ATTACHMENT D

PARTNER ENGINEERING AND SCIENCE, INC.
PROPERTY CONDITION REPORT
PROPERTY CONDITION REPORT

Goleta Community Center
5679, 5681 & 5689 Hollister Avenue
Goleta, California 93117

December 30, 2016
Partner Project Number: 16-170535.1

Prepared for:

City of Goleta
130 Cremona Drive, Suite B
Goleta, California, 93117
December 30, 2016

Ms. Claudia Dato
City of Goleta
130 Cremona Drive, Suite B
Goleta, California, 93117

Subject: Property Condition Report
Goleta Community Center
5679, 5681 & 5689 Hollister Avenue
Goleta, California
Partner Project No. 16-170535.1

Dear Ms. Dato:

Pursuant to Agreement No. 2016-16 between the City of Goleta ("Client") and Partner Engineering and Science, Inc. ("Partner") is pleased to provide the results of the assessment performed on the above-referenced property. At a minimum, this assessment was performed in general conformance with the scope and limitations as set forth by ASTM E2018-15 "Standard Guide for Property Condition Assessments: Baseline Property Condition Assessment Process" and as specified in the agreed contract that initiated this work. Specific requirements or deviations from the minimum ASTM standard are described herein. The findings are detailed in the attached property condition report.

The purpose of this assessment is to describe the primary systems and components of the subject property, to identify conspicuous defects or material deferred maintenance, and to present an opinion of costs to remedy to observed conditions. In addition, this report identifies systems or components that are anticipated to reach the end of their expected useful life during the specified evaluation term and includes an opinion of cost for future capital replacements.

This assessment was performed utilizing methods and procedures consistent with good commercial or customary practices designed to conform to acceptable industry standards. The independent conclusions represent Partner’s best professional judgment based upon existing conditions and the information and data available to us during the course of this assignment.

We appreciate the opportunity to provide these assessment services. If you have any questions concerning this report, or if we can assist you in any other matter, please contact Jenny Redlin at (310)765-7243.

Sincerely,

Partner Engineering and Science, Inc.

DRAFT
Michael P. Arias
Technical Director – Principal

DRAFT
Jenny Redlin
National Client Manager
TABLE 1 - IMMEDIATE REPAIRS & DEFERRED MAINTENANCE COST OPINION

Goleta Community Center
PROPERTY ADDRESS:
5679,
5681 & 5689 Hollister Avenue, Goleta, CA 93117

DRAFT
Partner Project No. 16-170535
December 30, 2016

<table>
<thead>
<tr>
<th>Sect. No</th>
<th>Deficiency or Repair Item</th>
<th>Quantity</th>
<th>Unit</th>
<th>Unit Cost</th>
<th>Immediate Repair</th>
<th>Short-Term Cost</th>
<th>Total Cost</th>
</tr>
</thead>
</table>

SITE/TRACT IMPROVEMENTS
- 3.0 None noted

BUILDING STRUCTURE
- 4.0 Repair crack in the basement foundation wall of the Community Center Building with epoxy injection
 - 1 LS $2,000 $2,000 $2,000
- 4.0 Clear soil away from pier footings in crawl space of the Community Center Building
 - 1 LS $1,000 $1,000 $1,000

EXTERIOR ENVELOPE
- 5.1 Repair inoperable windows mechanisms at east classrooms of the Community Center building
 - 1 LS $5,000 $5,000 $5,000

MECHANICAL AND ELECTRICAL SYSTEMS
- 6.2 Replace sewer line between the Community Center office restroom drainout and the men's restroom. Cost includes further investigation and possible pump station
 - 1 LS $30,000 $30,000 $30,000

INTERIOR ELEMENTS AND FINISHES
- 7.0 None noted

CODE REVIEW
- 8.0 None noted

ADA COMPLIANCE
- 9.0 Modify bus shelters to provide wheelchair access
 - 2 EA $1,500 $3,000 $3,000
- 9.0 Modify/construct compliant curb cuts at existing accessible parking locations adjacent to existing buildings
 - 3 EA $10,000 $30,000 $30,000
- 9.0 Modify walkways along the south side of the Community Center building to eliminate non-compliant cross-slopes and ramps to the pre-fabricated day care buildings
 - 1 LS $10,000 $10,000 $10,000
- 9.0 Reset uneven brick pavers at walkway from bus shelter at Hollister Avenue
 - 1 LS $1,000 $1,000 $1,000
- 9.0 Provide accessible concrete ramp with handrails to top level at gazebo
 - 1 LS $2,500 $2,500 $2,500
- 9.0 Modify existing sloped walkway to provide compliant access between Classroom Buildings B and C4
 - 1 LS $5,000 $5,000 $5,000
- 9.0 Provide compliant handrails at main entrance and accessible ramp to the Community Center
 - 1 LS $15,000 $15,000 $15,000
- 9.0 Adjust door closers to provide less than 5 lbs opening pressure
 - 1 Maint $15,000 $15,000 $15,000
- 9.0 Replace roller hardware with lever-type hardware
 - 50 EA $300 $15,000 $15,000
- 9.0 Provide cane detection at the drinking fountain at the Community Center
 - 1 LS $1,000 $1,000 $1,000
- 9.0 Modify existing public restrooms of the Community Center building
 - 2 EA $25,000 $50,000 $50,000

TOTAL $170,500 $170,500

PARTNER
TABLE 2 - REPLACEMENT RESERVE COST OPINION

<table>
<thead>
<tr>
<th>SECT/TRACT IMPROVEMENTS</th>
<th>AVG. YR</th>
<th>LIFESPAN (YR)</th>
<th>RENTABLE AREA (ft²)</th>
<th>SITE EFFECTIVE AGE (YR)</th>
<th>INFLATION RATE</th>
<th>EVALUATION PERIOD (YR)</th>
<th>RENTABLE AREA (ft²)</th>
<th>SITE EFFECTIVE AGE (YR)</th>
<th>INFLATION RATE</th>
<th>EVALUATION PERIOD (YR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE/TRACT IMPROVEMENTS</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Asphalt seal coat & parking stall striping</td>
<td>5</td>
<td>4</td>
<td>102,000</td>
<td>$9.14</td>
<td>$15,130</td>
<td>$15,300</td>
<td>$15,300</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Mill, spray and place asphalt overlay</td>
<td>25</td>
<td>4</td>
<td>102,000</td>
<td>$5.72</td>
<td>$280,500</td>
<td>$280,500</td>
<td>$280,500</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>3.13</td>
<td>Replace guardrail</td>
<td>15</td>
<td>13</td>
<td>2</td>
<td>1</td>
<td>LS</td>
<td>$12,000</td>
<td>$12,000</td>
<td>3.13</td>
<td></td>
</tr>
<tr>
<td>BUILDING STRUCTURE</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>BUILDING ENVELOPE</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Roof replacement - Asphalt shingles, included repairs or replacement of gutters and downspouts</td>
<td>20</td>
<td>17</td>
<td>3</td>
<td>36,700</td>
<td>SF</td>
<td>$13.00</td>
<td>$101,100</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Roof replacement - EPDM rubber, included repairs or replacement of gutters and downspouts</td>
<td>20</td>
<td>18</td>
<td>2</td>
<td>12,000</td>
<td>SF</td>
<td>$15.00</td>
<td>78,000</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Exterior cleaning, painting, sealing</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>47,000</td>
<td>SF</td>
<td>$12.00</td>
<td>$58,750</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>MECHANICAL AND ELECTRICAL SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>HVAC system replacement, replace</td>
<td>20</td>
<td>19</td>
<td>1</td>
<td>3</td>
<td>Ton</td>
<td>$5,000</td>
<td>1,000</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>HVAC system furnace-fan coil, replace</td>
<td>20</td>
<td>24</td>
<td>1</td>
<td>3</td>
<td>Ton</td>
<td>$900</td>
<td>2,400</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Replace 10-gallon water heater</td>
<td>20</td>
<td>18</td>
<td>5</td>
<td>3</td>
<td>EA</td>
<td>$1,000</td>
<td>2,000</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Drilled testing of the electrical service</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>EA</td>
<td>$1,200</td>
<td>1,200</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>Replace fire alarm panel</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td>EA</td>
<td>$8,500</td>
<td>8,500</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>INTERIOR ELEMENTS AND FINISHES</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Paint Community Center & Hall ceiling</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>10000</td>
<td>SF</td>
<td>$0.75</td>
<td>37,500</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Replace Community Center carpet</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>2000</td>
<td>SF</td>
<td>$0.90</td>
<td>$18,000</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Replace Community Center vinyl flooring</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>3000</td>
<td>SF</td>
<td>$1.90</td>
<td>18,000</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>Replace Community Center hardwood flooring</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>7500</td>
<td>SF</td>
<td>$10</td>
<td>$75,000</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Replace kitchen equipment</td>
<td>25</td>
<td>70</td>
<td>5</td>
<td>1</td>
<td>LS</td>
<td>$50,000</td>
<td>50,000</td>
<td>7.3</td>
<td></td>
</tr>
</tbody>
</table>

Note: All costs are in $US.
TABLE 2 - REPLACEMENT RESERVE COST OPINION

Goleta Community Center
PROPERTY ADDRESS: 5679, 5681 & 5689 Hollister Avenue, Goleta, CA 93117

DRAFT
Partner Project No 16-170335
December 30, 2016

| SECT. # | Description | UNINFLATED CUMULATIVE TOTAL | INFLATED CUMULATIVE TOTAL | UNIT COST | YR 1 | YR 2 | YR 3 | YR 4 | YR 5 | YR 6 | YR 7 | YR 8 | YR 9 | YR 10 | Total Cost |
|---------|-------------|----------------------------|--------------------------|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------|
| 8.0 | All code-related issues are considered
AMERICANS WITH DISABILITIES ACT
9.0
Immediate Repair schedule | $150,957 | $180,160 | $273,100 | $112,780 | $55,900 | $ - | $ - | $ - | $71,950 | $ - | $870,000 | $ - | $924,940 | $2.76 |

Uninflated cost per s.f. per year: $2.76
Inflated cost per s.f. per year: $2.91

RENTABLE AREA (sq ft): 31,834
SITE EFFECTIVE AGE (YR): 61
INFLATION RATE: 2.5%
EVALUATION PERIOD (YR): 10
EXECUTIVE SUMMARY AND PROPERTY DESCRIPTION

Executive Summary

In accordance with the requirements of Agreement No. 2016-16 prepared by the City of Goleta ("Client"), Partner Engineering and Science, Inc. (Partner) has performed a property condition assessment (PCA) of the parcel and improvements located at 5679, 5681, & 5689 Hollister Avenue, Goleta, California.

Goleta Community Center is a three-building campus containing approximately 35,335 gross square feet surrounded by surface parking on a 9.84 acre parcel of land. Each building is one story. The three buildings that comprises the property are, the Community Center building, Daycare/CAC Head Start, and Daycare/Rainbow-School. The Goleta Boys and Girls Club and a pre-fabricated building, although are placed in this parcel, are not a part of the scope of work.

The subject parcel is irregular in shape and is bounded by Hollister Avenue to the north, the Boys and Girls Club building and an unknown creek to the south, residential and commercial properties to the west and a city maintenance yard to the east.

The subject property is relatively flat with a minimum downward slope to the street (from south to north). The northern part of the site collects storm water from roofs, landscaped areas and paved areas and direct them into the adjacent Hollister Avenue. The southern part of the property slopes gently down toward the south property line. Storm water from the roofs of the school and the Community Center buildings, landscaped areas and paved areas sheet flows to on-site inlets and catch basins which are connected to an underground municipal storm water management system.

The subject property of the scope of work consists of three buildings as follows:

The Goleta Community Center was built in 1927 and contains administration offices, a pre-function area, meeting rooms, a kitchen, classrooms, an auditorium, a dining hall (senior meeting area), and public restrooms within a floor area of 19,607 S.F. An open courtyard is provided in the eastern portion of the building and is provided with landscaping, seating areas and a small fountain. The auditorium has direct access to the courtyard. A courtyard was provided at the western side of the auditorium but was enclosed to create a dining hall.

Classroom Building A houses the Daycare/CAC Head Start School and was built in 1948 with an addition in 1950; and contains offices, classrooms, a laundry room, and a mechanical room within 6,851 S.F. of floor area.

Classroom Building C4 houses the Daycare/Rainbow School and was built in 1958. This building contains the Daycare and Toddlers rooms, teacher’s restrooms, a storage room, a mechanical room and children’s restrooms within an area of 5,376 S.F.

Vehicular access is provided by one-way entry drive lane leading from the adjacent public right-of-way to the on-site drive aisles and rear parking areas. The main entrance and exit are located off Hollister Avenue. Signalization is not provided at the entrance or exit points to the subject property. Since the site has access from public transportation, parking does not appear to be an issue.
Concrete pavement is provided at the driveway aprons. Asphalt pavement is utilized throughout the balance of the site.

Based on Partner’s physical count, on-site parking is provide for a total of 170 parking spaces, including 10 ADA “standard” spaces. Although not designated as van spaces, two can be striped as “van” parking spaces.

All of the parking stalls are located in open lots. Curbing placed along the parking area perimeters and interior islands consists of cast-in-place concrete. All other observed parking spaces are provided with wheel stops.

The sidewalks, exterior colonnades and walkways throughout the property are constructed of cast-in-place concrete.

The Community Center building foundation consist of cast-in-place 14” thick foundation walls. The foundation systems include reinforced concrete column pads. The elevated floor systems of the main building consist of wood joists and are sheathed with wood planking. The walls consist on cast-in-place reinforced concrete wall structure with some wood stud-framed exterior and interior bearing walls supporting a structural wood frame roof. The roof diaphragm at the Assembly Hall is constructed of wood rafters and are sheathed with wood planking. The Dining Hall roof is constructed with wood bow string trusses and is wood planking.

Plumbing systems serve the building, restrooms, kitchens and garden spaces. Water is supplied from one main entering from Hollister Avenue into the water meter located on the north-west side of the property; water distribution is by copper lines and drained via copper or cast-iron pipes. Plumbing is run through floor rated chases to bathrooms, classrooms and kitchen areas. Natural gas is also provided and enters the site from Hollister Avenue from the northwest side of the property and is routed underground along the main drive entrance off Hollister Avenue.

The property buildings are serviced by two electrical feeder panels, one of 120/240-volt, one-phase, three wire service with a capacity of 400 amperes. The second one of 120/240, three phase, three wire service with a capacity of 400 amperes. The main electrical room is located on the basement level of the Community Center building.

Architectural Features and Building Data

The subject property consist of three single-story buildings project featuring cast-in-place concrete and wood frame construction. All these buildings have an exterior painted stucco finish. The Community Center located in front of the property on Hollister Avenue has a raised stepped main entrance and is accented by four columns highlighting the main entrance to the main lobby. The pediment of the façade exhibits original signage of “Goleta Union School” cast into the lintel bean and wood assessment
windows. Terracotta tile steps and an accessible ramp define the pedestrian entrance from street and parking area. The front area of main building contains a drop-off area, accessible and regular parking and gardens with a gazebo within a landscaped yard.

The south, east and west facades are also finished with painted stucco. At the east and west elevations, the original wood frame windows were replaced with operable vinyl windows that provide lighting and natural ventilation to the rooms located on these sides. The south elevation provides access to the Community Center via colonnades to classrooms.

Covered walkways connect to the main center with the Classroom Building B. A covered walkway provides access to Classroom Building C4.

The following table identifies the gross building areas. Gross areas were taken from the original drawing tabulation. Detailed physical measurements were not performed as part of this assessment. Parking is not included as gross building area.

<table>
<thead>
<tr>
<th>Building Designation</th>
<th>Year Built</th>
<th>Gross Area (SF)</th>
<th>Rentable Area (SF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Goleta Community Center – A</td>
<td>1927</td>
<td>22,612</td>
<td>19,607</td>
</tr>
<tr>
<td>Day Care/ CAC Head Start – B</td>
<td>1948/1950</td>
<td>7,267</td>
<td>6,851</td>
</tr>
<tr>
<td>Day Care/ Toddlers Rainbow School – C4</td>
<td>1958</td>
<td>5,456</td>
<td>5,376</td>
</tr>
<tr>
<td>Totals:</td>
<td>35,335</td>
<td>31,834</td>
<td></td>
</tr>
</tbody>
</table>

Overall Condition

Based on the systems and components observed during the walk-through survey, the subject property appears to be in good to fair condition for its age and usage. The overall level of preventative maintenance appeared to be fair and generally appears to be reactive. The detailed observations of reviewed systems are presented in the following Sections of this report, with tabulated opinions of cost presented in the Appendices. No recent or planned capital improvements were reported by the City of Goleta.

Immediate Repair Items

ASTM E2018 requires the identification of physical deficiencies and inclusion of an opinion of cost to address those items that require immediate action. Immediate action as a result of the following: Material existing or potential unsafe conditions, material building code or fire code violations, or conditions, that if left uncorrected, have the potential to result in, or contribute to, critical element or system failure within one year or may result in a significant increase in remedial cost. The identified items, if any, are listed in Table 1 – Immediate Repairs and Deferred Maintenance Cost Opinion.

Major immediate repair items include:

- Repair crack in the basement foundation wall of the Community Center Building with epoxy injection;
- Clear soil away from pier footings in crawl space of the Community Center Building;
- Repair inoperable windows mechanisms at east classrooms of the Community Center building;
• Replace sewer line between the Community Center office restroom cleanout and the men’s restroom. Cost includes further investigation and possible pump station and;
• Address non-compliant ADA features.

Replacement Reserve Items

This report includes an evaluation of the remaining useful life of the building systems and appurtenances on the subject property. The length of the evaluation term is specified by the Client. Items that represent a capital expenditure and are anticipated to reach the end of their useful life within the evaluation term are identified in Table 2 - Capital Replacement Reserve Cost Opinion.

Factors that may affect the age and condition of a system include, but are not limited to, the frequency of use, exposure to environmental elements, quality of construction and installation, and amount of maintenance provided. Based on these factors, a system may have an effective age that is greater or less than its actual chronological age. Routine maintenance costs are not included as part of this assessment. Building systems and appurtenances are expected to exceed the evaluation period, or are a tenant responsibility to maintain and replace, are omitted from Table 2.

Significant replacement reserve items include:
• Asphalt seal coat & parking stall striping;
• Mill, grind and place asphalt overlay throughout parking areas;
• Replace built-up and asphalt shingle roofing including repairs or replacement of gutters and downspouts;
• Inspect and rehabilitate dining room skylight frame, panes and sealants;
• Exterior cleaning, painting, sealing;
• Replace split-system condenser unit;
• Replace split-system furnace-fan coil unit;
• Replace 40-gallon water heater;
• Infrared testing of the electrical service;
• Replace fire alarm panel;
• Interior finishes replacement and painting;
• Refinish Community Center hardwood flooring; and
• Replace kitchen equipment.
TABLE OF CONTENTS

1.0 INTRODUCTION... 7
 1.1 Purpose .. 7
 1.2 Scope of Work ... 7
 1.3 Out of Scope Considerations ... 7
 1.4 Cost Evaluation Methodology ... 8
 1.5 Descriptive Qualifiers.. 9
 1.6 Deviation from ASTM E2018-15 .. 9
 1.7 Limitations .. 9
 1.8 ADA Exclusion .. 10
 1.9 User Reliance ... 11

2.0 RECONNAISSANCE, REGULATORY AND DOCUMENT REVIEW.. 12
 2.1 Site Reconnaissance .. 12
 2.2 Regulatory Compliance Inquiry ... 12
 2.3 Document Review .. 12

3.0 SITE TOPOGRAPHY AND IMPROVEMENTS ... 13
 3.1 Topography and Storm Drainage ... 13
 3.2 Retaining Walls .. 13
 3.3 Landscaping and Irrigation .. 13
 3.4 Site Access ... 14
 3.5 Parking .. 14
 3.6 Site Hardscape: Sidewalks and Paving .. 14
 3.7 Fences, Gates, Walls .. 15
 3.8 Exterior Lighting .. 15
 3.9 Signage ... 16
 3.10 Additional Site Improvements or Amenities .. 16
 3.11 Utility Service ... 16

4.0 BUILDING STRUCTURE ... 18
 Main Building A – Community Center ... 19
 Soil Liquefaction Hazard .. 24
 Surface Fault Rupture .. 25

5.0 EXTERIOR ENVELOPE .. 26
 5.1 Roofing .. 26
 5.2 Exterior Walls ... 27
 5.3 Windows and Doors ... 29
 5.4 Covered walkways: ... 29
 5.5 Interior and Exterior Stairs .. 30

6.0 MECHANICAL AND ELECTRICAL SYSTEMS ... 31
 6.1 Heating, Ventilation and Air Conditioning ... 31
 6.2 Domestic Water and Sewer Systems ... 31
 6.3 Electrical Supply and Gas Distribution .. 32
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Vertical Conveyances</td>
<td>33</td>
</tr>
<tr>
<td>6.5</td>
<td>Life Safety Systems</td>
<td>33</td>
</tr>
<tr>
<td>7.0</td>
<td>INTERIOR ELEMENTS</td>
<td>35</td>
</tr>
<tr>
<td>7.1</td>
<td>Common Areas</td>
<td>35</td>
</tr>
<tr>
<td>7.2</td>
<td>Tenant Areas</td>
<td>35</td>
</tr>
<tr>
<td>8.0</td>
<td>CODE REVIEW</td>
<td>37</td>
</tr>
<tr>
<td>8.1</td>
<td>Code classification</td>
<td>37</td>
</tr>
<tr>
<td>8.2</td>
<td>Certificates of Occupancy / Building Permits</td>
<td>37</td>
</tr>
<tr>
<td>8.3</td>
<td>ALTA Survey</td>
<td>37</td>
</tr>
<tr>
<td>9.0</td>
<td>AMERICANS WITH DISABILITIES ACT COMPLIANCE</td>
<td>38</td>
</tr>
<tr>
<td>10.0</td>
<td>NATURAL HAZARD INFORMATION</td>
<td>40</td>
</tr>
<tr>
<td>10.1</td>
<td>Flood Zone</td>
<td>40</td>
</tr>
<tr>
<td>10.2</td>
<td>Seismic Zone</td>
<td>40</td>
</tr>
<tr>
<td>10.3</td>
<td>Wind Zone</td>
<td>40</td>
</tr>
</tbody>
</table>

FIGURES AND APPENDICES

The following report Figures and Appendices are attached at the end of this report.

Figures
- Figure 1: Site Location Map
- Figure 2: Site Plan

Appendices
- Appendix A: Site Photographs
- Appendix B: Supporting Documentation
- Appendix C: Site Hazards Map
- Appendix D: Qualifications
1.0 INTRODUCTION

1.1 Purpose

The purpose of this property condition assessment (PCA) is evaluating the general overall physical condition of the subject property and to observe and document readily-visible material and building system defects that might significantly affect the value of the subject property, and determine if conditions exist which may have a significant impact on the continued operation of the facility during the evaluation period.

1.2 Scope of Work

This assessment was performed in general conformance with the scope and limitations as set forth by ASTM E2018-15 “Standard Guide for Property Condition Assessments: Baseline Property Condition Assessment Process” (the Standard) and as specified in the agreed contract that initiated this work.

This assessment was performed utilizing methods and procedures consistent with good commercial or customary practices designed to conform to acceptable industry standards. The independent conclusions represent Partner’s best professional judgment based upon existing conditions and the information and data available to us during the course of this assignment.

1.3 Out of Scope Considerations

These following items are categorically excluded from the scope of work.

- Utilities: Operating conditions of any systems or accessing manholes or utility pits.
- Structural Frame and Building Envelope: Entering of crawl or confined space areas (however, the field observer should observe conditions to the extent easily visible from the point of access to the crawl or confined space areas), determination of previous substructure flooding or water penetration unless easily visible or if such information is provided.
- Roofs: Walking on pitched roofs, or any roof areas that appear to be unsafe, or roofs with no built-in access, or determining any roofing design criteria.
- Plumbing: Determining adequate pressure and flow rate, fixture unit values and counts, verifying pipe sizes, or verifying the point of discharge for underground systems.
- Heating: Observation of flue connections, interiors of chimneys, flues or boiler stacks, or tenant owned or maintained equipment.
- Air conditioning & Ventilation: Process-related equipment or condition of tenant owned or maintained equipment.
- Electrical: Removing of electrical panel and device covers, except if removed by building staff, EMF issues, electrical testing, or operating any electrical devices. Process related equipment or tenant-owned equipment.
- Vertical Transportation: Examining of cables, sheaves, controllers, motors, inspection tags, or entering elevator/escalator pits or shafts.
- Life Safety/ Fire Protection: Determining NFPA hazard classifications, classifying, or testing fire rating of assemblies.
• Interior Elements: Operating appliances or fixtures, determining or reporting STC (Sound Transmission Class) ratings, and flammability issues/regulations.

Activity Exclusions- These activities listed below generally are excluded from or otherwise represent limitations to the scope of a PCA prepared in accordance with this guide (ASTM 2018-15). These should not be construed as all-inclusive or imply that any exclusion not specifically identified is a PCA requirement under this guide.

• Removing or relocating materials, furniture, storage containers, personal effects, debris material or finishes that obstruct access or visibility;
• Conducting exploratory probing or testing of materials, dismantling or operating of equipment or appliances;
• Preparing engineering calculations to determine any system's, component's or equipment's adequacy or compliance with any specific or commonly accepted design requirements or building codes, or preparing designs or specifications to remedy any physical deficiencies;
• Taking measurements or quantities to establish or confirm any information provided by the owner or user;
• Reporting on the presence or absence of pests or insects unless evidence of such presence is readily apparent during the field observer's walk-through survey or such information is provided to the consultant;
• Reporting on the condition of subterranean or concealed conditions as well as items or systems that are not permanently installed or are tenant-owned and maintained;
• Entering or accessing any area deemed by the field observer to pose a threat to the safety of any individual or to the integrity of any building system or material;
• Providing an opinion on the operation of any system or component that is shut down as the field observer will not operate any system or piece of equipment;
• Evaluating any acoustical or insulating characteristics;
• Providing an opinion on matters regarding security and protection of occupants or users from unauthorized access;
• Operating or witnessing the operation of lighting or any other system controlled by a timer, operated by the maintenance staff or operated by service companies;
• Providing an environmental assessment or opinion on the presence of any environmental issues such as asbestos, hazardous wastes, toxic materials, the location and presence of designated wetlands, IAQ, etc. unless specifically defined within the agreed scope.

1.4 Cost Evaluation Methodology

Opinions of cost presented within this report are based on construction costs developed by construction resources such as Marshall & Swift, RS Means, experience with past costs for similar projects, city cost indexes, consulting with local specialty contractors, client provided information, and assumptions regarding future economic conditions. Actual cost estimates are determined by many factors including but not limited to: choice and availability of materials, choice and availability of a qualified contractor, regional climate zone, quality of existing materials, site compatibility, and access to the subject property and buildings. In addition, opinion of costs are based solely on material replacement and do not account for soft costs.
Items included in the replacement reserve table are determined based upon the estimated useful life (EUL) of a system or component, the apparent effective age (EA) of the system, and the remaining useful life (RUL) of that system. Factors that may affect the age and condition of a system include, but are not limited to, the frequency of use, exposure to environmental elements, quality of construction and installation, and amount of maintenance provided. Based on these factors, a system may have an effective age that is greater or less than its actual chronological age.

1.5 Descriptive Qualifiers

The following definitions and terminology are used in this report regarding the physical condition of the project, and the estimated life expectancies/age of the components and systems.

- **Good**: Well maintained, may exceed expected useful life. No immediate or potential concerns.
- **Fair**: Marginally satisfactory. Some immediate repairs required. Components/Systems at or near the end of their useful life.
- **Poor**: Immediate concerns, major replacements, and/or significant attention required.

Unless stated otherwise in this report, the systems reviewed are considered to be in good condition and their performance appears to be satisfactory.

1.6 Deviation from ASTM E2018-15

Deviations from the baseline assessment established by the Standard should be identified in the property condition report (PCR). The deviations listed below are part of the Partner standard operating procedures or were specified in the Client’s scope of work.

- The Standard establishes that opinions of probable costs that are either individually or in the aggregate less than a threshold amount of $3,000 for like items are to be omitted from the PCR. Partner includes items above a threshold of $1,000 in order to present a more comprehensive report.
- This PCR includes wind and seismic zone information that is not required by the Standard.
- This PCR includes an opinion of costs for anticipated capital expenditures for an evaluation term defined by the Client. The costs are presented in Table 2 – Capital Replacement Reserve Cost Opinion.
- This report includes seismic zone information that is not required by the Standard.
- This report includes an evaluation of the condition of the observed components and systems.

1.7 Limitations

The assessment performed by Partner is based upon the guidelines set forth by the ASTM Standard current to the issuance of this report and subject to the limitations stated therein. Our review of the subject property consisted of a visual assessment of the site, the structure(s) and the accessible interior spaces. Any technical analyses made are based on the appearance of the improvements at the time of this assessment and the evaluator’s judgment of the physical condition of the subject property components, their ages and their expected useful life (EUL).
Information regarding the subject property is obtained from a site walk-through survey, local government agency records review, interviews and client-, tenant- or property owner-provided documents. No material sampling, invasive or destructive investigations, equipment or system testing was performed. The observations and related comments within this report are limited in nature and should not be inferred as a full and comprehensive survey of the building components and systems.

Information regarding operations, conditions and test data provided by the Client, property owner, or their respective representatives has been assumed to be factual and complete. Information obtained from readily-available sources, including internet research and interview of municipal officials or representatives is assumed to be factual and complete. No warranty is expressed or implied, except that the services rendered have been performed in accordance with generally-accepted practices applicable at the time and location of the study.

The actual performance of systems and components may vary from a reasonably expected standard and will be affected by circumstances that occur after the date of the evaluation. Partner’s assessments, analyses and opinions expressed within this report are not representations regarding either the design integrity or the structural soundness of the project.

The report does not identify minor, inexpensive repairs or maintenance items, which are clearly part of the subject property owner’s current operating budget so long as these items appear to be addressed on a regular basis. The report does identify infrequently occurring maintenance items of significant cost, such as exterior painting, roofing, deferred maintenance and repairs and replacements that normally involve major expense or outside contracting.

The assessment of the roof, façade and substructure contained herein cannot specifically state that these items are free of leaks and/or water intrusion and should not be interpreted as such. Comments made with respect to the condition of the systems are limited to visual observation and information provided by the designated site contacts and/or on-site representatives and their contractors/vendors. The evaluation of these systems did not include any sampling and/or testing. A more extensive evaluation may be required if a comprehensive report on the condition of these systems is required.

Performance of a comprehensive building, fire or zoning code review is outside of the scope of work for this PCR. Information provided within this report is based on readily-available information or interview of municipal officials.

1.8 ADA Exclusion

This PCR is not a comprehensive Americans with Disabilities Act review. Partner performed a Tier II survey, which includes visual observations of the accessible parking spaces, accessible routes to building entrances, and interior publicly-accessible areas; tenant areas are excluded. Random measurements and counts were taken. This PCR does not present an audit of all components specified in federal, state or local accessibility regulations. Instead, this review noted general design components such as routes of travel, door hardware, plumbing amenities, elevator controls and signals, basic emergency alarm components and signage.
1.9 User Reliance

Partner was engaged the City of Goleta ("Client") or their authorized representative, to perform this assessment. The engagement agreement specifically states the scope and purpose of the assessment, as well as the contractual obligations and limitations of both parties. This report and the information therein, are for the exclusive use of the Client. This report has no other purpose and may not be relied upon, or used, by any other person or entity without the written consent of Partner. Third parties that obtain this report, or the information therein, shall have no rights of recourse or recovery against Partner, its officers, employees, vendors, successors or assigns. Any such unauthorized user shall be responsible to protect, indemnify and hold Partner, the Client and their respective officers, employees, vendors, successors and assigns harmless from any and all claims, damages, losses, liabilities, expenses (including reasonable attorneys’ fees) and costs attributable to such use. Unauthorized use of this report shall constitute acceptance of and commitment to, these responsibilities, which shall be irrevocable and shall apply regardless of the cause of action or legal theory pled or asserted.

This report has been completed under specific Terms and Conditions relating to scope, relying parties, limitations of liability, indemnification, dispute resolution and other factors relevant to any reliance on this report. Any parties relying on this report do so having accepted the evaluation periods and Conditions for which this report was completed. A copy of Partner’s standard Terms and Conditions can be found at http://www.partneresl.com/terms-and-conditions.php
2.0 RECONNAISSANCE, REGULATORY AND DOCUMENT REVIEW

2.1 Site Reconnaissance

Date: October 20, 2016
Weather: Sunny day with 78 degrees Fahrenheit
Observation Team: The project observation was conducted by a Partner team comprised of Michael Arias, Technical Director, Renan Zepeda, Project Manager and David Gaines, P.E. Project Manager.
Escort: Frank Macias, Director of Maintenance, Goleta Community Center, (805)331-6363

Limiting Conditions

The performance of this assessment was limited by the following conditions:

• A pre-survey questionnaire was not completed at the time of the assessment.

2.2 Regulatory Compliance Inquiry

A regulatory-compliance investigation is excluded from the Scope of Work.

2.3 Document Review

The following documents were reviewed as part of this assessment. Information obtained from the documents is incorporated into the appropriate Sections of this report. If available, copies of the referenced documents are included in the appendices.

• Tax Assessor property information;
• Zoning Map;
• As built drawings prepared by Arendt/ Mosher/ Grant/ Pedersen/ Phillips Architects;
• Facility Reserve Study prepared by EMG corporation dated September 1, 2015;
• Fire and Life Safety Assessment prepared by Crosby Group dated April 24, 2013; and
• Accessibility Assessment prepared by Crosby Group dated April 24, 2013.
3.0 SITE TOPOGRAPHY AND IMPROVEMENTS

3.1 Topography and Storm Drainage

The subject property is relatively flat with a minimum downward slope to the street (from south to north). Storm water from roofs of the Community Center is routed to sheet metal gutters or downspouts and discharged at grade. Water falling onto landscaped areas and paved areas is directed into the adjacent Hollister Avenue. The rear of the property slopes gently down toward the south property line. Storm water from the roofs of Buildings B and C4, landscaped areas and paved areas is routed to on-site inlets and catch basins connected to the underground piping of the municipal storm water management system.

Survey Condition and Analysis:

The topography was observed to be in fair overall condition and appears to adequately accommodate the built improvements. Routine maintenance is anticipated during the evaluation period.

Precipitation was not present during the walk-through survey; consequently, direct observation of the operation of the storm water drainage system was not possible. Evidence of improper operation was not readily apparent. Routine maintenance, including clearing of debris from inlets, channels, piping, and outlets, is anticipated throughout the evaluation period.

Partner observed signs of small ponding or silt deposits on the asphalt paving. Upon sealcoating, these areas can be filled or corrected as needed. Drainage for the site appears to be adequate. Slopes and grade elevations appear to be adequate for proper drainage and connections to the main sewer lines.

3.2 Retaining Walls

No retaining walls were observed on-site.

3.3 Landscaping and Irrigation

Landscaped areas consisting of lawn areas, floral plantings, trees and shrubs are provided in areas not occupied by buildings, walkways or pavement. Most of the landscaping is located in front of the Community Center Building and around the gazebo. The playground between buildings are shaded by large trees. An underground automatic irrigation system is provided.

Survey Condition and Analysis

Vegetative materials were observed to be seasonally dormant and appeared to be in good overall condition. Routine maintenance, including as-needed replacement of vegetation, is anticipated throughout the evaluation period.

Although the sprinkler system was not directly tested, components are assumed to be in proper working order based on the general good appearance of the landscaping. The overall maintenance practices by the landscape service also appeared to be adequate.

Trimming is recommended for some trees to avoid foliage contact with the building. Based on the limited scope and cost, this work should be conducted as part of routine maintenance.
3.4 Site Access

Vehicular access to the Community Center building site is provided by a one-way drive lane off Hollister Avenue at the northwest corner of the property. The drive provides access to parking areas in front of the Community Center building and the south parking area. A one-way exit is also located off Hollister Avenue. There are no signals at entrances to the project site itself. A signalized pedestrian access is provided across Hollister Avenue near the northwest corner of the property. Concrete pavement is provided at the right-of-way approaches on Hollister Avenue entrance and exit. Asphalt pavement is utilized throughout the property.

Survey Condition and Analysis

A traffic study is not a part of the scope of work but ingress and egress access appears to be adequate to the property.

3.5 Parking

On-site parking consists of surface lots located in front and back of property.

Based on a physical count, parking areas provide a total of 170 open vehicle spaces located throughout the parking areas of the site, including 10 ADA-designated spaces. No “van-accessible” parking spaces are designated but two can be striped as such.

Curbing where provided at the parking area perimeters and interior islands consists of cast-in-place concrete. All parking other spaces are provided with wheel stops.

Lighting at parking areas is provided by pole-mounted light fixtures, the fixtures are equipped with high-intensity discharge lamps. The poles are constructed with elevated concrete bollard bases. Timers and photocells control exterior lighting.

Survey Condition and Analysis

Based upon Partner’s field count of 170 parking spaces and the reported rentable square footage of 31,834 square feet (including offices, classrooms, conferences rooms and dining room and occupied spaces), the parking ratio is an average of 5.34 spaces per 1,000 square feet. Based upon industry standards for tenant parking of 4/1000 for office usage, the available parking appears adequate. Proper signage indicating accessible parking spaces for cars and vans are not provided. An opinion of cost is noted in Section 9.0.

No significant issues related to site lighting were observed, however, an evening site visit was not performed to determine adequacy of lighting coverage or illumination of the property.

3.6 Site Hardscape: Sidewalks and Paving

The pavement consists of asphalt throughout the parking areas. Concrete sidewalks are provided in front of the property and concrete ramps to accommodate grade changes. Broom-finish concrete sidewalks that lead from the parking areas to the building and classrooms entrances are also provided. A municipal sidewalk is provided along the Hollister Avenue frontages.
Terra cotta tile is provided at the site stairs of the Community Center main entrance.

Survey Condition and Analysis

Pavement was observed in generally fair condition at front parking area, the pavement at south back parking was observed in poor condition. The asphalt seal coat and pavement markings appear to be in poor condition.

The asphalt pavement was noted to be severely alligatored (cracked) and worn in many locations. Displacement of pavement and potholes were also noted. Based on EUL and apparent condition, a mill, grind, and overlay is recommended as well as periodically resealed asphalt surfaces. An opinion of cost is included in Table 2.

Evidence of ponding was observed on the back parking paved areas. Repair of the ponding is recommended. Based on the limited scope and cost, this work should be conducted as part of routine maintenance.

The curbs appeared to be in average condition. Other than routine maintenance, which includes minor concrete curb and wheel stop repair/replacement, no significant capital expenditures anticipated over the evaluation period.

Walkways appear to be in good overall condition. Routine maintenance is anticipated during the evaluation term. Periodic application of water-repelling sealant is recommended. Due to the limited scope and low estimated cost, the sealant application is considered to be part of routine maintenance.

3.7 Fences, Gates, Walls

Fences: Part of the property is secured on south and east sides by fencing. The fencing consists of conventional chain link fabric supported by steel posts and horizontal posts on top. Playground areas are secured by chain link fences.

Gates: Access gates are not provided.

Walls: The west boundary the property is secured by a six-foot high concrete masonry unit (CMU) wall.

Survey Condition and Analysis

The fencing was observed to be in good condition. Routine maintenance is anticipated during the evaluation term.

The walls were observed to be in good condition. Routine maintenance is anticipated during the evaluation term. Repaint periodically as part of routine maintenance. An opinion of cost is included in Table 2 as part of exterior building cleaning and painting.

3.8 Exterior Lighting

Outdoor lighting is provided by pole-mounted light fixtures generally located in parking areas, surface-mounted halogen lighting along the ceiling of corridors and classroom walls. The fixtures are equipped with high-intensity discharge lamps. The lighting poles at parking are constructed with elevated concrete bollard bases. Timers and photocells control exterior lighting.
Survey Condition and Analysis

The assessment was conducted during daylight hours and lighting operation could not be verified. Based on the number of lights provided and the spacing, the lighting appears to be adequate and was reported to be sufficient.

3.9 Signage

Property identification signage is a wood panel monument mounted on two concrete columns, the sign is located adjacent to Hollister Avenue. Classrooms are identified with unit numbers mounted on the front of the entrance doors respectively. Additional wood and metal-framed informational signage was observed throughout the site describing schools information.

Survey Condition and Analysis

The property identification signage was observed to be sufficient and in good condition. Other than routine maintenance, no significant capital expenditures are anticipated during the evaluation period.

3.10 Additional Site Improvements or Amenities

Courtyard area with benches, chairs and tables is provided in the building. Painted wood benches and chairs are located along the building interior corridors.

A gazebo and transit shelter are located in front of main building at Hollister Avenue. The gazebo and shelter are wood-framed structures. The roofs are finished with wood shake shingles.

Survey Condition and Analysis

The bus shelter and gazebo structures are in good condition. The gazebo is in generally good condition but is showing signs of deterioration, lack of maintenance and age. The age of the gazebo is not known but appears to be approximately 20-25 years old. Consideration should be given to replacing the gazebo with the evaluation term. An opinion of cost is included in Table 2. Also, the gazebo is not provided with an accessible ramp. An opinion of cost for this work is noted in Section 9.0. Maintenance or replacement of the other site amenities can be conducted on an as-needed basis as part of routine maintenance.

3.11 Utility Service

<table>
<thead>
<tr>
<th>Utility Service Providers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water:</td>
</tr>
<tr>
<td>Sanitary/Storm Sewer:</td>
</tr>
<tr>
<td>Electric:</td>
</tr>
<tr>
<td>Gas:</td>
</tr>
<tr>
<td>Telephone/Communication:</td>
</tr>
</tbody>
</table>

Water service is provided from the Street, entering the buildings at the Community Center. A backflow preventer is provided at the front yard. Sanitary Sewer service is provided from the west property manhole, entering the property through a west courtyard and from there to all buildings.
Service is provided to the main electrical room located at the basement of the Community Center. Natural gas shut off valve and connection lines are located at the sidewalk on Hollister Avenue. Lines are directed to the kitchen and water heaters in the Community Center building.

Survey Condition and Analysis

No significant issues were noted on services except for sewer lines. Sewer lines present problems of sloping and broken lines. Replacement of the lines is recommended and noted in 6.2 Domestic Water and Sewer sections.
4.0 BUILDING STRUCTURE

Purpose/Scope:

Partner performed a structural condition assessment of the subject property. This included the following scope of work:

1. General structural evaluation of the building superstructures by a practicing structural engineer
2. Visual inspection of the subject property.
3. Review of all available structural and architectural construction documents
4. Review of prior structural reports
5. Perform limited destructive investigation to verify specific building components as needed to evaluate the structural integrity of the buildings and verify general conformance to the structural and architectural plans provided.
6. Provide any recommendations for long term serviceability of the building superstructures
7. Comment on expected seismic performance and provide recommendations if needed

A visual inspection of three buildings on the property was conducted by David Gaines, P.E. (CA 55573) on October 20, 2016. The subject property included Main Building-A, Site-Built Classroom Building-B and Site-Built Classroom Building-C4. Refer to Figure 2 Site Plan Portrait Goleta Community Center.

Prior reports reviewed:

A Tier-1 Seismic Screening Evaluation report was prepared by Cosby Group Structural Engineering and Design dated April 24, 2013. This was based on ASCE 31-03 “Seismic Evaluation of Existing Buildings”. The report provides a screening evaluation of the building structures for expected seismic performance to a Life Safety performance objective. In a few cases where the Tier-1 study identified expected performance deficiencies, Tier 2 methods were utilized to show the buildings met acceptable performance standards. The procedures contained in ASCE-31-03 American Society of Civil Engineers Seismic Evaluation of Existing Buildings 2003, have been recently updated by a newer version of this standard ASCE-41-13 (2013). The procedures and methodologies contained in the newer standard are slightly different than those specified in the former standard.

Limitations:

The independent conclusions represent Partner’s best professional judgment based upon existing conditions and the information and data available to us during the course of this assignment.

- The enclosed attics were not inspected due to access and safety limitations.
- The substructure areas (crawlspace) were only observed from two interior access openings in the Main Building-A.

Review of architectural and structural design documents.

Portions of the original architectural drawings, including portions of the structural details, were copied into undated drawings by Arendt, Mosher, Grant, Pedersen and Phillips Architects were provided for the front, Community Center, Main Building A for our review. These drawings included details of a proposed structural retrofit of the auditorium roof and other areas that do not appear to have been completed.
These drawings also include plans for additions of a swimming pool and tennis courts that were apparently never built. Original architectural and structural drawings by architects Windsor Soule and John Fredrick Murphy, dated December 16, 1949, were provided for review showing the east half of the mid-campus, Site-Built Classroom Building B, a Day Care/CAC Head Start. The west half of this building was reportedly built in 1948, according to the drawings for the east half, but no drawings were available for review. Original architectural and structural drawings for the south Day Care/ Rainbow School building, Site-Built Classroom Building C, by Howell, Arendt, Mosher and Grant, Architects and Planners, dated May 9th, 1958 were available for review. Our description and assessment of the buildings is based on a cursory review of drawings, site observations and experience with buildings of similar age and construction.

Survey of the Existing Buildings with Observational Commentary

Main Building A – Community Center

The Main Building A is a 1927 wood framed building with concrete foundations, stucco cement exterior wall finishes, plaster interior walls, raised wood floors and wood framed gable end roofs and flat roofs. The building has the appearance of a Spanish style building that was commonly built in the late 1920s. The building looks like the kind of structure that may have had a Spanish tile roof in the past, but the roof covering has been replaced by a lighter-weight composition shingle roof covering. Some of the details for this building, apparently copied from the original drawings into the undated upgrade drawings, show Spanish tile roof covering. Historic photos of the building might reveal whether there was a tile roof in the past.

The walls of the Community Center consist of cast-in-place reinforced concrete wall structure with some wood stud-framed exterior and interior bearing walls supporting a structural wood frame roof. The roof diaphragm at the Auditorium is constructed of wood rafters and are sheathed with wood. The Dining Hall roof is constructed with wood bow string trusses and is wood sheathing.

Evidence of structural distress indicative of framing failure was not observed. Vertical framing members appeared to be plumb, while horizontal framing members appeared to be level.

Foundation - The main Community Center building foundation consist of cast-in-place concrete perimeter wall footings that are 14” thick with concrete foundation stem walls. The interior floor supports consist of floor joists over girders bearing on piers and concrete pad foundations. The foundation systems include reinforced concrete column pads.

In the substructure area below the 1927 Community Center, Main Building A in the areas visible from the two interior access crawl openings the dirt of the exposed soil has covered over the top of the concrete pier pads, bringing dirt in contact with the wood posts. It cannot be determined whether this dirt level over the concrete pads occurred during original construction, if it shifted during subsequent plumbing or other work or whether the concrete pads are settling. The dirt appears to be uniformly flat suggesting that the concrete pads were poured too low. The interior floors did not reveal any visible excessive deflection that might indicate differential settlement of the interior pier foundations.

In the basement below the rear, southwest corner of the Community Center a large crack was noted at the north wall next to an electrical panel box. The vertical crack appears to be due to differential settlement of the basement foundations.
Superstructure - The Auditorium roof consists of wood and steel rod trusses at twelve to sixteen feet on center. The trusses are built up with 6x8 wood timbers and ¾" vertical steel rods at 3 locations. The trusses span approximately forty feet between cast-in-place concrete walls. 4x10 purlins span between the trusses and are supported at the trusses on steel hangers. 2x6 rafters span over the 4x10 purlins at 2'-0" on center. 2x6 tongue and groove sheathing spans over the 2x6 rafters. 1x8 diagonal sheathing occurs on top of the 2x6 sheathing, below the roof covering.

The undated drawings for the Community Center indicate new ½" plywood sheathing was to be placed over the 1x8 diagonal sheathing. A portion of the composition shingle roof covering was removed at the southwest corner of the auditorium roof. An inspection was performed, revealing only the 1x8 diagonal wood sheathing, indicating that the ½" plywood shown in the drawings was never installed. The 1x8 diagonal sheathing is not adequate for the lateral loads resulting from the heavy concrete walls and the heavy trussed roof.

The 4x10 purlins are raise approximately 2 inches above the tops of the 6x8 trusses, separating the 2x6 roof rafters and 1x8 roof sheathing from the trusses. The roof trusses do not connect to the roof diaphragm directly because of the 2" gap between the top of the trusses and the 2x6 roof rafters. Since the trusses are the primary anchors between the heavy east and west concrete walls and the roof assembly, and the roof diaphragm connects these lateral forces to the perpendicular north and south walls which oppose seismic forces, the heavy walls are at an increased risk of collapse during an earthquake. The roof diaphragm currently relies on nailing into a wood ledger or added 2x blocking. Since this building was built structural engineers have learned that nailing the roof sheathing to a ledger is a very weak connection and can result in the ledger splitting in cross-grain bending, thereby letting heavy concrete walls fall away. In the drawings provided, no wall anchorage other than ledger nailing was noted between the north and south walls and the roof diaphragm.

The Assembly Room to the west of the auditorium was added into a space that was originally an open patio area between the west wing of classrooms and the auditorium. A covered and semi enclosed hallway originally occurred on the patio sides of the classroom wing and auditorium with sloped roofs and cast-in-place concrete walls. These hallways were much like the covered hallway that remains at the east classroom wing. The hallway walls on the patio sides included arched openings that are now filled in with glass window frames or wall framing. Original construction drawings for the Assembly Room were not available for review.

The arched barrel roof of the Assembly Room was built on top of short wood-framed walls that were built above the original concrete walls surrounding the patio. The arched roof is tied into the original roof by wood framing, sloped crickets and composition roof covering. The roof is supported by arched barrel trusses at 8'-0" on center. These trusses are formed from 4x10 timbers that are bolted together at uniformly varied angles around the arch. Once the basic shape was formed with segments of 4x10 timbers it was cut along the top to create the rounded arch. The bottom tension chord of these barrel arches are large diameter steel rods that tie into steel beam seats at both ends. The steel beam seats are bolted through the top plate of the short walls. 8x8 wood posts occur in the short walls below each truss end. Apparently rough sawn, full sized 2x8 rafters occur at 2'-0" on center and span 8'-0" between trusses. 1x8 diagonal sheathing spans over the rafters and arched trusses forming the roof diaphragm.
The undated drawings for the Community Center indicates new ½" plywood sheathing was to be placed over the original 1x8 diagonal sheathing. An inspection was performed below the composition roof covering, revealing only the original 1x8 diagonal wood sheathing. This indicates that the ½" plywood was never installed. The 1x8 diagonal sheathing is not adequate for the lateral loads resulting from the heavy concrete walls.

The short, wood-framed cripple walls supporting the barrel roof were opened up on the west side of the room to allow further inspection of the enclosed wall framing and truss supports. 8x8 posts were found below the truss ends. These posts were part of the short walls that run continuously below the east and west sides of the assembly room, on top of the original concrete walls. The walls consist of 2x8 sill plates and top plates and 2x8 studs at about 12" on center. The north and south walls of the Assembly Room were not visible or accessible for inspection and review.

Anchor bolts between the wood framed walls and the top of the concrete wall could not be located. Adequate anchorage of the short walls and the roof on top of it may not have been installed. Because the roof and short cripple walls of the Assembly Room rises approximately two feet above the adjacent hallway, classroom and Auditorium walls, there is no transfer of lateral seismic forces across this roof to the cast-in-place concrete shear walls below. Roof crickets were added around the Assembly Room roof to make the roof drain to the south, where a roof drain is located behind the south side parapet wall.

Site Built Classrooms Building B

The mid-campus Site Built Classrooms Building B, the Day Care/CAC Head Start classroom building, built in 1948 and 1950, is a modern style building with wood framed walls and roof, steel roof beams on steel pipe columns, a concrete slab-on-grade foundation, stucco exterior and a composition shingle roof. Some of the rooms were originally 10 to 12 feet tall and open to the underside of the roof. At some point in the past a ceiling and loft floor was added into the space, reducing the ceiling height to a standard eight feet. The loft floor has plywood on top of the newer ceiling joists. Some storage of office furniture and accessories has been placed on the loft. The loft floor and the storage above it adds weight to the seismic mass of the building, increasing lateral forces on the shear walls.

The shear walls of the 1950, east half of this building are sheathed on the exterior with continuous 1x diagonal sheathing. The roof diaphragm is also sheathed with 1x diagonal sheathing. According to the available drawings, the sill plates are bolted to the foundation with ¾"x12" anchor bolts at 4'-0" on center. With few doors and no windows, the length of shear walls on the south, east and west walls may be adequate for the seismic loads the building may experience. The north wall is perforated with many windows, reducing the total lengths of shear walls to five wall sections of approximately six feet each on a building dimension of 138 feet.

The louvered windows on the south side of the building above the low walkway roof separate the lateral load path between the main, high roof diaphragm and the shear walls. Five short sections of solid walls were utilized to carry all of the lateral loads in the east-west direction at the south wall between the windows above the low roof. However, the added ceiling/loft may compensate somewhat for the limited connection between the roof and south walls, forming a load path from the high roof to the shear walls below.
Drawings for the 1948, west half of the building were not available for review but we can presume that the construction is similar. The door, window and wall configuration is nearly the same for both ends of the building. The north side of the building may lack adequate shear walls for the lateral seismic loads that may occur at this site.

Site Built Classrooms Building C4

The 1958 Site-Built Classroom Building C4 to the south, the Day Care/Rainbow School, is a modern style building with wood roof trusses at 2'-0" on center, wood framed walls and a concrete slab-on-grade foundation, stucco exterior and a composition shingle roof. The roof diaphragm is sheathed with ½" plywood. The shear walls are also sheathed in ½" plywood. According to the drawings that were provided, hold down anchors occur at the ends of each shear wall, using ¾" hooked anchors and two 1" bolts though an L9x4x¾ angle as the hold down bracket. Sill plate anchors occur at approximately 2'-0" on center using ¾" threaded rods embedded 12" into the foundations.

The shear walls in this building are limited to 5 or 6 short, full height sections on the east and west walls. These walls are likely inadequate for lateral seismic loads in the north-south direction.

CONCLUSIONS AND RECOMMENDATIONS

Overall, the buildings are expected to remain stable in their current configuration. No significant structural deficiencies were identified that appear to pose an immediate threat to life safety or continued operation of the buildings. The structures appear to be in generally good repair. The following recommendations are provided to maintain the long term serviceability of the structures. Since these buildings were designed and constructed under older building codes, it appears that the expected seismic performance of the structures may not meet current life safety performance objectives in their current configurations. This is expanded on in the following section, *Additional Seismic Study- Identified Seismic Deficiencies & Recommendations:*

Main Building A – Community Center

The building has a raised wood floor with a substructure crawl space. The piers that are visible from the interior two access openings have dirt over the concrete pads, in contact with the wood blocks and piers.

- The dirt covering the subarea piers should be lowered and removed or redistributed to separate the top of the pier and the wood post from the exposed dirt.

There is a large vertical crack in the north basement wall near the northeast corner of the basement.

- The crack in the basement wall should be repaired by epoxy adhesive injection and monitored for further settlement cracking.

Site Built Classrooms Buildings B

- No recommendations

Site Built Classrooms Buildings C

- No recommendations
Additional Seismic Study - Identified Seismic Deficiencies & Recommendations:

Numerous potential seismic performance deficiencies were identified that warrant further investigation to provide more detailed recommendations for strengthening or seismic upgrades. The buildings in their current state may not meet seismic performance standards for public schools as well as some state and federal government agencies. The following recommendations are based on professional judgement without a detailed force based analysis.

Main Building A – Community Center

- The Auditorium roof appears to not have adequate wall to roof anchorage. The framing conditions provide a weak connection between the heavy concrete walls and the roof diaphragm assembly, which is intended to transfer the lateral forces to the sides of the building.
- The elevated 4x10 purlins raise the rest of the roof framing above the roof trusses, eliminating the direct connection between the truss anchors at the walls and the roof diaphragm assembly.
- The roof sheathing is diagonal 1x8 sheathing over the 2x6 tongue and groove sheathing that is visible from below. This sheathing is not adequate for the seismic loads generated by the heavy concrete walls.
- Missing blocking between the top of the trusses and the roof diaphragm do not form an adequate transfer of lateral loads from the east and west walls into the roof diaphragm. Wall anchors into blocking or the 2x6 rafters should be installed at the north and south walls. These anchor details should be part of a new structural design.
- In the Auditorium, verify that the wall connections and repairs shown in the undated drawings have all been completed. If the anchorage shown in the undated retrofit drawings has not been performed, develop a new design for wall anchorage to the roof based on current code.
- Remove the plaster board walls of the Assembly Room above the original concrete walls and add anchors through the sill plates into the top of the concrete walls. The short cripple walls of the Assembly Room above the original concrete walls should have plywood sheathing added to them to provide transfer of lateral loads to the wall below. These wall sheathing details should be part of a new structural design.
- Add plywood sheathing to the roof of the Auditorium and the Assembly Room over the existing 1x diagonal sheathing, nailed to the existing or new perimeter framing and to the intermediate framing members. These roof sheathing details should be part of a new structural design.

Site Built Classrooms Buildings B & C4

There are two covered, open-air walkways between the Main Building A Community Center and the mid-campus Classroom Building B, Day Care/CAC Head Start classroom building. There is another covered walkway between the mid-campus classroom and the south Classroom Building C4, Day Care/Rainbow School building. These flat roofs appear to be rigidly attached at both ends
at each of the three buildings. During an earthquake these three buildings will have different periods of motion and the displacements for each building will be different. Due to the differences in cycles of motion and displacements, the buildings can move in opposite directions during a seismic event. This difference in motion during a seismic event may cause the walkway roofs to become separated from either or both buildings, possibly leading to concentrated damage or partial collapse of the walkway roofs.

- The roof assemblies over the walkways between the three buildings could be separated from one or both buildings with a seismic slip joint between the buildings and the walkway roofs that allows differential movement of the buildings without damage to the walkway roofs. Any slip joint should also provide gravity support to the roof where it meets the building. These roof framing details should be part of a new structural design.

Site Built Classrooms Buildings B

- The lengths and quantities of full height shear walls at the north wall and at the south wall above the low walkway roof may not be adequate for expected seismic loading.
- The walls and roof are sheathed with 1x diagonal sheathing which may not be adequate for the expected seismic loads that will occur in a seismic event at the short wall sections.

Site Built Classrooms Buildings C4

- The lengths and quantities of full height shear walls at the east and west walls do not appear to be adequate for expected seismic loading.

Partner recommends a new seismic study of the subject property, based on the standards outlined in ASCE 41-13, to provide a more detailed assessment of the expected seismic performance of structural and nonstructural building components. Different performance objectives can be selected for these types of evaluations. The three most prevalent performance objectives are: 1) Immediate Occupancy, 2) Life Safety, 3) Collapse Prevention. The items identified below may not meet life safety performance objectives as defined in the American Society of Civil Engineers ASCE-41-13.

However, Partner performed a limit investigation of the site characteristics and identified the following:

Soil Liquefaction Hazard

Soil liquefaction describes a phenomenon whereby a saturated or partially-saturated soil substantially loses strength and stiffness in response to an applied stress, usually earthquake shaking or other sudden change in stress condition, causing it to behave like a liquid. The phenomenon is most often observed in saturated, loose (low density or poorly compacted), sandy soils. This is because loose sand has a tendency to compress when a load is applied; dense sands by contrast tend to expand in volume. Soil liquefaction can result in a loss of bearing capacity and support of the foundation system, resulting in differential or global settlement of the building. This rapid settlement can result in increased damage levels beyond that estimated due to ground shaking alone.

Based on our review of the site soil conditions, and the publicly available liquefaction hazard mapping, the site soils are classified as having **HIGH** liquefaction susceptibility. (Refer to attached Appendix C: Site Hazards maps.)
New construction must take into account the potential for liquefaction and the foundations are typically designed to resist the effects of differential settlement. It does not appear that the foundation design took this into consideration and no geotechnical report was available for site to evaluate the risk. Further study is required to make a more definitive statement on expected settlement, soil stability during strong ground motions, and overall expected site stability during a strong earthquake.

Surface Fault Rupture

A building founded directly over an active fault or within close proximity to the documented, active fault trace could be at risk of damage due to movement of the subsurface due to the fault rupture. The State of California acknowledged the risk of fault rupture to existing and future structures following the 1971 San Fernando earthquake. In response, the Alquist-Priolo Earthquake Fault Zoning Act was signed into California law on December 22, 1972 to mitigate the hazard of surface faulting to structures for human occupancy.

The act in its current form has three main provisions:

1. It directs the state’s California Geological Survey agency (then known as the California Division of Mines and Geology) to compile detailed maps of the surface traces of known active faults. These maps include both the best known location where faults cut the surface and a buffer zone around the known trace(s);
2. It requires property owners (or their real estate agents) to formally and legally disclose that their property lies within the zones defined on those maps before selling the property; and
3. It prohibits new construction of houses within these zones unless a comprehensive geologic investigation shows that the fault does not pose a hazard to the proposed structure.

Based on our review of active regional earthquake faults and the hazard maps published by the California Geological Survey (CGS), the subject property **IS NOT** located within a documented Alquist-Priolo Special Study Zone or at risk of damage due to surface fault rupture. This determination is based on the proximity of the subject property to documented earthquake fault traces and the current version of the CGS seismic hazard maps.
5.0 EXTERIOR ENVELOPE

5.1 Roofing

Community Center (Building A) is a composition of gabled, hipped, barrel and flat roofs. Gabled and hipped roofs are finished with asphalt shingles over asphalt-saturated paper. These roofs have sheet metal flashing and drain over the eaves to sheet metal gutters and downspouts discharging to landscaped and paved areas. A wood-framed gazebo with cedar shingles is provided in the landscaped area north of the Community Center building. The date of construction is not known but appears to approximately 20 to 25 years old.

Flat roofs at the Community Center are finished with mineral-surfaced cap sheet over a multi-ply bituminous built-up membrane.

The dining hall barrel roof is covered by asphalt shingle except at the upper portion that is nearly flat. This portion is covered with a built-up roof material.

Exterior walls extend above the roof planes as parapets and are capped with sheet metal copings. Roofing materials run up the inboard face of the parapets, terminating under the metal flashing.

Storm water runoff from the roof is directed by roof slope and crickets to perimeter roof drains and scuppers. Roof drains are connected to internal leaders that appear to discharge directly into the below grade and landscaped areas. Roof scuppers are connected to surface mounted sheet metal downspouts that discharge storm water directly to grade at the base of the building. Each observed roof drain was paired with an overflow roof drain. The overflow roof drains are connected to internal leaders that exit and discharge storm water to grade at the base of the building. Each observed primary roof scupper was paired with an overflow roof scupper. Overflow roof scuppers are connected to surface mounted sheet metal downspouts that discharge storm water directly to grade at the base of the building.

Steel-framed skylights with opaque single-glazed panes provide natural illumination in the Dining Hall.

Classroom buildings (Buildings B & C4) are classified as gabled roofs and are finished with asphalt shingles over asphalt saturated paper. The roof eaves are terminated with sheet metal flashing. These roof drain over the eaves to sheet metal gutters and downspouts, which discharge to paved and landscaped areas. Building B is provided with an attic that provides ventilation through wall vents. Attic access is provided by an opening in the ceiling of one of these classrooms. Walkway roofs at these buildings are constructed with the same roofing system.

The roofing slopes appears to meet industry standards and sheet metal flashings appear to be well designed and constructed in accordance with industry standards.
Roofing material type and locations, square footage and approximate installation dates are defined as noted below:

<table>
<thead>
<tr>
<th>Section</th>
<th>Roof Type</th>
<th>Roof Area</th>
<th>Installation Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building A</td>
<td>Asphalt shingles over asphalt-saturated paper</td>
<td>23,000 sf</td>
<td>1995 (est.)</td>
</tr>
<tr>
<td>Building A</td>
<td>Mineral-surfaced cap sheet over multi-ply bituminous built-up membrane</td>
<td>12,000 sf</td>
<td>1995 (est.)</td>
</tr>
<tr>
<td>Building B</td>
<td>Asphalt shingles over asphalt saturated paper</td>
<td>7,800</td>
<td>1995 (est.)</td>
</tr>
<tr>
<td>Building C4</td>
<td>Asphalt shingles over asphalt saturated paper</td>
<td>5,900</td>
<td>1995 (est.)</td>
</tr>
</tbody>
</table>

Survey Condition and Analysis

Observed areas of the roofing system appeared to be in fair to good overall condition. According to building maintenance all roof systems were installed around or before 1995. Based on our observations, Partner agrees with property maintenance's assessment of the age. No active roof leaks were reported at the time of the assessment. Partner did not observe any interior signs of water damage associated with roof leaks within the areas that were entered. Overall, roof slopes drainage appears to be adequate.

Pitched roofs are in fair condition, with some shingles having been replaced. Flashing at the skylight curb is damaged and needs to be repaired.

At the main Community Center building there are some areas of degradation and exposed felts at the south end of roof where it meets the parapet, this area require roof membrane replacement.

Observed sections of parapet and coping appeared to be in fair to poor condition. Routine maintenance is anticipated during the evaluation period. The property does not have a dedicated roof repair maintenance contractor. All repairs and maintenance is performed by on-site personnel. No information regarding roof warranties or bonds was provided.

An opinion of cost for built-up and asphalt shingle roof replacement including metal flashings, parapet counter flashings, roof drain repairs and sealant application is included in Table 2.

The skylights at the Dining Hall are in fair condition but framing and glazing appear to be in fair condition. The roofing of the Dining Hall should be replaced but the skylight framing and glazing appear to be salvageable. Cleaning of the skylight frame, panes as well as sealant replacement is recommended. This can be performed concurrent with replacement of the barrel roof. An opinion of cost is included in Table 2.

Partner recommends a regularly maintenance on roofing, skylights, flashing, roof vents, clearing and minor repairs on parapets and drain system components.

5.2 Exterior Walls

The exterior walls of the Community Center consist of cast-in-place reinforced concrete finished with a stucco parge coat the walls of the classroom buildings consist of wood stud-framed exterior and interior bearing walls supporting a structural wood frame roof. The exterior walls are finished with painted stucco
and some areas are decorated with moldings, ornament accents and painted wood trim. Soffits are exposed and finished with painted wood.

Survey Condition and Analysis
The exterior walls of all buildings are in good overall condition. No signs of water intrusion or past leaks were noted or reported. Painting, replacing of building sealants, repairs to minor stucco cracks and wood ceiling repairs have been performed by on site staff and can be part of the regular maintenance. An opinion of cost is included in Table 2.
5.3 Windows and Doors

Main building:
The front and rear building elevations contain the original wood-framed single-glazed windows. The windows located in north elevation are swing-type while windows at the back are double-hung, hopper and awning type with clear glazing.

Vinyl framed double-glazed single hung windows have been installed at the building’s east and west elevations.

Exterior doors at the main entrance building are stained and painted wood panel with cylindrical locksets and old-style panic hardware. Interior service doors are solid-core or panel type painted wood doors set in wood frames. Doors at offices are provided with cylindrical locksets and knob handle hardware.

Site-built Classroom Buildings:
Classroom Building B has wood framed windows with single-glazed units. Windows are fixed awning type with clear glazing.

Classroom Building C4 is provided with metal framed windows single-glazed units. Windows are fixed, hopper and awning type with clear glazing.

Doors at these two buildings are solid-core and panel type with painted wood doors set in wood frames. Doors handles are knob type with cylindrical locksets.

Survey Condition and Analysis
Although the majority of the windows at the Community Center are original they are functional and operable.

Generally, the windows appeared to be, and were reported to be, in good to fair overall condition. No obvious signs of window leaks were evident. Original wood windows at the main building will required refinishing. The original high wood windows at the Assembly Room general age deterioration. All wood windows throughout the building need to be stripped and refinished with proper sealant and paint.

The vinyl windows at the east elevation of the main building exhibit a jamb mechanism problem and they need to be repaired for better function. An opinion of cost for repairs is included in Table 1. These units appear to be residential-grade and may not have been the proper units for this use. The units in the west elevation are in good condition and appear to be functioning adequately. Consideration should be given to replacing the wood windows as part of any renovation plan.

The remainder of the windows at the property will require routine system maintenance during the evaluation period.

An opinion of cost for painting and sealant application is included in Table 2.

5.4 Covered walkways:
Covered walkways are provided throughout the property connecting the main building with the classroom building. The walkways are finished with painted wood planking.
Survey Condition and Analysis

Peeling and delamination of painted wood planking was observed at some areas of the ceiling. Costs are included in as part of exterior painting.

5.5 Interior and Exterior Stairs

Exterior stairs and landings at main entrance consist of ceramic tiles with painted decorative steel pipe guardrails.

Interior stairs located at the assembly room are constructed of wood with wood raisers and treads of vinyl. The handrails and balusters are constructed of wood.

Survey Condition and Analysis

Exterior stairs are not provided with proper handrails that meet ADA Standards. Proper handrails need to be provided. An opinion of cost for this work is included in Table 1. Routine maintenance is anticipated during the evaluation term.
6.0 MECHANICAL AND ELECTRICAL SYSTEMS

6.1 Heating, Ventilation and Air Conditioning

The Community Center building is heated by gas-fired forced-air furnaces located in the mechanical closets and in the basement. Air distribution at the main building is provided by supply registers and ducts concealed above the ceilings. Each space is provided with its own return and heating control thermostats.

Heating and cooling for Building B, is provided by three direct expansion HVAC split systems. Each system has a condensing unit located on the roof of classrooms and a fan coil/furnace unit located in mechanical closets. The condensing units have input capacities of 5 tons (3 units). The manufacturer's equipment label was too faded to read the unit brand name. Distribution of the conditioned air is by concealed sheet metal ductwork and temperature control is by a local thermostat. Cooling is provided by direct expansion apparently through the use of R-22 refrigerant. Heating is provided by an electric resistance heating coil section within the unit. Conditioned air is distributed through sheet metal ducts to diffusers located in the finished ceilings. Building C4 is heated by gas-fired forced-air furnaces located in mechanical closets. No cooling is provided. Natural ventilation is provided by operable windows.

Survey Condition and Analysis

According to property management, mechanical equipment is maintained by an outside vendor on an as-needed basis. Two of the rooftop HVAC split units of Building B were reported and appeared to be in good overall condition. The units appear to be approximately ten years old. Based on observed condition, estimated age and effective useful life, replacement of these split units is anticipated during the evaluation period. The single split unit located on the walkway south roof, does not appear to be operational. Maintenance of the unit should be performed but replacement is recommended. An opinion of cost for this work is included in Table 2. No significant ventilation system issues were noted. Routine maintenance is anticipated during the term. Automatic Temperature Control systems are in good condition.

6.2 Domestic Water and Sewer Systems

Observation of visible piping at water heaters and plumbing stub-outs indicates that the piping is copper.

Domestic hot water for the main building is provided by a gas-fired Rheem 50 gallon tank capacity water heater located in the kitchen. Natural gas service is supplied by black iron piping.

Domestic hot water for the classroom buildings is provided by 40 gallon gas-fired water heaters located in mechanical closets of each building.

The laundry room is equipped with a natural gas-fired Bradford White water heater with a capacity of 40 gallons.

Sanitary drainage and vent piping is reported and observed to be cast iron and PVC.
Survey Condition and Analysis

The plumbing systems were reported to be in good overall condition. Evidence of leaks or faulty piping was not observed. Routine maintenance is anticipated during the evaluation period.

The water heaters appeared to be in good overall condition. Two of the units were reported to be four years old and are not anticipated to require replacement during the evaluation period. However, one is expected to be replaced early in the term. An opinion of cost is included in Table 2.

Partner retained the services of C-Below to conduct a video inspection of the sewer lines. The report is included in the appendices of this report.

It was determined that generally the lines are in fair to poor condition, however, routine hydro-jetting of the lines is necessary to clear roots and blockages. This should be performed annually. One line (S2CO1 North / S2CO1 South) appears to have a less than 1/8":12" slope. This section of line serves the Community Center office restroom which is connected to the Community Center men’s restroom. This section of the line will need to be replaced in order to provide adequate slope. However, it is possible that in addition to the line, a small pump station may be necessary. An opinion of cost is included in Table 1. This cost includes the estimated cost for further depth invert investigation and a pump station.

6.3 Electrical Supply and Gas Distribution

Electrical:

Electrical service is provided to the property with underground lines connected to a utility-owned transformer located at the basement of the main building. Two electrical services are provided for the Community Center and the Buildings B and C4. Each service consists of 400 amp, 120/240 volts, three-phase, four wire services. Breaker subpanels for lighting and convenience outlets are located at the kitchen area and corridors of the Community Center building. The interior lighting is a combination of surface and suspended fluorescent or incandescent fixtures. Electrical branch wiring was observed and reported to be copper. House panels are located throughout the buildings and generally consists of 200 amp, 120/240 volts single phase, three wire panels.

Ground-fault interrupter circuits were observed in the kitchen.

Survey Condition and Analysis

Electrical service was reported to be adequate for the current demands of the facility. Observed switchgear, circuit breaker panels, electrical meter and wiring components appeared to be in good overall condition. Routine maintenance is anticipated during the evaluation period.

Lighting systems: Lighting in classrooms is provided by acrylic covered lamp mounted fluorescent strip light fixtures. Offices, corridors and lobby are illuminated by acrylic covered lamps mounted fluorescent light fixtures. Dining room lighting consist of exposed suspended fluorescent strip light fixtures.

The assembly room is illuminated with exposed lamps mounted fluorescent light fixtures.
Survey Condition and Analysis

Observed light fixtures appeared to be, and were reported to be, in good overall condition. Light fixtures are anticipated to require minimal repairs and replacements during the evaluation period that can be addressed as part of routine maintenance.

Partner retained ABM Services to perform infrared scans with the use of a FLIR thermographic camera of the electrical switchgear and panels throughout the property. The results of the scans indicate that all equipment is in good condition and no deficiencies were noted. Infrared scans should be performed every three to five years. An opinion of cost is included in Table 2.

Gas piping supply: Gas service connection is located on the sidewalk adjacent to Hollister Avenue. The gas meters and regulators are located along the front exterior walls of buildings. Natural gas service is supplied by back iron piping.

Survey Condition and Analysis

No significant issues were observed with the building’s gas distribution system. Routine maintenance is anticipated during the term.

6.4 Vertical Conveyances

There are no vertical conveyance systems provided at the property.

6.5 Life Safety Systems

Fire suppression systems:

Fire extinguishers were observed in corridors, offices, classrooms, assembly room, dining room and mechanical/electrical spaces. They are reportedly inspected on a yearly basis. Fire hydrants are located on Hollister Avenue.

Survey Condition and Analysis

Current inspection tags were observed on the fire extinguishers. They are reportedly inspected on a yearly basis, with the last inspection having occurred on July 12, 2016 by Joy Equipment Protection Inc. Routine maintenance, including regularly-scheduled testing and as-needed replacement, is anticipated during the evaluation period.

Emergency lighting/signage:

All classrooms, public areas and offices are provided with exit signs, pull stations, alarm horns and strobe light alarms.

Survey Condition and Analysis

Observed emergency light fixtures and illuminated exit signs appeared to be in good overall condition. Routine maintenance, including regularly-scheduled inspection, testing and as-needed replacement, is anticipated during the evaluation period.
Fire alarm system:

The subject building is equipped with a central fire alarm system located in the laundry room, classroom building. The central fire alarm control the alarm sound and automatically notifies the monitoring service or the fire department. The panel was manufactured by Radionics. The system is fully-addressable and is reportedly monitored by an off-site monitoring company.

Survey Condition and Analysis

Observed components of the fire alarm system appeared to be in good overall condition and the system is reportedly tested on an annual basis. Current inspection tags were observed on the main control panel. Routine maintenance, including regularly-scheduled inspection and testing is anticipated during the evaluation period. Replacement of the fire alarm panel can be anticipated in the term. An opinion of cost is included in Table 2.
7.0 INTERIOR ELEMENTS

7.1 Common Areas

Interior common areas consist of a lobby area providing access to classrooms, offices, meeting rooms, restrooms, corridors, dining room and assembly room. The lobby area finishes consist of carpet flooring, painted plaster walls and painted plaster ceilings.

Main building.

Corridors have painted plaster walls, painted plaster and wood ceilings. The floor is a combination of carpet, hardwood floor and concrete. The management offices have carpet flooring, painted plaster and drywall walls and sprayed-on acoustical ceiling. The meeting room’s finishes consist of painted plaster walls, combination of carpet, sheet vinyl, laminate, wood, and vinyl tile flooring. The ceiling finishes consist of sprayed-on acoustical and acoustical tiles. The assembly room typical finishes consist of painted plaster walls, hardwood floors and unfinished exposed structure. The dining room finishes consist of painted plaster walls, vinyl tile flooring and wood ceilings. The dance practice room finishes consist of painted plaster walls, spray-on acoustical ceilings and vinyl covered raised dance floor. The kitchen finishes consist of painted plaster walls with ceramic tile, ceramic tile flooring and sprayed-on acoustical ceiling. The kitchen is equipped with major stainless steel appliances such as sinks, refrigerators (up-right), Freezers (up-right), gas ranges, ovens and grills, exhaust hood, ice machine, steam tables and work tables. The kitchen cabinets are built with composition board and plastic laminate countertops. The restrooms finishes consist of painted plaster with ceramic tile, painted plaster ceilings and ceramic tile flooring.

Survey Condition and Analysis

Observed building finishes and FF&E appeared to be in good condition. Based on their estimated remaining useful life (RUL), wall painting, replacement of carpet and vinyl flooring will be required during the evaluation period. Areas of hardwood floor will need to be sanded and refinished. Doors refinish and hardware can be part of the maintenance as well as some ceiling tile replacement. An opinion of cost for this work is included in Table 2.

Kitchen appliances were presented in good condition with no significant deficiencies. Based on their estimated Remaining Useful Life (RUL), replacement of equipment will be required during the evaluation period. An opinion of cost for this work is included in Table 2.

Common public restrooms look in good condition with the exception of missing insulated wrap drain pipes below lavatory and alarm horn lights. This work can be part of routine maintenance during the evaluation term.

7.2 Tenant Areas

Classroom Offices:

Typical finishes at offices consist of painted drywall walls. The ceiling finishes is a combination of acoustical tiles, painted drywall and suspended T-bar system with acoustical tiles.
Classrooms:

Typical classroom's finishes consist of painted drywall and wood walls. Combination of acoustical tiles, painted drywall, suspended T-bar system with acoustical tile ceilings. The floor finish is a combination of carpet and vinyl tile flooring.

Survey Condition and Analysis

Observed building finishes and FF&E appeared to be in good condition. Maintenance, repair, and replacement of the finishes are generally performed as-needed by the maintenance staff, and as such an opinion of cost for this work are not included in this report.
8.0 CODE REVIEW

A general regulatory agency review for Building, Fire Department and Zoning compliance is not part of this assessment.

8.1 Code classification:

Due to the age of the Community Center, the Occupancy Classification and Construction Type is not known but generally appears to be a combination of Occupancies A/B/E and Type I-1-Hour construction.

Classroom Buildings appear to be Occupancy Groups B/E and Type V-Non-rated construction.

8.2 Certificates of Occupancy / Building Permits:

On October 20, 2016, the original Certificates of Occupancy were requested of the Goleta Building Department but have yet to be provided.

8.3 ALTA Survey

An ALTA Survey was not provided for review.
9.0 AMERICANS WITH DISABILITIES ACT COMPLIANCE

The Americans with Disabilities Act (ADA) of 1990 prohibits discrimination against people with disabilities in employment, transportation, public accommodation, communications, and governmental activities. Title III of the ADA covers the private sector. It requires that a wide range of public accommodations in the private sector remove physical, communications and procedural barriers to access by people with disabilities. Title III addresses the widespread exclusion of people with disabilities from the routine activities of everyday life which most Americans take for granted. Title III covers sales, rental and service establishments, as well as educational institutions, recreation facilities and service centers.

Partner performed a minimum ASTM Tier II ADA survey of the property which includes a random survey and measurement of key site and building components pertaining to accessibility requirements.

Applicable Accessibility Guideline:

As part of this assessment, a limited, visual, accessibility survey was conducted. The survey did include taking random measurements and counting accessibility elements. The scope of the survey was limited to determining the existence of architectural barriers or physical attributes of the subject property, which affect on-site parking, path of travel into and through public areas of the building as applicable. Furthermore, the scope of our survey includes only the federal requirements of the ADA; it is not intended to address state or local codes. Our observations were limited to the places of public accommodation on the subject property.

Survey Condition and Analysis

Based on current use, the subject property is classified as a “public accommodation” under the ADA.

Exterior Notes:

Exterior routes from public transportation stops, accessible parking spaces and public sidewalks at the subject property appeared to be generally conforming to ADA requirements. The bus shelters at the Hollister Avenue right-of-way and at the entrance to the main building are lacking adequate clearance area for wheelchair users per Section 810.3.

The brick paving path of travel from the Hollister Avenue bus shelter requires a level surface. Several bricks are uneven, creating a trip hazard per Section 302. Resetting of brick pavers are required.

The top level of the gazebo is lacking adequate access. A ramp should be constructed to provide access from the main walkway to the top level per Section 206.

Accessible Parking and Passenger Loading Zone:

Parking areas that provide self-parking for employees and visitors must provide ADA-compliant parking spaces. The subject property provides 170 total open parking spaces, including 10 accessible parking spaces. Only six accessible spaces are requires, however, due to the configuration of the site and location of the buildings, accessible parking is recommended adjacent to each building. The accessible parking spaces are not correctly configured and identified. Compliant curb cuts and access aisles are necessary at the main building parking and striped path of travel across the main drive aisle.
Similar curb cuts are required at Buildings B and C4. No Van-accessible spaces are provided or designated at parking areas. One van-accessible space at each parking lot will need to be installed as well as signage.

Exterior Ramps and Curb Ramp:

Walkways at the south side of the Community Center building need to be replaced due to non-compliant cross-slopes, slopes and handrails. Replacement of these walkway sections are required to comply with Sections 302.1, 405, 406 and 505.

A section of the walkway between classroom buildings has a slope greater than 5%. The walkway will be required to comply but the walkway will need to be extended to meet the level of an existing landing at Building B. A plan is included in the appendices of this report.

The main stairs to the Community Center entrance are lacking proper handrails with proper extensions and handrail sections. Similarly, the adjoining ramp handrails are also lacking proper extensions and handrail section.

Building Entrances:

Generally, exterior entrances conform to ADA requirements, however, doors require adjustment of closers to provide less than five pounds pull pressure.

All orbital hardware is required to be replaced with lever hardware.

Interior Path of Travel:

The water drinking fountain at main building hallway is higher than 27 inches and it’s projected into the hallway, no cane detection barrier is provided.

Plumbing Elements:

Common toilet facilities in the building did not appeared to be generally accessible. Restrooms don’t have the specifications required to be ADA accessible. Toilets are missing grab bars, lavatory faucets, clearance and height, dispensers and emergency fire alarm and strobes.

An opinion of cost for correction of non-compliant items is included in Table 1.
10.0 NATURAL HAZARD INFORMATION

Readily-available materials were reviewed to obtain the following information. Determination of site-specific conditions is not within the scope of this report and may require additional investigation. Seismic zone classification is interpreted from the Seismic Zone Map, published in the Uniform Building Code 1997, Volume 2, table 16.2.

10.1 Flood Zone

According to Flood Insurance Rate Map, Community Panel Number 06083C1362G, dated December 04, 2012, the subject property appears to be located in:

Zone AO; defined as areas subject to inundation by 1-percent-annual-chance shallow flooding (usually sheet flow on sloping terrain) where average depths are 1–3 feet.

10.2 Seismic Zone

According to the seismic zone map, published in the Uniform Building Code 1997, Volume 2, Table 16.2, the subject property appears to be located in Seismic Zone 4.

10.3 Wind Zone

Partner performed a review of the Wind Zone Map, published by the Federal Emergency Management Agency. According to the map, the subject property appears to be located in Wind Zone 1, an area with design winds speeds up to 130 miles per hour. The subject property does not appear to be located in a special wind region or hurricane-susceptible zone.
FIGURES

1- Site Location Map

2- Site Plan
APPENDIX A: SITE PHOTOGRAPHS
APPENDIX A: SITE PHOTOGRAPHS
Project No. 16-170535.1
13. Loading area and ramp access to building

14. Stairs at main entrance area

15. Parking at front of property

16. ADA parking in front of property

17. Accessible space along Day Care/Toddlers
 Rainbow School Building C4

18. Overview of south parking
19. South parking paving conditions

20. South parking deterioration

21. Boys Club tennis courts along south parking lot

22. School district bus parking east of property

23. Day Care playground behind Building B

24. Head Start playground between Buildings A and B
25. Playground area behind Building B

26. Playground area behind Building B

27. Bus Shelter along Hollister Avenue

28. Typical exterior walkway along classroom building

29. Uneven pavers at accessible route from Hollister Avenue

30. Accessible ramp required to top level of gazebo
31. Typical exterior walkway along Day Care/Toddlers Rainbow School Building C4

32. Walkway along Head Start School Building B

33. Main Building typical interior corridor

34. Interior corridor at administration office

35. Interior corridor next to courtyard

36. Interior corridor at performance room

APPENDIX A: SITE PHOTOGRAPHS
Project No. 16-170535.1
37. Typical Community center interior finishes

38. Interior finishes

39. TV room for seniors

40. Kitchen interiors

41. Kitchen preparation area

42. Multi-use room interiors. Note exposed roof structure
43. Multi-use room interiors

44. Assembly Hall interiors. Note exposed roof structure

45. Typical administration office interiors

46. Office interiors

47. Restroom at administration area

48. Room #10 interiors

APPENDIX A: SITE PHOTOGRAPHS
Project No. 16-170535.1

PARTNER
APPENDIX A: SITE PHOTOGRAPHS
Project No. 16-170535.1
97. Furnaces for Community Center classroom's heaters at basement

98. Condenser units at roof

99. Condenser unit for Building B appears inoperative

100. Curb ramps are non-compliant and requires reconfiguration

101. Non-compliant curb cut at sidewalk from accessible route

102. Non-compliant handrails at ADA ramp to main entrance
1. Front entry to Community Center, Main Building A

2. West wing of Main Building A and front entry beyond

3. West of main entry to Main Building A, hallway and classrooms

4. Hallway and classrooms to the east of the main entry of Main Building A

5. Main Building A, Spanish style architecture is missing the original red clay tile roof, replaced by composition shingles

6. Red clay tile roof on a bit of wall at southwest corner of Auditorium shows original roof covering.

APPENDIX B: STRUCTURAL SITE PHOTOS
Project No. 16-170535.4
7. Main Building A substructure pier and floor framing

8. Main Building A substructure floor framing and foundation wall.

9. Basement wall foundation and sill plate with vertical split is widest at the top and narrower at the floor

10. Vertical crack in basement foundation wall, Main Building A

11. Vertical crack in basement foundation wall, Main Building A

12. Basement wall foundation at south wall at basement door
13. Foundation wall at east wall of basement, Main Building A

14. Basement floor joists, steel girder and wood post

15. Auditorium roof trusses, purlins, rafters and T&G sheathing, Main Building A

16. Auditorium Roof truss over stage opening

17. Auditorium roof structure

18. Auditorium roof in front of stage Main Building A
19. Interior, west wall of Auditorium, Main Building A

20. Exterior east wall of Auditorium

21. Exterior east wall of Auditorium at open patio

22. Auditorium roof looking south, Main Building A

23. Auditorium roof with roof covering peeled back to expose 1x sheathing

24. Barrel truss roof over Assembly Room looking south over stage, Main Building A

APPENDIX B: STRUCTURAL SITE PHOTOS
Project No. 16-170535.4
25. Barrel truss roof over Assembly Room and short framed wall looking north over kitchen windows, Main Building A

26. Barrel trusses, 2x rafters and diagonal sheathing over Assembly Room, white tie rods as bottom cords

27. Barrel truss tie rood bottom chord and bearing top plate of short wall above original concrete walls of Assembly Room

28. Barrel truss bearing plate and tie rod end plate, after wall plaster was removed

29. Barrel truss bearing plate anchor bolts in top plate, post and studs below truss in short wall above original concrete wall

30. Posts and studs of short cripple wall above original concrete wall over Assembly Room, Main Building A

APPENDIX B: STRUCTURAL SITE PHOTOS
Project No. 16-170535.4
31. Roof covering removed over diagonal sheathing at south end of Assembly Room roof, Main Building A

32. Diagonal wall sheathing of short wall at Assembly Room roof

33. Upper windows of Auditorium, cricket over sloped roof of original hallway and Assembly Room roof on right

34. North wall of Assembly Room over original exterior wall of kitchen, sloped roof over kitchen to left

35. Roof over Auditorium, Assembly Room, kitchen and west classroom wing, Main Building A

36. Semi-flat roof over east wing classrooms and open hallway
37. Flat roof over east wing classrooms, and pitched roof beyond, looking north

38. Open patio and walkway at east wing, Main Building A

39. Open Patio and east exterior wall of Auditorium

40. East classroom wing, open walkway and patio, Auditorium beyond, Main Building A

41. Main Building A in foreground, covered walkway, Building B and Building C4 beyond, looking south

42. Main Building A on left, covered walkway roof, Site-Built Classroom Building B to right

APPENDIX B: STRUCTURAL SITE PHOTOS
Project No. 16-170535.4
43. Fixed, rigid connection of walkway roof at Main Building A

44. Covered walkway roof at east wing of Main Building A looking north from Classroom Building B

45. Covered walkway roof with fixed connections to Building B on right and Building C4 on left

46. Covered walkway roof, fixed connections to Building B on right and Building C4 on left

47. Covered walkway roof with fixed connections to Main Building A at south wall at east wing on right

48. South wall of Classroom Building B. Left, west portion built in 1948. Right, east portion built in 1950

APPENDIX B: STRUCTURAL SITE PHOTOS
Project No. 16-170535.4
49. South wall of Classroom Building B looking east northeast, windows above low roof

50. North wall of Classroom Building B, west end built in 1948

51. North wall of Classroom Building B, east end built in 1950

52. East wall of Classroom Building C4 looking southwest

53. South and east walls of Classroom Building C4 looking northwest, Building B to right beyond

54. Covered walkway at east wall of Classroom Building C4 looking south
55. West wall of Classroom Building C4 at center breezeway, full height shear wall on left, window on right

56. Full height shear wall of Classroom Building C4 at east wall, Windows and louvered vent both sides of wall.

57. Wood framed truss roof over Classroom Building C4

58. Steel and wood framed roof over Classroom Building B

59. Loft floor and original ceiling above offices in Classroom Building B, High windows beyond, new ceiling below

60. West wall of Main Building A, west classroom wing looking north northeast
10/26/2016
EXPOSURE OF WOOD FRAMING
DAVID GAINES, P.E.
PARTNER ENGINEERING

REMOVE EXISTING ROOF COVERING OVER AUDITORIUM AND COMMUNITY ROOM AS NEEDED TO EXPOSE 1X6 AND PLYWOOD SHEATHING ON ROOF.

OPEN TOP CRIPPLE WALL ABOVE ORIGINAL CONCRETE WALL AT WEST WALL OF COMMUNITY ROOM TO EXPOSE TRUSS SUPPORT POSTS. TYPICAL WALL FRAMING AND ANY PLYWOOD SHEATHING ON WALL STUDS. REMOVE EXISTING INTERIOR PLASTER AS NEEDED.
Utility Locating
Radiography
Potholing
Mapping
GPR

Date: October 12, 2016
Technician: Troy Douthitt
Project Name: Goleta Sewer Line - CCTV
Project Address: 5679 Hollister Ave. Goleta, CA 93117
C Below Project No.: 16-1125

www.cbelow.com
1-888-90-BELOW
14280 Euclid Ave.
Chino, CA 91710
REPORT SUMMARY

<table>
<thead>
<tr>
<th>No.</th>
<th>Utility</th>
<th>Material</th>
<th>Total Video Length (ft)</th>
<th>Pipe Size (in)²</th>
<th>Line Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 CO1</td>
<td>Sewer</td>
<td>Steel</td>
<td>51.60</td>
<td>4</td>
<td>Lateral on left at 0.60 ft. Lateral on right at 11.80 ft. Lateral on left at 14.20 ft. 17.00 ft. Lateral form above at 18.60 ft. Line heads West at 19.20 ft. Line turns left at 23.20 ft. Line ties into S1 CO2 at 29.10 ft. Camera underwater at 36.30 ft. Root intrusion at 39.80 ft. Lateral on right at 46.70 ft. Unable to push past 50.40 ft. due to blockage with debris. Heavy root intrusion at 51.30 ft.</td>
</tr>
<tr>
<td>S2 CO1 North</td>
<td>Sewer</td>
<td>Steel</td>
<td>2.40</td>
<td>4</td>
<td>“Y” intersection at 2.10 ft. Line reduces in size unable to push further past 2.40 ft. Debris at 13.00 ft. at bottom of line. Camera underwater at 40.50 ft. unable to investigate line condition. Unable to push past 60.40 ft. due to debris blockage.</td>
</tr>
<tr>
<td>S2 CO1 South</td>
<td>Sewer</td>
<td>Steel</td>
<td>60.40</td>
<td>4</td>
<td>Unable to push past sweep.</td>
</tr>
<tr>
<td>S3 CO1</td>
<td>Sewer</td>
<td>Steel</td>
<td>2.10</td>
<td>4</td>
<td>Lateral on right at entry point. Lateral on the right at 2.40 ft. Lateral from above at 5.10 ft.</td>
</tr>
<tr>
<td>S4 CO1</td>
<td>Sewer</td>
<td>Steel/Clay</td>
<td>5.10</td>
<td>4</td>
<td>Debris at bottom of line at 38.30 ft. Unable to push past 45.40 ft. Lateral on left at 10.70 ft. Line changes to steel at “T” connection at 11.60 ft. Lateral on right at 11.30 ft. Root intrusion at 13.40 ft. 23.00 ft. 26.70 ft. 31.30 ft. 35.70 ft. Lateral from top left at 36.30 ft. Root intrusion at 37.20 ft. Line turns right at 42.40 ft. with root intrusion. Line drops at 45.50 ft with lateral on left. Line drops to second line at 49.20 ft. Camera underwater at 89.50 ft. Unable to push past 90.80 ft. due to blockage</td>
</tr>
</tbody>
</table>

¹See schematic for video insertion points.
²Estimated pipe sizes are based on visual observations made during video inspection and may vary.
<table>
<thead>
<tr>
<th>No.</th>
<th>Utility</th>
<th>Material</th>
<th>Total Video Length (ft)</th>
<th>Pipe Size (in²)</th>
<th>Line Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Sewer</td>
<td>Steel</td>
<td>51.60</td>
<td>4</td>
<td>Lateral on left at 0.60 ft.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lateral on right at 11.80 ft.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lateral on left at 14.20 ft.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.00 ft.</td>
</tr>
</tbody>
</table>

Entry point overview

Lateral on left at 0.60 ft.

Typical clear line condition

Lateral on right at 11.80 ft.

Lateral on left at 14.20 ft.

Lateral on left at 17.00 ft.
<table>
<thead>
<tr>
<th>No.</th>
<th>Utility</th>
<th>Material</th>
<th>Total Video Length (ft)</th>
<th>Pipe Size (in)²</th>
<th>Line Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 CO1</td>
<td>Sewer</td>
<td>Steel</td>
<td>51.60</td>
<td>4</td>
<td>Lateral form above at 18.60 ft. Line heads West at 19.20 ft. Line turns left at 23.20 ft. Line ties into S1 CO2 at 29.10 ft. Root intrusion at 39.80 ft. Lateral on right at 46.70 ft.</td>
</tr>
</tbody>
</table>

- Lateral form above at 18.60 ft.
- Line heads West at 19.20 ft.
- Line turns left at 23.20 ft.
- Line ties into S1 CO2 at 29.10 ft.
- Root intrusion at 39.80 ft.
- Lateral on right at 46.70 ft.
<table>
<thead>
<tr>
<th>No.</th>
<th>Utility</th>
<th>Material</th>
<th>Total Video Length (ft)</th>
<th>Pipe Size (in)²</th>
<th>Line Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Sewer</td>
<td>Steel</td>
<td>51.60</td>
<td>4</td>
<td>Unable to push past 50.40 ft. due to blockage with debris. Heavy root intrusion at 51.30 ft.</td>
</tr>
</tbody>
</table>

Unable to push past 50.40 ft. due to blockage with debris. Heavy root intrusion at 51.30 ft.
<table>
<thead>
<tr>
<th>No.</th>
<th>Utility</th>
<th>Material</th>
<th>Total Video Length (ft)</th>
<th>Pipe Size (in)²</th>
<th>Line Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>Sewer</td>
<td>Steel</td>
<td>2.40</td>
<td>4</td>
<td>"Y" intersection at 2.10 ft. Line reduces in size unable to push further past 2.40 ft.</td>
</tr>
</tbody>
</table>

Entry point overview

"Y" intersection at 2.10 ft.

Line reduces in size unable to push further past 2.40 ft.
<table>
<thead>
<tr>
<th>No.</th>
<th>Utility</th>
<th>Material</th>
<th>Total Video Length (ft)</th>
<th>Pipe Size (in)2</th>
<th>Line Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>Sewer</td>
<td>Steel</td>
<td>60.40</td>
<td>4</td>
<td>Debris at 13.00 at bottom of line. Camera under water at 40.50 ft. unable to investigate line condition. Unable to push past 60.40 ft. due to debris blockage.</td>
</tr>
</tbody>
</table>

Entry point overview

Typical clear line condition

Entry point overview

Debris at 13.00 at bottom of line.

Camera under water at 40.50 ft. unable to investigate line condition,

Unable to push past 60.40 ft. due to debris blockage.
<table>
<thead>
<tr>
<th>No.</th>
<th>Utility</th>
<th>Material</th>
<th>Total Video Length (ft)</th>
<th>Pipe Size (in)²</th>
<th>Line Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3 CO1</td>
<td>Sewer</td>
<td>Steel</td>
<td>2.10</td>
<td>4</td>
<td>Unable to push past sweep.</td>
</tr>
</tbody>
</table>

Entry point overview

Unable to push past sweep.
<table>
<thead>
<tr>
<th>No.</th>
<th>Utility</th>
<th>Material</th>
<th>Total Video Length (ft)</th>
<th>Pipe Size (in)2</th>
<th>Line Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4</td>
<td>Sewer</td>
<td>Steel/Clay</td>
<td>5.10</td>
<td>4</td>
<td>Lateral on right at entry point. Lateral on the right at 2.40 ft. Lateral from above at 5.10 ft.</td>
</tr>
</tbody>
</table>

![Entry point overview](image1)

Entry point overview

![Lateral on right at entry point.](image2)

Lateral on right at entry point.

![Lateral on the right at 2.40 ft.](image3)

Lateral on the right at 2.40 ft.

![Lateral from above at 5.10 ft.](image4)

Lateral from above at 5.10 ft.
<table>
<thead>
<tr>
<th>No.</th>
<th>Utility</th>
<th>Material</th>
<th>Total Video Length (ft)</th>
<th>Pipe Size (in)2</th>
<th>Line Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>S5</td>
<td>Sewer</td>
<td>Steel/Clay</td>
<td>45.40</td>
<td>4</td>
<td>Debris at bottom of line at 38.30 ft. Unable to push past 45.40 ft.</td>
</tr>
</tbody>
</table>

Entry point overview

Typical line condition

Debris at bottom of line at 38.30 ft.

Unable to push past 45.40 ft.
<table>
<thead>
<tr>
<th>No.</th>
<th>Utility</th>
<th>Material</th>
<th>Total Video Length (ft)</th>
<th>Pipe Size (in2)</th>
<th>Line Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>S6 CO1</td>
<td>Sewer</td>
<td>Clay</td>
<td>90.80</td>
<td>6</td>
<td>Lateral on left at 10.70 ft. Line changes to steel at “T” connection at 11.60 ft. Lateral on right at 11.30 ft. Root intrusion at 13.40 ft.</td>
</tr>
</tbody>
</table>

![Entry point overview](image1.png)

![Entry point overview](image2.png)

![Typical line condition](image3.png)

![Typical line condition](image4.png)

![Typical line condition](image5.png)

![Typical line condition](image6.png)
<table>
<thead>
<tr>
<th>No.</th>
<th>Utility</th>
<th>Material</th>
<th>Total Video Length (ft)</th>
<th>Pipe Size (in)^2</th>
<th>Line Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>S6</td>
<td>Sewer</td>
<td>Clay</td>
<td>90.80</td>
<td>6</td>
<td>Root intrusion at 23.00 ft. 26.70 ft. 31.30 ft. 35.70 ft. Lateral from top left at 36.30 ft. Root intrusion at 37.20 ft.</td>
</tr>
</tbody>
</table>

![Root intrusion at 23.00 ft.](image1)

![Root intrusion at 26.70 ft.](image2)

![Root intrusion at 31.30 ft.](image3)

![Root intrusion at 35.70 ft.](image4)

![Lateral from top left at 36.30 ft.](image5)

![Root intrusion at 37.20 ft.](image6)
<table>
<thead>
<tr>
<th>No.</th>
<th>Utility</th>
<th>Material</th>
<th>Total Video Length (ft)</th>
<th>Pipe Size (in)²</th>
<th>Line Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>S6 CO1</td>
<td>Sewer</td>
<td>Clay</td>
<td>90.80</td>
<td>6</td>
<td>Line turns right at 42.40 ft. with root intrusion. Line drops at 45.50 ft with lateral on left. Line drops to second line at 49.20 ft. Camera under water at 89.50 ft. Unable to push past 90.80 ft. due to blockage</td>
</tr>
</tbody>
</table>

Line turns right at 42.40 ft. with root intrusion.

Line drops at 45.50 ft with lateral on left.

Line drops to second line at 49.20 ft.

Camera under water at 89.50 ft.

Unable to push past 90.80 ft. due to blockage
<table>
<thead>
<tr>
<th>Project:</th>
<th>Goleta Community Center</th>
<th>City and State:</th>
<th>Goleta, California</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proj. #:</td>
<td>16-170535</td>
<td>Date of Survey:</td>
<td>December 31, 2016</td>
</tr>
</tbody>
</table>

History

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>An ADA compliance survey has previously been completed for this property.</td>
<td>X</td>
<td>Prepared by Crosby Group dated April 24, 2013</td>
</tr>
<tr>
<td>1.2</td>
<td>An approved Barrier Removal Plan exists for this property.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>ADA compliance improvements have been made to this property.</td>
<td>X</td>
<td>Partially but not completely compliant</td>
</tr>
<tr>
<td>1.4</td>
<td>Property Management reports unresolved ADA complaints or litigation.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Parking

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Does the required number of standard ADA-designated spaces appear to be provided?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Does the required number of van-accessible designated spaces appear to be provided?</td>
<td>X</td>
<td></td>
<td>Although there are spaces that can be striped as such</td>
</tr>
<tr>
<td>2.3</td>
<td>Are accessible spaces part of the shortest accessible route to an accessible building entrance?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Is a sign with the International Symbol of Accessibility at the head of each space?</td>
<td>X</td>
<td></td>
<td>Partially</td>
</tr>
<tr>
<td>2.5</td>
<td>Does each accessible space have an adjacent access aisle?</td>
<td>X</td>
<td></td>
<td>Partially but not completely compliant</td>
</tr>
<tr>
<td>2.6</td>
<td>Do parking spaces and access aisles appear to be relatively level and without obstruction?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exterior Accessible Route

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Is an accessible route present from public transportation stops and municipal sidewalks on the property?</td>
<td>X</td>
<td></td>
<td>Some pavers are uneven</td>
</tr>
<tr>
<td>3.2</td>
<td>Are curb cut ramps present at transitions through curbs on an accessible route?</td>
<td>X</td>
<td></td>
<td>Partially but not completely compliant</td>
</tr>
<tr>
<td>3.3</td>
<td>Do the curb cut ramps appear to have the proper slope for all components?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Do ramps on an accessible route appear to have a compliant slope?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Do ramps on an accessible route appear to have a compliant length and width?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Do ramps on an accessible route appear to have compliant end and intermediate landings?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Do ramps on an accessible route appear to have compliant handrails?</td>
<td>X</td>
<td></td>
<td>At main entrance to Community Center and at walkway between Classroom Buildings</td>
</tr>
</tbody>
</table>

Building Entrances

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Do a sufficient number of accessible entrances appear to be provided?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>If the main entrance is not accessible, is an alternate accessible entrance provided?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Is signage provided indicating the location of alternate accessible entrances?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Do doors at accessible entrances appear to have compliant clear floor area on each side?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Do doors at accessible entrances appear to have compliant hardware?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Do doors at accessible entrances appear to have a compliant clear opening width?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Do pairs of accessible entrance doors in series appear to have the minimum clear space between them?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Do thresholds at accessible entrances appear to have a compliant height?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>Interior Accessible Routes and Amenities</td>
<td>Yes</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>5.1</td>
<td>Does an accessible route appear to connect with all public areas inside the building?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Do accessible routes appear free of obstructions and/or protruding objects?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Do ramps on accessible routes appear to have a compliant slope?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Do ramps on accessible routes appear to have a compliant length and width?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Do ramps on accessible routes appear to have compliant end and intermediate landings?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Do ramps on accessible routes appear to have compliant handrails?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>Are adjoining public areas and areas of egress identified with accessible signage?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>Do public transaction areas have an accessible, lowered counter section?</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td>Do public telephones appear mounted with an accessible height and location?</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5.10</td>
<td>Are publicly-accessible swimming pools equipped with an entrance lift?</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6.0</th>
<th>Interior Doors</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Do doors at interior accessible routes appear to have compliant clear floor area on each side?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Do doors at interior accessible routes appear to have compliant hardware?</td>
<td>X</td>
<td></td>
<td></td>
<td>All interior doors need compliant hardware</td>
</tr>
<tr>
<td>6.3</td>
<td>Do doors at interior accessible routes appear to have compliant opening force?</td>
<td>X</td>
<td></td>
<td></td>
<td>Most require >5 lbs. pressure to open doors</td>
</tr>
<tr>
<td>6.4</td>
<td>Do doors at interior accessible routes appear to have a compliant clear opening width?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.0</th>
<th>Elevators</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Are hallway call buttons configured with the "UP" button above the "DOWN" button?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>Is accessible floor identification signage present on the hoistway sidewalls?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Do the elevators have audible and visual arrival indicators at the entrances?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>Do the elevator hoistway and car interior appear to have a minimum compliant clear floor area?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>Do the elevator car doors have automatic re-opening devices to prevent closure on obstructions?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.6</td>
<td>Do elevator car control buttons appear to be mounted at a compliant height?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td>Are tactile and Braille characters mounted to the left of each elevator car control button?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.8</td>
<td>Are audible and visual floor position indicators provided in the elevator car?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.9</td>
<td>Is the emergency call system at the base of the control panel and not require voice communication?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.0</th>
<th>Toilet Rooms</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Do publicly-accessible toilet rooms appear to have a minimum compliant floor area?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>Does the lavatory appear to be mounted at a compliant height and with compliant knee area?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>Does the lavatory faucet have compliant handles?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>Is the plumbing piping under lavatories configured to protect against contact?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>Are grab bars provided at compliant locations around the toilet?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.6</td>
<td>Do toilet stall doors appear to provide the minimum compliant clear width?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.7</td>
<td>Do toilet stalls appear to provide the minimum compliant clear floor area?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.8</td>
<td>Do urinals appear to be mounted at a compliant height and with compliant approach width?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.9</td>
<td>Do accessories and mirrors appear to be mounted at a compliant height?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.0</td>
<td>Hospitality Guestrooms</td>
<td>Yes</td>
<td>No</td>
<td>N/A</td>
<td>Comments</td>
</tr>
<tr>
<td>9.1</td>
<td>Does property management report the minimum required accessible guestrooms?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>Does property management report the minimum required accessible guestrooms with roll-in showers?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PLAN NOTES
1. EXISTING CONCRETE RAMP TO REMAIN
2. EXTENSION OF EXISTING CONCRETE RAMP
3. EXISTING CONCRETE LANDING TO REMAIN
4. NEW EXTENDED CONCRETE LANDING

ADA RAMP MODIFICATION
APPENDIX C: HAZARDS MAP
Figure 1 – Soil composition map

Figure 2 – Soil liquefaction map
Figure 3 – Earthquake fault map

Figure 4 – Secondary Soil Liquefaction Hazard map

Legend:
- Historic
- Post Glacial
- Late Quaternary
- Mid/Late Quaternary
- Quaternary
- Class B
- Other
APPENDIX D: QUALIFICATIONS
Education
B.S. Urban and Regional Planning, California State Polytechnic University, Pomona, CA

Training
Safety Assessment Volunteer, State of California

Highlights
35 years in the architectural and construction fields
Extensive knowledge of real estate due diligence
25 years of experience with institutional and private clients
Acquisitions/dispositions and mortgage lending property condition assessments
Construction monitoring services

Experience Summary
Mr. Arias serves as the Technical Director for the Investment Advisory Group (IAG) of the Building Science Division of Partner Engineering and Science, Inc. (Partner). IAG provides technical support to the Equity Asset Management industry by providing capital improvement cost-benefit analysis on real estate transactions. IAG produces a more thorough Property Condition Assessment for the institutional and equity client beyond the “ASTM E2018-08 Standard Guide for Property Condition Assessments: Baseline Property Condition Assessment Process”. In order to provide a detailed level of assessment, IAG engages both in-house engineers and trade specialists including, but not limited to, structural/seismic engineers, Mechanical/Electrical/Plumbing engineers, Fire/Life Safety and Code specialists and elevator, roof and accessibility specialists. IAG supports equity acquisitions and dispositions assessments on office buildings, multi-family residential, retail, hotel and industrial properties.

Mr. Arias has completed hundreds of Property Condition Assessments (PCAs) including planning, field work, report preparation/quality control, and client contact on a myriad of acquisition/disposition projects including: high-rise offices; suburban office; regional and local retail centers; industrial; and multi-family housing projects. He has provided owner’s representation services on various projects for institutional investors. Mr. Arias managed the review of numerous document reviews for institutional-level development projects in all disciplines on a variety of projects including office, retail, industrial, multi-family, etc. These reviews consisted of projects noted in the Owner’s Representation Services. He has also performed job captain and project manager responsibilities for a design/build general construction firm specializing in industrial concrete tilt-up construction, retail centers and auto dealerships. He has significant knowledge of the accessibility requirements of ADA and FHA, and is currently a candidate for California’s CASp (Certified Access Specialist) program.

Additionally, over the past 15 years, Mr. Arias’ responsibilities also included evaluation of staff; developing new skills and improving existing skills within the staff; scheduling of personnel; maintaining quality control practices consistent with company goals; and participated in development of protocols and practices to serve national clients of the firm.
Project Experience

Multi-Family Project, Oakland, CA. Organized and led a team of engineers and specialists to conduct an equity-level property condition assessment of a five-story, 300+ unit apartment project in downtown Oakland, CA. The project had been dormant prior to the client purchasing the property, therefore, the client required a detailed assessment of the building systems but also an assessment of investigation and construction documentation. The team consisted of structural engineers performing a seismic risk assessment; elevator, roof and façade specialists; mechanical, electrical, plumbing and fire/life safety engineers and an acoustical engineer. Mr. Arias assessed all other systems including the ADA and FFHA accessibility elements of the project. Mr. Arias led team in meetings with client and their counsel.

Hospitality Project, San Jose, CA. Organized and led a team of engineers and specialists to conduct an equity-level property condition assessment of a 28-story, 500+ guestroom, 400,000-square foot hospitality project in downtown San Jose, CA. The institutional client required a detailed assessment of the building systems including an assessment of the façade from the building’s swing stage due to observed water intrusion issues. The team consisted of structural engineers performing a seismic risk assessment; elevator, roof and façade specialists; mechanical, electrical, plumbing and fire/life safety engineers, as well as a specialist to sample the fire sprinkler water to identify microbial influence corrosion (MIC) in the fire sprinkler piping system. Mr. Arias assessed all other systems including the ADA accessibility elements of the project.

Retail Project, Emeryville, CA. Organized and led a team of engineers and specialists to conduct an equity-level property condition assessment of a popular and active 800,000-square foot mixed-use project in Emeryville, CA. The institutional client required a detailed assessment of the building systems including destructive testing of several locations of the façade to confirm construction of the exterior walls. The team consisted of structural engineers performing a seismic risk assessment, roof and façade specialists, mechanical, electrical, plumbing and fire/life safety engineers. Mr. Arias assessed all other systems including the ADA accessibility elements of the project.

Senior Housing Portfolio, Numerous Sites in US. Assisted with organizing teams to conduct disposition property condition assessments of 30 senior housing projects throughout the West and Midwest. The client required a summary of issues identified by the field assessors. Mr. Arias reviewed all property condition assessments for accuracy and quality control.

Owners’ Representation Services. Mr. Arias has provided owner’s representation services on various projects for institutional investors, including recent developments of numerous 50 to 250-unit multi-family projects in Santa Monica, Los Angeles, and Glendale, CA., several concrete tilt-up industrial developments in the Inland Empire area of Southern California and San Diego totaling over 1 million square feet; major hospitality projects consisting of the W-Hotel and Manchester Grand Hyatt Hotel in San Diego and several large “big box” retail centers in the San Fernando Valley in Southern California.

Project Management Services, Southern California. Mr. Arias managed staff and performed Project Management services on numerous projects including reconstruction of balcony decks of an existing multi-family project in Pasadena, California; forensic analysis and resealing of a plaza deck, also in Pasadena and an exterior wall repair, plaza deck waterproofing, and structural repair project for a homeowner association of a large condominium project in Marina del Rey.
Affiliations
American Institute of Architects, Associate
Certified Access Specialist Institute, Associate
International Code Council

Contact
marias@partneresi.com
Education
B.S. in Biological Sciences, University of California Santa Barbara, Distinction in Major

Registrations
National Registry of Environmental Professionals: Registered Environmental Property Assessor (REPA)

Training
OSHA 40-Hour Health and Safety Training

Highlights
Over 16 years in the environmental and engineering consulting industry
Founder member of Partner Engineering and Science, Inc.
Executive Board Member of Partner Engineering and Science, Inc.

Experience Summary
Ms. Redlin has more than 16 years of experience in the environmental and engineering consulting industry. Her background in environmental science, in addition to her knowledge of current commercial real estate due diligence standards, allows her to offer the most efficient and cost-effective means of regulatory compliance. Ms. Redlin has extensive experience managing all aspects of due diligence, specializing in environmental due diligence, for nationwide and local clients such as:

- Residential Developers
- Commercial Developers
- Mortgage Brokers
- Real Estate Brokers
- Individual Property Owners and Buyers
- Financial Institutions including:
 - Portfolio Lenders
 - SBA Lenders
 - HUD Lenders
 - Fannie Mae Lenders
 - Freddie Mac Lenders
 - Private Equity Funds
 - Insurance Lenders

Ms. Redlin has gained valuable knowledge and know-how from having been personally involved in the details of thousands of real estate transactions for various client types, and therefore understands the specific needs and scopes of work required for all parties involved in a transaction.

Ms. Redlin has served as an environmental scientist, project manager, or executive senior author on over 15,000 real estate transactions. Ms. Redlin's due diligence resume includes experience at all levels, advising lenders and real estate investors through the following product types:

- Phase I Environmental Site Assessments
Jenny Redlin, REPA

- Phase II Subsurface Investigations
- Phase III Site Characterizations
- Remedial Cost Estimates
- Remediation Design and Implementation
- Environmental Transaction Screens
- Property Condition Assessments
- Probable Maximum Loss Assessments
- Property Condition Evaluations

Real estate investors, redevelopment agencies, financial institutions, insurance lenders, and real estate equity funds have come to rely on her advice and judgment to help them with their real estate business decisions. Ms. Redlin is a dedicated professional who takes pride and pleasure in meeting her client's needs and spearheading and assembling the team with the expertise to handle any issue that may come up during the transaction.

Project Experience

Ms. Redlin has extensive experience in testing soil, soil gas, and groundwater in the context of a real estate transaction, as well as under the supervision of state and federal regulators. Among her specialties is guiding landowners and prospective purchasers through the process of selling or acquiring an environmentally challenged site.

Ms. Redlin has participated in the characterization of groundwater and soil contamination; quarterly groundwater monitoring; implementation of various systems such as soil vapor extraction systems, dual phase extraction systems, ozone sparging, air sparging, pump and treat; and soil excavation projects such as tank removals at several clean-up sites in Los Angeles and Orange County.

Ms. Redlin also has extensive experience in environmental compliance monitoring and biological consulting. She has extensive experience working as an independent contractor for and in conjunction with state and local agencies such as Santa Barbara County Parks, California Department of Fish and Game, California Public Utilities Commission, Los Angeles Water and Sanitation and others. This included monitoring construction activities near sensitive biological receptors; containing, quantifying and reporting any hazardous material spills that occurred; working with construction crews to ensure compliance with environmental permit regulations as well as reporting to interested parties on the progress and compliance of the project.

Distinctions

Real Estate Forum- Woman of Influence 2012

Ms. Redlin was named by the Los Angeles Business Journal for Women Making a Difference in 2010.

Ms. Redlin has been designated a 2009 California Mortgage Bankers Association (CMBA) Future Leader.

Ms. Redlin was named Real Estate Southern California Woman of Influence in 2008 for her role in the area's commercial real estate transactions.
Ms. Redlin was one of only two consultants asked to sit on the Risk Managers Association (RMA) Credit Committee roundtable which discussed the effects of the new Federal All Appropriate Inquiries (AAI) standard on Phase I Environmental Site Assessments.

Ms. Redlin received an Industry Profile of Distinction in Brownfield Renewal.

Affiliations
- Member, Environmental Bankers Association
- Member, Mortgage Banker’s Association
- Member, All Star Group, Income Property Lending
- Member, International Council of Shopping Centers

Speaking
- Income Property Lending Conferences- Regular Presenter
- Southern California Chief Appraiser Meetings- Regular Presenter
- Environmental Bankers Association- Regular Presenter
- Due Diligence 101 Webinar
- Getting in Front of Due Diligence Issues Webinar
- Bisnow Conference Series Moderator
- GlobeStreet Thought Leader

Publications
- *The Sale & Purchase of Non-Residential Properties*
- *AB 1103: What Does It Mean for the Industry 2014*
- *Update on the new Phase I ESA Standard (ASTM E1527-13)*
- *What will AB 1103 mean for the commercial real estate industry?*
- *Granite Distributor Sponsors Radon Granite Testing Project, Stone World, December 2008*

Contact
jenny@partnersi.com