/ksf and a diversion rate of 73%. Rates based on the City’s *Environmental Thresholds and Guidelines Manual*. Wastewater generation is assumed to be approximately 90% of water demand.*
2. *Totals may reflect rounding of decimals now shown in this table.*

As shown in Table 6-3, under Alternative 5a, demand for water would increase from approximately 45 acre feet per year (AFY) to approximately 80 AFY. Wastewater generation under this Alternative 5a would increase from approximately 0.07 mgd to approximately 0.09 mgd. Non-recyclable solid waste generation under Alternative 5a would decrease from approximately 199 tons per year to approximately 161 tons per year. Overall, under Alternative 5b, demand for water would increase from approximately 45 acre feet per year (AFY) to approximately 48 AFY. Wastewater generation under this Alternative 5b would decrease from approximately 0.07 mgd to approximately 0.06 mgd. Non-recyclable solid waste generation under Alternative 5b would decrease from approximately 199 tons per year to approximately 116 tons per year. As with the Project, impacts associated with water and wastewater generation would remain less than significant, and impacts associated with solid waste generation would be reduced to a less than significant level.
6.6 ALTERNATIVE SITES

Alternative sites for developing a project similar to the Project (360 multi-family dwelling units with parking and recreational amenities on an approximately 17.4-acre site.) were considered but determined to be infeasible. None of these sites is owned or controlled by the applicant and thus could not be developed by this entity. Some of the undeveloped sites are too small in area (e.g., Kenwood Village Site, 7300 Calle Real) or too constrained by creeks and Environmentally Sensitive Habitat Areas (ESHA) (e.g., Girsh/Western Site at 7100 block of Hollister Avenue).

Of the remaining vacant sites within the City that could accommodate development of similar scale to the Project, some are currently designated as Agriculture in the General Plan and others have a non-residential land use designation. Development on vacant sites with an Agricultural designation (e.g., Bishop Ranch) would result in losses of agricultural lands, creating a new impact for the residential project and requiring a General Plan amendment and zone change. The Bishop Ranch site is subject to Chapter 2.0 of the Goleta General Plan Land Use Element as amended by Measure G. Chapter 2.0 of the Land Use Element prohibits conversion of most land designated as agriculture on Figure 2-1 (Land Use Plan Map) of the General Plan without voter approval. There are limited vacant non-residential sites in the City, which are primarily located in the overflight areas of the Santa Barbara Airport. In addition, to the Airport constraint, changing the designation to residential would entail a General Plan amendment and a zone change. Many of the remaining vacant sites have pending or approved applications for development with the City. These sites include:

- Cortona Apartments/6860 Cortona Drive (approved 176 apartments),
- Page Site/Old Town Village (approved 176 townhomes)
- Villages at Los Carneros (approved 465 units; mix of single family, townhomes, condominiums, and apartments)
- 7400 Cathedral Oaks (pending 60 single family units)

Therefore, analysis of an alternative site for the project is not warranted based on the reasons stated above.

6.7 ENVIRONMENTALLY SUPERIOR ALTERNATIVE

Table 6-4 compares the physical impacts for each of the alternatives to the physical impacts of the Project. The No Project Alternative would be the overall environmentally superior alternative since it would avoid all impacts associated with development of the Project site. However, the No Project Alternative would not achieve the basic objectives of the Project as stated in Section 2.0, Project Description.

Among the development options, Alternatives 2 through 5 would all reduce one or more significant Project impacts, as discussed below:

- Alternative 2 would reduce the potentially significant impact to cultural resources, but would not eliminate the significant and unavoidable impact to the intact human burial site within CA-SBA-56. Alternative 2 would incrementally reduce, but not eliminate impacts in several other issue areas, including air quality, greenhouse gas emissions, hydrology, noise, public services, and transportation due to a reduced number of residences proposed for development on the project site. Alternative 2 would eliminate the significant and unavoidable impact associated with solid waste...
generate. The risk of upset associated with the U.S. 101, the UPRR, a natural gas pipeline, and existing businesses would remain significant and unavoidable.

- **Alternative 3** would reduce the potentially significant, but mitigable impact related to exposure of site residents to noise exceeding the City’s residential exterior standard. The risk of upset associated with the U.S. 101, the UPRR, a natural gas pipeline, and existing businesses would remain significant and unavoidable. **Alternative 3** would eliminate the significant and unavoidable impact associated with solid waste generation.

- **Alternative 4** would avoid the Project’s significant environmental effects to scenic resources, including views of the Santa Ynez Mountains. In addition, **Alternative 4** would incrementally reduce impacts in several issue areas, including air quality, greenhouse gas emissions, noise, public services, and transportation due to the reduction in building height and number of units. Therefore, **this alternative would eliminate this significant and unavoidable impact associated with the Project.** **Alternative 4** would eliminate the significant and unavoidable impact associated with solid waste generation. The risk of upset associated with U.S. 101, the UPRR, a natural gas pipeline, and existing businesses would remain significant and unavoidable.

- **Alternative 5** would reduce the Project’s significant, but mitigable impacts related to residential exposure to noise and health risk from U.S. 101 and the UPRR. This alternative would increase traffic generation and associated impacts related to air quality, greenhouse gases, and noise. **Alternative 5** would eliminate the significant and unavoidable impact associated with solid waste generation. The risk of upset associated with U.S. 101, the UPRR, a natural gas pipeline, and existing businesses would remain significant and unavoidable.

In addition, Alternatives 2 through 5 would all fail to meet one or more of the Project objectives, as noted below:

- **Alternative 2** may not fully meet Objective 2 regarding the number of residential units on the Project site. Because this alternative may require additional buildings to be 3-story, rather than 2-story as with the Project, Objective 8 to maintain visual resources may not be met.

- **Alternative 3** may not fully meet Objective 2 regarding the number of residential units on the Project site. Because this alternative may require additional buildings to be 3-story, rather than 2-story as with the Project, Objective 8 to maintain visual resources may not be met.

- **Alternative 4** may not fully meet Objective 2 regarding the number of residential units on the Project site. Objective 8 regarding the maintenance of visual resources would be met and improved under this alternative when compared to the Project.

- **Alternative 5** may not fully meet Objective 2 regarding the number of residential units on the Project site. Because **Alternative 5a** may require buildings to be 3-story, Objective 8 to maintain visual resources may not be met.
Alternative 4 would eliminate two of the six identified Class I impacts of the Project, which relate to scenic resources and solid waste generation. None of the alternatives would eliminate the significant and unavoidable impacts related to the identified burial site within CA-SBA-56, construction noise, or hazardous materials/ risk of upset. All other project impacts would be reduced below identified thresholds of significance through implementation of the mitigation measures described in this EIR. Although some alternatives would reduce impacts in such areas as cultural resources and noise, these reductions would be incremental in nature and adoption of an alternative rather than the Project would not be necessary to avoid significant environmental effects. Therefore, based on the reduction of impacts and ability to meet the objectives of the Project, Alternative 4 “Reduced Building Height” would be the environmentally superior alternative of those described above.

Table 6-4
Impact Comparison of Alternatives

<table>
<thead>
<tr>
<th>Issue</th>
<th>Alternative 1 No Project/ No Development</th>
<th>Alternative 2 Avoid CA-SBA-56 and Buffer</th>
<th>Alternative 3 Increase Railroad/Freeway Buffer and Higher Sound Barrier</th>
<th>Alternative 4 Reduced Building Height</th>
<th>Alternative 5 (a/b) Business Park Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aesthetics</td>
<td>+</td>
<td>=</td>
<td>=</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>Air Quality</td>
<td>+</td>
<td>+/-</td>
<td>=</td>
<td>+/-</td>
<td>-</td>
</tr>
<tr>
<td>Biological Resources</td>
<td>+</td>
<td>=</td>
<td>=</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultural Resources</td>
<td>+</td>
<td>+</td>
<td>=</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geology and Soils</td>
<td>+</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Greenhouse Gas Emissions</td>
<td>+</td>
<td>+/-</td>
<td>=</td>
<td>+/-</td>
<td>-</td>
</tr>
<tr>
<td>Hazardous Materials/Risk of Upset</td>
<td>+</td>
<td>+/-</td>
<td>=</td>
<td>+/-</td>
<td>=/+</td>
</tr>
<tr>
<td>Hydrology and Water Quality</td>
<td>+</td>
<td>+/-</td>
<td>=</td>
<td></td>
<td>=</td>
</tr>
<tr>
<td>Land Use and Planning</td>
<td>-</td>
<td>+/-</td>
<td>=/-</td>
<td>=</td>
<td>=/-</td>
</tr>
<tr>
<td>Noise</td>
<td>+</td>
<td>+/-</td>
<td>=</td>
<td>+=/</td>
<td>=</td>
</tr>
<tr>
<td>Public Services</td>
<td>+</td>
<td>+/-</td>
<td>=</td>
<td>+/-</td>
<td>=</td>
</tr>
<tr>
<td>Recreation</td>
<td>+</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Transportation/ Circulation/ Parking</td>
<td>+</td>
<td>+/-</td>
<td>=</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>Utilities and Service Systems</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>=/+.</td>
</tr>
</tbody>
</table>

+ Superior to the Project (reduced level of impact)
- Inferior to the Project (increased level of impact)
=/+ slightly superior to the Project in one or more aspects, but not significantly superior
=/- slightly inferior to the Project in one or more aspects, but not significantly inferior
= Similar level of impact to the Project
This page intentionally left blank.
7.0 REFERENCES AND EIR PREPARERS

7.1 REFERENCES

7.1.1 Source Material

California Air Pollution Control Officers Association (CAPCOA). *CEQA and Climate Change: Addressing Climate Change through California Environmental Quality Act (CEQA)*. January 2008.

Heritage Ridge Residential Project EIR

Section 7.0 References

Frittelli, J; Andrews, A; Parfomak, P; Pirog, R; Ramseur, J; and Ratner, M 2014. U.S. Rail Transportation of Crude Oil: Background and Issues for Congress. December.

Goleta Water District. 2015. Stage III Water Shortage Emergency Information. Available at: [link](http://www.goletawater.com/home/featured-story/stage-iii-water-shortage-emergency-information/).

Goleta, City of. 2014b. Goleta Green Building Program Guide.

Goleta, City of. 2009. Figure 5-2 Fire, Flood, and Tsunami Hazards Map. Available at: http://www.cityofgoleta.org/home/showdocument?id=4108.

Goleta, City of. May 2004b. Background Report #18: Biological Resources.

Section 7.0 References

Parmesan, C. 2006. Ecological and Evolutionary Responses to Recent Climate Change.

Santa Barbara County Air Pollution Control District. Final 2010 Clean Air Plan. January 2011.

Santa Barbara County Air Pollution Control District. Final 2013 Clean Air Plan. June 2013.

City of Goleta

United States Department of Agriculture (USDA). 1982. *Soils Survey of Santa Barbara County, California, South Coastal Part*.

United States Environmental Protection Agency (U.S. EPA). EPA Particulate Matter (PM) Regulatory Actions, October 201520152015. http://www.epa.gov/pm/actions.html.

7.1.2 Contacts

Arnoldi, Ugo Peter, Chief of Police Services for the City of Goleta Police Department, Santa Barbara County Sheriff’s Office. Personal communication. December 7, 2015.

Nation, Mark, General Manager/Superintendent, Goleta West Sanitary District. Personal communication. June 2, 2015.

7.2 EIR PREPARERS

The City of Goleta prepared this EIR with the assistance of Rincon Consultants, Inc. Rincon Consultants’ staff involved in the preparation of the EIR are listed below.

Joe Power, AICP CEP, Principal
Chris Bersbach, MESM, Project Manager
Duane Vander Pluym, D.ESE, Principal, Senior Environmental Scientist
Jonathan Berlin, Planner
Mattie Cardenaz, Planner
Hannah Mize, Planner
Lindsey Sarquilla, Planner
Ken Chen, Planner
Holly Harris, Biologist
Kevin Hunt, Archaeologist
Doug Carreiro, GIS Analyst
Julia Hall, Graphics Technician
Debra Jane Seltzer, Marketing/Production Coordinator