PROPERTY CONDITION REPORT

City of Goleta City Hall
130 Cremona Drive
Goleta, California 93117

March 15, 2019
Partner Project Number: 19-234639.1

Prepared for:
Willdan Engineering
City of Industry, California 91746
March 15, 2019

Mr. James Guerra
Willdan Engineering
13191 Crossroads Parkway North, Suite 405
City of Industry, California 91746

Subject: Property Condition Report
City of Goleta City Hall
130 Cremona Drive
Goleta, California 93117
Partner Project No. 19-234639.1

Dear Mr. Guerra:

Partner Engineering and Science, Inc. is pleased to provide the results of the assessment performed on the above-referenced property. At a minimum, this assessment was performed in conformance with the scope and limitations as set forth by ASTM E2018-15 “Standard Guide for Property Condition Assessments: Baseline Property Condition Assessment Process” and as specified in the engagement agreement that initiated this work.

The purpose of this assessment is to describe the primary systems and components of the subject property, to identify conspicuous defects or material deferred maintenance and to present an opinion of costs to remedy to observed conditions. In addition, this report identifies systems or components that are anticipated to reach the end of their expected useful life during the specified evaluation period and includes an opinion of cost for future capital replacements.

This assessment was performed utilizing methods and procedures consistent with good commercial or customary practices designed to conform to acceptable industry standards. The independent conclusions represent Partner’s best professional judgment based upon existing conditions and the information and data available to us during the course of this assignment.

We appreciate the opportunity to provide these assessment services. If you have any questions concerning this report, or if we can assist you in any other matter, please contact Mark Lambson at (619) 925-9672 or mlambson@partneresi.com.

Sincerely,

Partner Engineering and Science, Inc.

Michael P. Arias
Technical Director - Principal

Mark Lambson
National Client Manager
EXECUTIVE SUMMARY AND PROPERTY DESCRIPTION

Executive Summary

Partner Engineering and Science, Inc. (Partner) has performed a property condition assessment (PCA) of the parcel and improvements defined in the following table (the “subject property”). The assessment was performed in accordance with ASTM E2018-15 “Standard Guide for Property Condition Assessments: Baseline Property Condition Assessment Process”. The purpose of this Property Condition Assessment was to observe and document readily-visible materials and building system defects that might significantly affect the value of the subject property and determine if conditions exist which may have a significant impact on the continued operation of the facility during the evaluation period.

<table>
<thead>
<tr>
<th>Property Data</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>City of Goleta City Hall</td>
</tr>
<tr>
<td>Address</td>
<td>130 Cremona Drive</td>
</tr>
<tr>
<td>City, State and Zip Code</td>
<td>Goleta, California 93117</td>
</tr>
<tr>
<td>Property use</td>
<td>Commercial office</td>
</tr>
<tr>
<td>Land acreage (acres)</td>
<td>2.39 Approx.</td>
</tr>
<tr>
<td>Number of buildings</td>
<td>One</td>
</tr>
<tr>
<td>Number of floors</td>
<td>Two</td>
</tr>
<tr>
<td>Approximate Percentage of Parcel</td>
<td>100 %</td>
</tr>
<tr>
<td>Occupied by Improvements</td>
<td></td>
</tr>
<tr>
<td>Year built</td>
<td>1988</td>
</tr>
<tr>
<td>Gross building area (sf)</td>
<td>40,049</td>
</tr>
<tr>
<td>Net rentable area (sf)</td>
<td>40,049</td>
</tr>
<tr>
<td>Number of tenant spaces</td>
<td>Two</td>
</tr>
<tr>
<td>Foundation / Substructure</td>
<td>Concrete slab-on-grade with perimeter and interior footings under load bearing structures</td>
</tr>
<tr>
<td>Superstructure</td>
<td>Steel columns and steel beams supporting lightweight concrete over plywood sheathing decking.</td>
</tr>
<tr>
<td>Façade</td>
<td>Painted concrete tilt-up wall panels</td>
</tr>
<tr>
<td>Roof type</td>
<td>Thermoplastic Polyolefin (TPO) Single-ply membrane</td>
</tr>
<tr>
<td>Parking area</td>
<td>Asphalt pavement</td>
</tr>
<tr>
<td>Parking space count</td>
<td>131 (Based on assumed property limits)</td>
</tr>
<tr>
<td>ADA-designated parking count</td>
<td>Two ADA-designated, of which one is van-designated</td>
</tr>
<tr>
<td>HVAC system</td>
<td>Rooftop gas/electric packaged units Split heat pump system units</td>
</tr>
<tr>
<td>Water supply piping</td>
<td>Copper</td>
</tr>
<tr>
<td>Electrical branch wiring</td>
<td>Copper</td>
</tr>
<tr>
<td>Number of elevators</td>
<td>None</td>
</tr>
<tr>
<td>Fire suppression</td>
<td>Wet-pipe sprinkler system</td>
</tr>
<tr>
<td>Fire alarm</td>
<td>Central system with local notification</td>
</tr>
</tbody>
</table>

Overall Condition

Based on the systems and components observed during the site visit, the subject property appeared to be in good to fair condition. The overall level of preventative maintenance appeared to be good. The detailed
observations of reviewed systems are presented in the following Sections of this report, with tabulated opinions of cost presented in the Appendices.

Reported Capital Expenditures

According to property management, the following capital improvements were completed within the last three years:

- Thermoplastic Polyolefin (TPO) roof installation, year 2017

Immediate and Short-Term Repair Items

This report presents opinions of costs for items or conditions that require immediate action as a result of the following: Material existing or potentially unsafe conditions, material code violations, or any other physical deficiencies that if left uncorrected would be expected to result in or contribute to the failure of critical elements or systems within one year or may result in a significant increase in remedial costs. These items should be addressed at the first practical opportunity.

In addition, this report presents opinions of costs for items or conditions that may not require immediate action; however, should be conducted on a priority basis above and beyond routine maintenance. Generally, the recommended time frame for addressing these items is two years.

Deferred maintenance items and/or physical deficiencies that are considered significant are also identified in Table 1 - Immediate Repair and Deferred Maintenance Cost Opinion.

Replacement Reserve Items

In accordance with the evaluation periods under which this assessment was performed, this report includes opinions of costs for capital replacement reserve items that are anticipated to occur during a specified evaluation period. These items are identified in Table 2 – Long-Term Cost Opinion. Systems or components that are present at the subject property; however, not listed in Table 2, are expected to realize a useful life that exceeds the evaluation period.

Cost Exclusions

This report excludes costs for systems or components that are reported to be a tenant responsibility to maintain and replace, that are generally associated with the normal operation of the subject property, that are part and parcel of a building renovation program, for enhancements to reposition the subject property within the marketplace, for work that is cosmetic or decorative, for work that is being conducted for warranty transfer purposes and routine maintenance activities. This report also excludes costs that are below the reporting threshold established by the engagement agreement.
Deviation from ASTM E2018

The deviations listed below are part of the Partner standard operating procedures or were specified in the Client’s scope of work.

• This report includes seismic zone information that is not required by the Standard.
• This report includes an opinion of costs for anticipated capital expenditures for an evaluation period defined by the Addressee. The costs are presented in Table 2.
• This report includes an evaluation of the condition of the observed components and systems.
• This report combines the opinions of immediate and short-term costs included in Table 1.

Recommendations for Additional Investigations

There were no issues observed or reported that indicate the need for additional investigations.
<table>
<thead>
<tr>
<th>Sect. No.</th>
<th>Deficiency or Repair Item</th>
<th>Quantity</th>
<th>Unit</th>
<th>Unit Cost</th>
<th>Immediate Repair</th>
<th>Short-Term Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>Regulatory Compliance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>None Noted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>Site Improvements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.3</td>
<td>Cracks in the concrete steps from Los Carneros Road. Concrete steps at the north property perimeter were observed with broken areas (See picture 110). Generally, the steps appear to be stable and do not create a hazard, however, Partner recommends that the cracks be filled epoxy and monitored over the term.</td>
<td>1</td>
<td>LS</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,000</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Vegetative materials were observed to be in good to fair overall condition. Overgrown tree roots at the northeast and southeast corners of building should be removed to prevent penetration and deterioration of building foundations and asphalt pavement. Includes patch repairs of asphalt pavement. The retaining wall appeared to be in fair condition with some cracking and evidence of water migration(See picture 111). Weep holes were not provided which would have relieved any hydrostatic pressure behind the wall. However, it is recommended that the condition of the wall be monitored and an application of waterproofing at the positive side. Painting of the framing can be part of painting of building exteriors. The access gate was observed with a damaged and rusted closer making it difficult to the access to this area. (See picture 126). Replacement of the closer is recommended.</td>
<td>1</td>
<td>LS</td>
<td>$8,000</td>
<td>$8,000</td>
<td>$8,000</td>
<td>$8,000</td>
</tr>
<tr>
<td>3.2.5</td>
<td>700</td>
<td>LF</td>
<td>$4.00</td>
<td>$2,800</td>
<td>$2,800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.7</td>
<td>The sheet metal vision screen was observed to be in good condition but surface rust was observed on the framing.</td>
<td>1</td>
<td>EA</td>
<td>$600</td>
<td>$600</td>
<td>$600</td>
<td>$600</td>
</tr>
<tr>
<td>4.0</td>
<td>Structural Frame and Building Envelope</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3.4</td>
<td>Parapets appeared to be in good to fair overall condition. The metal reglet counterflashing was observed to be in generally good condition but the application of the bead of caulk at the reglet was noted to be inconsistent with openings and crazed areas observed (See picture 117). This inconsistency may allow water intrusion into between the parapet and the roof deck. Replication of the caulking bead is recommended.</td>
<td>700</td>
<td>LF</td>
<td>$4.00</td>
<td>$2,800</td>
<td>$2,800</td>
<td>$2,800</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Roof drains were observed to be in good to fair overall condition. Roof drains should be repaired or replaced, as needed, during roof replacement and/or maintenance activities. Evidence of water damage indicative of roof leaks was observed at the west perimeter due to a clogged roof drain (See pictures 123 and 124).</td>
<td>1</td>
<td>EA</td>
<td>$700</td>
<td>$700</td>
<td>$700</td>
<td>$700</td>
</tr>
<tr>
<td>4.1</td>
<td>Cracking was noted in the far northeast curved column but appears to be normal shrinkage cracking. However, the cracks should be filled with epoxy.</td>
<td>1</td>
<td>LS</td>
<td>$3,100</td>
<td>$3,100</td>
<td>$3,100</td>
<td>$3,100</td>
</tr>
<tr>
<td>Sect. No.</td>
<td>Deficiency or Repair Item</td>
<td>Quantity</td>
<td>Unit</td>
<td>Unit Cost</td>
<td>Immediate Repair</td>
<td>Short-Term Cost</td>
<td>Total Cost</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------</td>
<td>------</td>
<td>-----------</td>
<td>------------------</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>5.0</td>
<td>Mechanical and Electrical Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5.1</td>
<td>Current inspection tags were not observed on the fire riser neither available report documents were provided to verify current inspection dates. Partner recommends the five-year test be performed immediately.</td>
<td>1</td>
<td>LS</td>
<td>$3,000</td>
<td>$3,000</td>
<td></td>
<td>$3,000</td>
</tr>
<tr>
<td>5.5.2</td>
<td>The fire alarm system appeared to be in good to fair overall condition and is reportedly tested on a regular basis. Current inspection tags were not observed on the main control panel and available documents show the last inspection occurred on February 23, 2001 (expired). Partner recommend the immediate inspection of the fire alarm and its components.</td>
<td>1</td>
<td>LS</td>
<td>$1,200</td>
<td>$1,200</td>
<td></td>
<td>$1,200</td>
</tr>
<tr>
<td>5.1</td>
<td>The sanitary drainage and vent system was reported to be in good overall condition. Evidence of leaks or faulty piping was not observed. Routine maintenance is anticipated during the evaluation period. However, the escort reported complaints of backed-up sewers and poor waste removal. Partner recommends that the sewer laterals be scoped with a video to determine the condition of the sewer lines. It is unknown the quantity and location of the sewer lines but an allowance is provided for the sewer video inspection.</td>
<td>1</td>
<td>LS</td>
<td>$5,000</td>
<td>$5,000</td>
<td></td>
<td>$5,000</td>
</tr>
<tr>
<td>6.0</td>
<td>Interior Elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>Accessibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0.1</td>
<td>Mr. Valdez indicated that the City is proposing a lot line adjustment with a proposed west lot line generally equidistant between Buildings 120 and 130 Cremona. Based on that proposed lot line, Partner determined that approximately a total of 131 spaces would be provided for the subject building. The ADA-designated parking spaces did appear to be correctly configured and identified. According to the ADA Accessibility Guidelines (ADAAG), public accommodations with between 101-150 total parking spaces are required to maintain at least five ADA-designated parking spaces, with at least one of those being a van accessible space. Partner recommends conversion of three parking spaces into ADA-designated spaces.</td>
<td>3</td>
<td>EA</td>
<td>$500</td>
<td>$1,500</td>
<td></td>
<td>$1,500</td>
</tr>
<tr>
<td>8.0</td>
<td>Water Intrusion and Microbial Growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL $20,700 $22,200 $42,900
TABLE 2 - LONG-TERM COST OPINION

City of Goleta City Hall
130 Cremona Drive
Goleta, California 93117
March 15, 2019
Partner Project No. 19-234639.1

| Sect. No. | Description | Avg Est. Age (YR) | Eff Age (YR) | On Site Qty | Qty in Eval Period | Unit Cost | YR 1 | YR 2 | YR 3 | YR 4 | YR 5 | YR 6 | YR 7 | YR 8 | YR 9 | YR 10 | YR 11 | YR 12 | Total Cost |
|-----------|-------------|------------------|-------------|-------------|-------------------|----------|------|------|------|------|------|------|------|------|-------|-------|-------|----------|
| 3.0 Site Improvements | | | | | | | | | | | | | | | | | |
| 3.2.2 Asphalt seal coat & striping | | 5 | 4 | 1 | 4,700 | 54,700 SF | $0.18 | 9,846 | | 9,846 | | 9,846 | | 29,538 |
| 3.2.2 Asphalt overlay | | 25 | 19 | 6 | 5,700 | 54,700 SF | $1.75 | | | 95,725 | | | | |
| 4.0 Structural Frame and Building Envelope | | | | | | | | | | | | | | | | |
| 4.3.1 Exterior cleaning, painting, sealing | | 8 | 5 | 3 | 21,000 | 42,000 SF | $1.50 | | | $31,500 | | | | | | | |
| 5.0 Mechanical and Electrical Systems | | | | | | | | | | | | | | | | |
| 5.2 HVAC package unit (RTU), Replace | | 20 | 18 | 2 | 42 | 42 TON | $1,500 | | | $12,600 | $12,600 | $12,600 | $12,600 | $12,600 | $63,000 |
| 5.2 Split-system condenser, Replace | | 20 | 18 | 2 | 3 | 3 EA | $1,300 | | | | | | | | | | |
| 5.2 Split-system furnace/fan coil, Replace | | 25 | 18 | 7 | 3 | 3 EA | $1,800 | | | | | | | | | | $5,400 |
| 6.0 Interior Elements | | | | | | | | | | | | | | | | |
| 6.1 Common area carpeting, Replace | | 7 | 6 | 1 | 800 | 1,600 SF | $3.00 | | | 2,400 | | | | | | | | $4,800 |
| 6.1 Common area wall finishes, Replace | | 10 | 6 | 4 | 1,300 | 1,300 SF | $1.00 | | | | | | | | | | $1,300 |

| | Uninflated Totals: | $12,246 | $16,500 | $44,100 | $13,900 | $12,600 | $118,171 | $5,400 | $2,400 | $41,346 | $2,400 | $2,400 | $41,346 | $2,400 | $2,400 | $2,400 | $41,346 | $2,400 | $2,400 | $41,346 | $2,400 | $2,400 | $41,346 | $2,400 | $2,400 | $41,346 | $2,400 | $2,400 | $41,346 | $2,400 | $2,400 | $41,346 | $2,400 | $2,400 | $41,346 | $2,400 | $2,400 | $41,346 | $2,400 | $2,400 | $41,346 | $2,400 | $2,400 | $41,346 |

Uninflated cost per square foot per year: $0.55
Inflated cost per square foot per year: $0.62
TABLE OF CONTENTS

1.0 INTRODUCTION ... 1
 1.1 Purpose .. 1
 1.2 Scope of Work ... 1
 1.3 Cost Evaluation Methodology ... 1
 1.4 Descriptive Qualifiers ... 2
 1.5 User Reliance ... 2

2.0 RECONNAISSANCE, REGULATORY AND DOCUMENT REVIEW .. 3
 2.1 Site Reconnaissance .. 3
 2.2 Property Personnel Interviewed/Contacted ... 3
 2.3 Document Review ... 4

3.0 PROPERTY CHARACTERISTICS ... 5
 3.1 Parcel Configuration .. 5
 3.2 Site Improvements .. 5
 3.2.1 Topography and Storm Water Drainage ... 5
 3.2.2 Vehicular Access, Paving ... 5
 3.2.3 Walkways, Grade-Level Steps and Ramps ... 6
 3.2.4 Landscaping and Irrigation ... 6
 3.2.5 Retaining Walls .. 7
 3.2.6 Site and Building Signage ... 7
 3.2.7 Perimeter Walls, Gates, and Fences ... 7
 3.2.8 Exterior Lights .. 7
 3.2.9 Site Amenities .. 8
 3.2.10 Utility Service Providers ... 8
 3.2.11 Special Utility Systems ... 8

4.0 STRUCTURAL FRAME AND BUILDING ENVELOPE .. 9
 4.1 Foundation/Substructure ... 9
 4.2 Building Frame ... 9
 4.3 Facades or Curtain Walls .. 10
 4.3.1 Exterior Walls .. 10
 4.3.2 Windows ... 10
 4.3.3 Doors ... 11
 4.3.4 Parapets ... 11
 4.4 Roof .. 11
 4.4.1 Roofing Materials ... 11
 4.4.2 Roof Drainage .. 12
 4.5 Fire Escapes, Stairs or Balconies ... 12

5.0 MECHANICAL AND ELECTRICAL SYSTEMS ... 13
 5.1 Plumbing, Domestic Hot Water, and Sewer Systems ... 13
 5.2 Heating, Air Conditioning, and Ventilation ... 13
 5.3 Electrical ... 15
 5.4 Vertical Transportation .. 15
5.5 Life Safety and Fire Protection
5.5.1 Fire Suppression Systems
5.5.2 Alarm Systems
5.5.3 Other Systems

6.0 INTERIOR ELEMENTS
6.1 Common Areas
6.2 Amenities and Special Features
6.3 Support Areas
6.4 Commercial Tenant Spaces

7.0 ACCESSIBILITY

8.0 SUSPECT WATER INTRUSION AND MICROBIAL GROWTH

9.0 NATURAL HAZARD INFORMATION
9.1 Flood Zone
9.2 Seismic Zone
9.3 Wind Zone

10.0 OUT OF SCOPE CONSIDERATIONS

11.0 LIMITATIONS

FIGURES AND APPENDICES

The following report Figures and Appendices are attached at the end of this report.

Figures
Figure 1: Site Location Map
Figure 2: Site Plan

Appendices
Appendix A: Site Photographs
Appendix B: Supporting Documentation
Appendix C: Qualifications
1.0 INTRODUCTION

1.1 Purpose

The purpose of this assessment is to provide information to evaluate the condition of the subject property in order to facilitate completion of due diligence by the addressee. The purpose is accomplished by describing the primary systems and components of the subject property, identifying conspicuous defects or material deferred maintenance and presenting an opinion of cost to remedy the observed conditions. In addition, this report identifies systems or components that are anticipated to reach the end of their expected useful life during the specified evaluation period and includes an opinion of cost for future capital replacements.

1.2 Scope of Work

This assessment was performed in conformance with the scope and limitations as set forth by ASTM E2018-15 "Standard Guide for Property Condition Assessments: Baseline Property Condition Assessment Process" (the Standard) and as specified in the engagement agreement that initiated this work. Specific requirements or deviations from the minimum ASTM standard are described herein.

This assessment was performed utilizing methods and procedures consistent with good commercial or customary practices designed to conform to acceptable industry standards. The independent conclusions represent Partner’s best professional judgment based upon existing conditions and the information and data available to us during the course of this assignment.

1.3 Cost Evaluation Methodology

Opinions of costs presented within this report are based on construction costs developed by construction resources such as Marshall & Swift, RS Means, Partner’s experience with past costs for similar projects, city cost indexes, consultations with local specialty contractors, client-provided information and assumptions regarding future economic conditions. Actual cost estimates are determined by many factors including but not limited to: choice and availability of materials, choice and availability of a qualified contractor, regional climate zone, quality of existing materials, site compatibility and access to the subject property and buildings. In addition, opinions of costs are based solely on material replacement and do not account for soft costs.

Items included in the replacement reserve table are determined based upon the estimated useful life (EUL) of a system or component, the apparent effective age (EA) of the system and the remaining useful life (RUL) of that system. Factors that may affect the age and condition of a system include; however, are not limited to, the frequency of use, exposure to environmental elements, quality of construction and installation and amount of maintenance provided. Based on these factors, a system may have an effective age that is greater or less than its actual chronological age.
1.4 Descriptive Qualifiers

The following definitions and terminology are used in this report regarding the physical condition of the project and the estimated life expectancies/age of the components and systems.

- **Good**: In working condition and does not require immediate or short-term repairs above an agreed threshold.
- **Fair**: In working condition; however, may require immediate or short-term repairs above an agreed threshold.
- **Poor**: Not in working condition or requires immediate or short-term repairs substantially above an agreed threshold.

The agreed threshold is presumed to be the de minimis reporting threshold, unless otherwise specified in this report.

Unless stated otherwise in this report, the systems reviewed are considered to be in good condition and their performance appears to be satisfactory.

1.5 User Reliance

Partner was engaged by the Addressee, or their authorized representative, to perform this assessment. The engagement agreement specifically states the scope and purpose of the assessment, as well as the contractual obligations and limitations of both parties. This report and the information therein, are for the exclusive use of the Addressee. This report has no other purpose and may not be relied upon, or used, by any other person or entity without the written consent of Partner. Third parties that obtain this report, or the information therein, shall have no rights of recourse or recovery against Partner, its officers, employees, vendors, successors or assigns. Any such unauthorized user shall be responsible to protect, indemnify and hold Partner, the Addressee and their respective officers, employees, vendors, successors and assigns harmless from any and all claims, damages, losses, liabilities, expenses (including reasonable attorneys’ fees) and costs attributable to such use. Unauthorized use of this report shall constitute acceptance of and commitment to, these responsibilities, which shall be irrevocable and shall apply regardless of the cause of action or legal theory pled or asserted. Additional legal penalties may apply.
2.0 RECONNAISSANCE, REGULATORY AND DOCUMENT REVIEW

2.1 Site Reconnaissance

Date: March 5, 2019
Weather: Cloudy and light rain and 57 °F
Field Assessors: The project observation was conducted by a Partner team comprised of Michael P. Arias (Technical Director-Principal) and Renan Zepeda, Sr. Assessor.
Escort: Jaime Valdez, City of Goleta, (415) 279-0556

Limiting Conditions

The performance of this assessment was limited by the following condition:

- A pre-survey questionnaire was not completed at the time of the assessment.

2.2 Property Personnel Interviewed/Contacted

The site escort was interviewed during the course of the survey. Additional site personnel were not available for interview. According to Mr. Valdez, the City has been an occupant since March and Mr. Valdez was cooperative during the property observations. Mr. Valdez appeared to be knowledgeable about the subject property history and maintenance practices.

Building Codes

<table>
<thead>
<tr>
<th>Contact</th>
<th>Alvaro Torres</th>
<th>Telephone: (805) 961-7556</th>
</tr>
</thead>
<tbody>
<tr>
<td>Findings:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Violations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Violations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Awaiting response</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No violations reported.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fire or Life Safety

<table>
<thead>
<tr>
<th>Contact</th>
<th>Alvaro Torres</th>
<th>Telephone: (805) 961-7556</th>
</tr>
</thead>
<tbody>
<tr>
<td>Findings:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Violations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Violations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Awaiting response</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspections are completed upon complaint. No violations reported.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zoning

<table>
<thead>
<tr>
<th>Contact</th>
<th>Alvaro Torres</th>
<th>Telephone: (805) 961-7556</th>
</tr>
</thead>
<tbody>
<tr>
<td>Findings:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Violations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Violations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Awaiting response</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>According to a review of the zoning map obtained from City of Goleta Zoning map, the subject property is zoned BP, Business Park.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This information does not constitute a detailed regulatory-compliance investigation and any code compliance issues noted in this report are based on information provided by the regulatory agencies noted
above. If possible, the provided information was confirmed with on-site observations. Additional information that is received within 30 days of the site visit will be forwarded upon receipt.

2.3 Document Review

The following documents were readily available or provided to Partner for reference as part of this assessment.

- Santa Barbara County, Tax Assessor property information;
- City of Goleta Zoning Map;
- Federal Emergency Management Agency (FEMA) flood hazard layer map;
- Parcel map;
- 130 Cremona Concrete Column Repair Field Reports No1, No. 2, No. 3 and No. 4 prepared for Trabucco Commercial Construction, Co. by Ehlin Spiess & Haight, Inc. dated between July and August, 2010
3.0 PROPERTY CHARACTERISTICS

3.1 Parcel Configuration

The subject property improvements are placed upon one parcel. The parcel is irregularly-shaped and comprise approximately 5.23 acres. The parcel is shared with a similar concrete tilt-up building located at 120 Cremona Drive to the west occupying 2.84 acres of the parcel while building 130 Cremona Drive comprises of 2.39 acres.

3.2 Site Improvements

3.2.1 Topography and Storm Water Drainage

The general vicinity is a commercial area with a relatively flat topography. The subject property is relatively flat with a minimum downward slope from the south perimeter of the property to a municipal storm water channel located at the northern (front of property).

Storm water collected on the pavement is removed primarily by sheet flow action across paved surfaces to concrete swales and routed to storm water basins located throughout the subject property. Storm water collected in landscaped areas percolates into the soil with overflow spilling onto adjacent paved areas, where it is collected and manage as stated above. Curbing is provided with weep holes for hydrostatic relief.

Survey Condition and Analysis

The topography was observed to be in good overall condition and appears to adequately accommodate the built improvements. Routine maintenance is anticipated during the evaluation period.

Precipitation was not present during the walk-through survey; consequently, direct observation of the operation of the storm water drainage system was not possible. Evidence of improper operation was not readily apparent. Routine maintenance, including clearing of debris from inlets, channels, piping, and outlets, is anticipated throughout the evaluation period.

3.2.2 Vehicular Access, Paving

Vehicular access is provided by two, two-way drive lanes leading from the adjacent Cremona Drive public rights-of-way to the on-site drive aisles and parking areas. The two two-way entrances are located at the western boundary of the site and serves Building 120 and 130 Cremona Drive. Signalization is not provided at the entrance points to the subject property.

Concrete pavement is provided at the driveway aprons. The entries are also provided with textured panels consisting of pea gravel with smooth concrete borders. Asphalt pavement is utilized throughout the balance of the site.

Mr. Valdez indicated that the City is proposing a lot line adjustment with a proposed west lot line generally equidistant between Buildings 120 and 130 Cremona. Based on that proposed lot line, Partner determined that approximately a total of 131 spaces would be provided, including two ADA-designated parking spaces, of which, one is van accessible. Painted parking space stripes, handicap stall designation striping, and precast concrete wheel stops at ADA parking spaces were noted throughout parking areas.
Four-inch to 6" high poured-in-place concrete curbing is placed at the parking area perimeters and interior islands consists of cast-in-place concrete.

Survey Condition and Analysis

Asphalt seal coat appears to be in fair to good condition with some minor areas of linear cracking and "map" or “alligator” cracking noted throughout the paved surfaces (See Photo 109). Reapplication of the seal coat is anticipated during the evaluation period. An opinion of cost for this work is included in Table 2. Some areas of paving appear to be an overlay as the curb faces appear to be less than 6” high and restrict some water from the roof drains at the curb face. It is not known when or if an overlay was performed in the past. To verify would require core samples of the paving system. Due to the condition of the paving system, an overlay may be required within the term. An opinion of cost is included in Table 2.

Pavement markings and striping appear to be in fair to good condition. Reapplication of markings and striping is anticipated during the evaluation period. An opinion of cost for this work is included in Table 2.

Curbing appeared to be in good condition. Routine maintenance, including concrete wheel stops replacement, is anticipated throughout the evaluation period.

3.2.3 Walkways, Grade-Level Steps and Ramps

The majority of the building entrance flatwork and pedestrian walkways are textured panels consisting of pea gravel with smooth concrete borders. Pour-in-place smooth concrete flatwork is provided along the public right-of-way’s. Steps accommodate sidewalk grade change to an on-site seating area from Los Carneros Road to the north.

Survey Condition and Analysis

The pedestrian concrete walkways appear to be in good overall condition. Routine maintenance is anticipated throughout the evaluation period.

Cracks in the concrete steps from Los Carneros Road were observed (See Photo 110). Generally, the steps appear to be stable and do not create a hazard, however, Partner recommends that the cracks be filled epoxy and monitored over the term. An opinion of cost for this work is included in Table 1.

3.2.4 Landscaping and Irrigation

Landscape areas consisting of floral plantings, trees, mulch groundcover and shrubs are provided in areas not occupied by the building, walkways, or pavement. An underground automatic irrigation system is provided.

Survey Condition and Analysis

Vegetative materials were observed to be in good to fair overall condition. Overgrown tree roots at the northeast and southeast corners of building should be removed to prevent penetration and deterioration of building foundation and asphalt pavement (See Photo 112). An opinion of cost for this work has been included in Table 1. The cost includes patch repairs of the asphalt pavement.

Routine maintenance, including as-needed replacement of vegetation, is anticipated throughout the evaluation period.
3.2.5 Retaining Walls

A small retaining wall is provided at the seating area off the steps from Los Carneros Road. The wall is constructed with reinforced cast-in-place concrete.

Survey Condition and Analysis

The retaining wall appeared to be in fair condition with some cracking and evidence of water migration (See Photo 111). Weep holes were not provided which would relieve any hydrostatic pressure behind the wall. However, it is recommended that the condition of the wall be monitored and an application of waterproofing at the positive side of the wall be placed within the short term. An opinion of cost for this work is included in Table 1. Removal and replacement of landscaping would be required as well.

3.2.6 Site and Building Signage

Subject property identification is primarily provided by monument signage positioned at the front entrance landscaping area. Building address identification is primarily provided by façade-mounted signage in front of the building.

Survey Condition and Analysis

The signage was observed to be sufficient and in good condition. Sign painting or replacement can be conducted on an as-needed basis during the evaluation period as part of routine maintenance.

3.2.7 Perimeter Walls, Gates, and Fences

The property is not provided with any perimeter or security fencing. A trash enclosure with concrete tilt-up wall panels, a concrete slab-on-grade and corrugated metal gates are provided.

Survey Condition and Analysis

The trash enclosure walls and gates are in good condition. Painting can be conducted on an as-needed basis during the evaluation period as part of routine maintenance. Should an overlay of the paving system be performed, consideration should be given to placing a concrete apron at the entrance to the trash enclosure.

3.2.8 Exterior Lights

Outdoor lighting is provided by pole-mounted light fixtures generally located in parking areas. The fixtures appear to be equipped with high-emitting diode (LED) lamps. The poles are constructed atop elevated concrete bollard bases. Outdoor lighting is also provided by building-mounted fixtures. Soffit areas over entryways have recessed halogen lighting. Limited quantities of bollard-type walkway lights are present in front of the building along the front walkway area. Timers and photocells control exterior lighting.

Survey Condition and Analysis

The walk-through survey was conducted during daylight hours; therefore, exterior lighting operation and effectiveness could not be verified. However, based on the number of light fixtures provided and their
spacing, exterior lighting appeared to be adequate and was reported by the site escort to be sufficient for the subject property.

Observed light fixtures appeared to be, and were reported by the site escorts to be, in good overall condition. Light fixtures are anticipated to require minimal repairs and replacements during the evaluation period that can be addressed as part of routine maintenance.

3.2.9 Site Amenities

As previously mentioned, a cast-in-place seating area is provided at the northern boundary with concrete steps off Los Carneros Road. The area is also provided with metal tables and chairs. Other site amenities appear to be limited to painted metal benches in the walkways.

Survey Condition and Analysis

Other than as noted in Section 3.2.5, the site amenities appeared to be in good overall condition. Routine maintenance is anticipated during the evaluation period.

3.2.10 Utility Service Providers

<table>
<thead>
<tr>
<th>Utility</th>
<th>Provider</th>
<th>Meter configuration and location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm Water</td>
<td>Goleta Department of Public Works</td>
<td></td>
</tr>
<tr>
<td>Electric</td>
<td>Southern California Edison</td>
<td>Meter located at the electrical room back of building</td>
</tr>
<tr>
<td>Gas</td>
<td>The Gas Company</td>
<td>Meters located at the exterior eastern wall</td>
</tr>
<tr>
<td>Water</td>
<td>Goleta Water District</td>
<td>Meter located in the adjacent sidewalk</td>
</tr>
<tr>
<td>Sanitary Sewer</td>
<td>Goleta Department of Public Works</td>
<td></td>
</tr>
</tbody>
</table>

Survey Condition and Analysis

No issues or service deficiencies were reported. Routine maintenance is anticipated during the evaluation period.

3.2.11 Special Utility Systems

The subject property provides a separate emergency diesel fueled generator located at the open southeast parking area. The CAT Diesel unit is owned and maintained by City of Goleta. The unit is mounted permanently mounted on a trailer resting on the asphalt pavement.

Survey Condition and Analysis

Special utility systems appeared to be in good overall condition. No issues or service deficiencies were reported. Routine maintenance is anticipated during the evaluation period. Monitoring of the pavement at the trailer should be performed over the term. However, should an overlay of the paving system be performed, consideration should be given to either constructing a permanent enclosure for the generator or replacing the asphalt pavement with a concrete slab-on-grade.
4.0 STRUCTURAL FRAME AND BUILDING ENVELOPE

4.1 Foundation/Substructure

As-built construction drawings were not available for Partner's review to confirm below grade structural components. Based on Partner’s experience with similar structures in this geographic region and the construction time period, the foundation is presumed to consist of a shallow foundation system consisting of a reinforced-concrete slab-on-grade with continuous perimeter cast-in-place reinforced concrete spread footings supporting bearing walls and interior grid of isolated cast-in-place reinforced concrete spread footings supporting steel columns.

Survey Condition and Analysis

Evidence of structural distress indicative of foundation settlement was not observed at the time of the site visit; however, it was mentioned by the escort that a curved structural column was repaired in 2010. Partner was provided and reviewed investigative reports prepared by Ehlen Spiess & Haight, Inc. that indicated that cracking of a curved column was due to internal stress within the concrete column, caused by alkali-silica reaction (ASR). Reinforcement of foundation and column was performed. Partner was provided and reviewed, design and construction field reports. The repaired area appeared to be in good condition.

Cracking was noted in the far northeast curved column but appears to be normal shrinkage cracking. However, the cracks should be filled with epoxy and monitored over the term. An opinion of cost is included in Table 1.

The escort and City representatives identified a concern at the slab-on-grade that was assumed to be a structural or cracked floor issue. The condition is covered by carpet but exhibited a hollow sound when tapped and a small section appeared to be broken as viewed in the carpet. However, without removing the carpet (which would have created a tripping hazard), it appears that the hollow sound is related to an electrical trench or raceway in the slab which may be covered by a plywood (or other material) lid. It appears that the deficiency noted appears to be a section on the lid that has broken. Though the slab-on-grade appears to be unaffected, to confirm, it is recommended that a contractor be retained to remove the carpet, an assessment be made of the trench and/or lid be made, appropriate repairs made and the carpet replaced where needed.

4.2 Building Frame

Perimeter walls are primarily constructed of pre-cast concrete tilt-up wall panels (CTU). The upper floor is constructed with plywood sheathing decking supported by steel columns, beams, girders and engineered wood I-joists. The decking is provided with a lightweight gyp-crete material. The roof is constructed of a conventional panelized roof system constructed of plywood decking supported by steel columns, glu-laminated beams and purlins and sawn wood sub-purlins.

Unvented foil insulation was observed at the underside of the roof deck. Foil-backed insulation was widely used at the underside of panelized wooden roof structures of unconditioned warehouse facilities over the past 30 years. In older facilities, the face of the insulation sheets are placed and stapled to the sub-purlins and the ends of each sheet are stapled to purlins which span between girders. When installed in this manner, the foil-backed insulation performs well to insulate the warehouse space but the temperature differential between the conditioned interior space and the unconditioned exterior space creates a humid
condition in the cavity between the insulation and the roof deck. The moisture attacks the sub-purlin joist hangers and leads to oxidation and corrosion of the hangers resulting in structural failure. Newer facilities may hold back the insulation from the ends of the sub-purlins by approximately 3” to 4” to expose the joist hangers and allow air movement or alternatively, the insulation may be eliminated entirely. The subject building is conditioned and no signs of streaking on beams was noted which would warrant that this work be performed. However, monitoring of the roof deck should be performed to ensure that the condition of the sub-purlin joist hangers remain in good condition.

Survey Condition and Analysis

Evidence of structural distress indicative of framing failure was not observed. The framing appeared to be in functional condition. Normal monitoring of the framing is anticipated during the evaluation period.

4.3 Facades or Curtain Walls

4.3.1 Exterior Walls

Exterior walls of the building consist primarily of painted precast reinforced concrete tilt-up wall panels with caulked joints between each panel. The west façade of the building exhibited an extruded, aluminum storefront system with full-height, single pane, low-e, or solar tinted glazing.

Soffits consist of metal linear slats with recessed lighting.

Survey Condition and Analysis

The exterior walls and soffits were observed to be in generally good condition. Routine maintenance is anticipated during the evaluation period.

Based on the observed condition of the paint finish and the average effective useful life of paint coatings, reapplication of exterior paint is anticipated during the evaluation period. Additional work consisting of reapplying sealants is anticipated on an as-needed basis (See Photo 114). An opinion of cost for this work is included in Table 2.

4.3.2 Windows

Windows at the building entrance are part of storefront window systems consisting of full height butt joint, low-e, tinted glazing in aluminum frames. Windows at the exterior façades consist of aluminum framing connected to the main building structure. Windows within these frames were observed to be single-glazed, butt joint fixed-pane, tinted units. Vinyl gaskets are used between panes.

Raised pyramidal, Plexiglass aluminum framed skylight windows are provided at the roof level. The skylights are provided with a metal screen fall protection and are flashed with the roof material.

Survey Condition and Analysis

Windows were reported and observed to be in good overall condition. No signs of window leaks or condensation were evident during the observation. Window sealants were observed to be intact, with no signs of deterioration with the exception of a window at the northeast of building that was observed with a loose seal (See Photo 115). This can be performed as part of routine maintenance. Routine maintenance is anticipated during the evaluation period.
4.3.3 Doors

The main entrances consist of aluminum-framed, double-leaf doors with full-height glazing set in the aluminum storefront systems described above. Hardware includes standard exterior and interior push/pull handles, door closers, and deadbolts. Entry doors leading to tenant second floor unit consist of a double leaf frameless storefront with aluminum hardware.

Secondary doors are painted, hollow metal set in metal frames. The doors have horizontal exit bars, exterior lever handles, closers, and deadbolts.

A grade-level warehouse door is located at the east side of the building leading to a storage room and police motorcycle garage area. The warehouse door consists of overhead, steel panel, roll-up door that is manually-operated.

Survey Condition and Analysis

Doors were reported and appeared to be in good to fair overall condition. Secondary metal doors were observed with surface rusting that can be addressed at building painting. A loose door threshold seal was noted but can be replaced during the regular maintenance process (See Photos 113 and 126). Routine maintenance is anticipated during the evaluation period.

4.3.4 Parapets

Exterior walls extend above the roof planes as parapets. Roof materials cover the inboard sides of the parapets and terminate under a metal reglet termination bar with a bead of caulking at the top of the reglet.

Survey Condition and Analysis

Parapets appeared to be in good to fair overall condition. The metal reglet counterflashings was observed to be in generally good condition but the application of the bead of caulking at the reglet was noted to be inconsistent with openings and crazed areas observed (See Photo 117). This inconsistency may allow water intrusion into between the parapet and the roof deck. Reapplication of the caulking bead is recommended. Although the roof installation may still be under warranty, an opinion of cost for this work is included in Table 1. Routine maintenance is anticipated during the evaluation period which should include sealing the anchor bolts of the vision screen.

4.4 Roof

4.4.1 Roofing Materials

Roof coverings consist of thermoplastic polyolefin (TPO) roof system in a flat design. The roof mechanical area is enclosed by a smooth sheet metal vision screen mounted on steel frame supports and provided with an access gate.

Survey Condition and Analysis

The TPO roof is two years old and looks in good overall condition; however, isolated areas of patching were noted at the roof. Ceiling tiles at the second floor were observed with water stain but no active leaks were detected on those areas. Minor water pond accumulations were observed on the roof.
Based on the observed condition and EUL for the single-ply thermoplastic roof, only routine maintenance is anticipated during the evaluation period.

The sheet metal vision screen was observed to be in good condition but surface rust was observed on the framing. Painting of the framing can be part of painting of building exteriors. The access gate was observed with a damaged and rusted closer making it difficult to the access to this area (See Photo 126). Replacement of the closer is recommended. An opinion of cost for this work is included in Table 1. Routine maintenance is anticipated during the evaluation period.

4.4.2 Roof Drainage

Storm water runoff for the roof is directed to roof drains connected to internal leaders, which discharge directly to into the storm drain collection system. Each observed roof drain was paired with an overflow roof drain. The overflow roof drains are connected to internal leaders that exit and discharge storm water to grade at the base of the building.

Survey Condition and Analysis

Roof drains were observed to be in good to fair overall condition. Roof drains should be repaired or replaced, as needed, during roof replacement and/or maintenance activities. Evidence of water damage indicative of roof leaks was observed at the west perimeter due to a clogged roof drain (See Photos 123 and 124). Although the roof installation may still be under warranty, repair of this roof drain is recommended. An opinion of cost for this work is included in Table 1.

4.5 Fire Escapes, Stairs or Balconies

Exterior stairs are not present.

The entry lobby interior stair is of wood construction with closed risers and wood treads. Steel pipe handrails are located on closed sides. Wood treads and risers are covered with carpet.

The building is provided with a fire emergency interior stair that are wood construction with closed risers and wood treads. Steel pipe handrails are located on walls at closed sides. All observed steel components are painted, the closed steel risers and treads are covered with vinyl treads and risers.

Survey Condition and Analysis

Stairs appear to be in good condition. Routine maintenance is anticipated throughout the evaluation period. Painting of the stairs and guard rails can be performed in conjunction with the painting of the building exterior.
5.0 MECHANICAL AND ELECTRICAL SYSTEMS

5.1 Plumbing, Domestic Hot Water, and Sewer Systems

Observation of visible piping at water heaters and plumbing stub-outs indicates that the piping is copper. Observation of visible vent piping indicates that the piping is cast iron and PVC.

Domestic hot water to the common restrooms is provided by a 50-gallon tank capacity on each floor, Rheem and American Water Heater Co. The electric fired water heaters are installed in the maintenance closet of each floor.

Domestic hot water is supplied by point-of-use electric tankless water heaters are located under the kitchen sink at break rooms.

Survey Condition and Analysis

The plumbing systems were observed to be in good overall condition; however, a low water pressure was reported in one of the kitchen sinks. This problem can be solved as part of maintenance. Evidence of leaks or faulty piping was not observed. Routine maintenance is anticipated during the evaluation period.

The sanitary drainage and vent system was reported to be in good overall condition. Evidence of leaks or faulty piping was not observed. Routine maintenance is anticipated during the evaluation period. However, the escort reported complaints of backed-up sewers and poor waste removal. Partner recommends that the sewer laterals be scoped with a video to determine the condition of the sewer lines. It is unknown the quantity and location of the sewer lines but an allowance is provided for the sewer video inspection. An opinion of costs is included in Table 1. Based on the results of the inspection, appropriate repairs or maintenance should be performed.

The water heaters appeared to be in good condition. Based on the EUL, replacement is anticipated within the evaluation period. As the cost of this work is anticipated to fall below the $3,000 minimum threshold, this work is expected to be accomplished through routine maintenance.

The point-of-use electric tankless water heaters are owned and maintained by tenant. Therefore, an opinion of cost for this work is not included in this report.

5.2 Heating, Air Conditioning, and Ventilation

<table>
<thead>
<tr>
<th>Equipment description</th>
<th>Model number</th>
<th>Size</th>
<th>Manufacture date</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- Carrier HVAC Split RTU</td>
<td>38YH0600DL</td>
<td>3 Tons</td>
<td>1990</td>
<td>Observed in poor condition</td>
</tr>
<tr>
<td>1- Commercial Comfort HVAC Split RTU</td>
<td>CHC036LAA</td>
<td>3 Tons</td>
<td>2002</td>
<td>Observed in poor condition</td>
</tr>
<tr>
<td>1- Carrier HVAC packaged RTU</td>
<td>25HCD336A600</td>
<td>3 Tons</td>
<td>2014</td>
<td>Observed in good condition</td>
</tr>
<tr>
<td>1- Carrier HVAC Split RTU</td>
<td>48VLNC2404030TP</td>
<td>4 Tons</td>
<td>2018</td>
<td>Observed in good condition</td>
</tr>
<tr>
<td>Equipment description</td>
<td>Model number</td>
<td>Size</td>
<td>Manufacture date</td>
<td>Condition</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1- Carrier HVAC</td>
<td>48VLNC4809060</td>
<td>4 Tons</td>
<td>2017</td>
<td>Observed in good condition</td>
</tr>
<tr>
<td>packaged RTU</td>
<td>48VLNC4809060</td>
<td>4 Tons</td>
<td>2017</td>
<td>Observed in good condition</td>
</tr>
<tr>
<td>1- Carrier HVAC</td>
<td>48TCDA05A2A6A0A0A0</td>
<td>5 Tons</td>
<td>2016</td>
<td>Observed in good condition</td>
</tr>
<tr>
<td>packaged RTU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1- HVAC packaged RTU</td>
<td>No label</td>
<td>No label</td>
<td></td>
<td>Observed in poor condition</td>
</tr>
<tr>
<td>2- HVAC packaged RTU</td>
<td>No label</td>
<td>No label</td>
<td></td>
<td>Observed in poor condition</td>
</tr>
<tr>
<td>1- Carrier HVAC</td>
<td>48TCDD08A2A6A0A0A0</td>
<td>8 Tons</td>
<td>2014</td>
<td>Observed in good condition</td>
</tr>
<tr>
<td>packaged RTU</td>
<td>48VLNC2404030TP</td>
<td>4 Tons</td>
<td>2017</td>
<td>Observed in good condition</td>
</tr>
<tr>
<td>1- Carrier HVAC</td>
<td>48TCDD08A0A6A0A0A0</td>
<td>8 Tons</td>
<td>2014</td>
<td>Observed in good condition</td>
</tr>
<tr>
<td>packaged RTU</td>
<td>48TCDD08A2A6A0A0A0</td>
<td>8 Tons</td>
<td>2014</td>
<td>Observed in good condition</td>
</tr>
<tr>
<td>1- Carrier HVAC</td>
<td>ZH090N10N4AAA5A</td>
<td>6 Tons</td>
<td>2014</td>
<td>Observed in good condition</td>
</tr>
<tr>
<td>packaged RTU</td>
<td>48TCLA06AA2A6A0A0A0</td>
<td>6 Tons</td>
<td>2015</td>
<td>Observed in good condition</td>
</tr>
<tr>
<td>1- Carrier HVAC</td>
<td>48HJD008---641</td>
<td>8 Tons</td>
<td>2007</td>
<td>Observed in fair condition</td>
</tr>
<tr>
<td>packaged RTU</td>
<td>MUY-A24NA</td>
<td>2 Tons</td>
<td>2014</td>
<td>Observed in good condition</td>
</tr>
<tr>
<td>1- Mitsubishi HVAC</td>
<td>H48GG0GKA200</td>
<td>4 Tons</td>
<td>2008</td>
<td>Observed in good condition</td>
</tr>
<tr>
<td>Split RTU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2- Carrier HVAC</td>
<td>48HJM006---641</td>
<td>6 Tons</td>
<td>2008</td>
<td>Observed in good condition</td>
</tr>
<tr>
<td>packaged RTU</td>
<td>48HJD012---671</td>
<td>8 Tons</td>
<td>2007</td>
<td>Observed in fair condition</td>
</tr>
<tr>
<td>1- Carrier HVAC</td>
<td>48HJD007---651</td>
<td>7 Tons</td>
<td>2008</td>
<td>Observed in good condition</td>
</tr>
<tr>
<td>packaged RTU</td>
<td>48VLNB3606030TP</td>
<td>4 Tons</td>
<td>2015</td>
<td>Observed in good condition</td>
</tr>
<tr>
<td>1- Carrier HVAC</td>
<td>48VLNC4209060</td>
<td>5 Tons</td>
<td>2017</td>
<td>Observed in good condition</td>
</tr>
<tr>
<td>packaged RTU</td>
<td>D3NP024N03606NXA</td>
<td>5 Tons</td>
<td>2007</td>
<td>Observed in fair condition</td>
</tr>
</tbody>
</table>

Heating and cooling are provided by 18 roof-mounted HVAC gas/electric packaged units and six HVAC split heat pump units. The packaged units were manufactured by Carrier and York. The units have a capacity of 4, 6 and 8 tons with each being different ages. The units use a R410A refrigerant. Cooling is provided by direct expansion while the heating is provided by gas-fired heating coils section within each unit.
Conditioned air is distributed through sheet metal ducts to diffusers located in the finished ceilings. Fresh air is supplied by intakes on the side of the package units. Return air is collected by concealed sheet metal ducts through ceiling-mounted intakes.

The building is also heated and cooled by direct expansion heat pump split systems. Each system has a condensing unit located on the roof and a fan coil/furnace unit located above the ceilings and in the computer room floor. Manufactured by Carrier, Commercial Comfort and Arco Air, the condensing units have a typical input capacity of 3 and 4 tons and use R-410A refrigerant. The furnace units provide heat through electric resistance coils. Distribution of the conditioned air is by concealed sheet metal ductwork and temperature control is by a local thermostat.

Survey Condition and Analysis

The HVAC equipment components were observed to be of various ages and generally in fair-to-good condition. Replacement of some of the HVAC components is anticipated during the evaluation period. An opinion of cost for this work is included in Table 2.

5.3 Electrical

Electrical service is delivered to the subject property via an on-site pad-mounted, utility transformer located at the back of property south landscaping area. Main electrical service at the main switchgear is rated at 1,600 amps, 480Y/277 volts, with a three-phase, four wire-configuration. Breaker panels for lighting and power controls are located at the electrical room. Observed panels were manufactured by Square D Company. A secondary Square D Co. electrical transformer is also located in the garage area. Electrical branch wiring was observed to be copper.

Survey Condition and Analysis

The electrical service was reported to be adequate for the current demands of the facility. The switchgear, circuit breaker panels, electrical meters, and wiring appeared to be in good condition. Routine maintenance is anticipated during the evaluation period.

5.4 Vertical Transportation

Vertical conveyances are not provided.

5.5 Life Safety and Fire Protection

5.5.1 Fire Suppression Systems

The building is protected by a wet-pipe automatic sprinkler system. Water is supplied via a fire sprinkler line from the municipal water supply. A fire department connection is located on the north landscaping area. Fire sprinkler piping was observed to be steel. Sprinkler heads in the spares cabinet were observed to be manufactured by Viking.

Portable fire extinguishers were observed within corridors, offices, break rooms and public areas and on both levels of the building. The fire extinguishers are reportedly inspected on a yearly basis.

Fire hydrants are located along the municipal street and parking areas adjacent to buildings.
Survey Condition and Analysis

Observed components of the fire suppression system appeared to be in good to fair overall condition. Current inspection tags were not observed on the fire riser neither available report documents were provided to verify current inspection dates. Partner recommends the five-year test be performed immediately. An opinion of cost for this work is included in Table 1. Once testing is completed, routine maintenance, including regularly-scheduled inspection, testing and as-needed replacement is anticipated during the evaluation period.

Based on random observation, portable fire extinguishers exhibited current annual inspection tags, dated February 26, 2019 by Nargan Fire & Safety Company. Routine maintenance, including regularly-scheduled inspection, testing and as-needed replacement is anticipated during the evaluation period.

5.5.2 Alarm Systems

The subject building is equipped with a central fire alarm system. The central fire alarm control panel monitors the smoke detectors and fire sprinkler system flow switches. The fire alarm control panel was manufactured by Radionics Omegalarm. The system is fully-addressable and is reported by property management to be monitored by an off-site monitoring company Bay Alarm.

Survey Condition and Analysis

The fire alarm system appeared to be in good to fair overall condition and is reportedly tested on a regular basis. Current inspection tags were not observed on the main control panel and available documents show the last inspection occurred on February 23, 2001 (expired). Partner recommend the immediate inspection of the fire alarm and its components. An opinion of cost for this work is included in Table 1. Routine maintenance, including regularly-scheduled testing, is anticipated during the evaluation period.

5.5.3 Other Systems

Emergency lighting is typically provided by wall- and ceiling-mounted hardwired with battery backup light fixtures. Emergency egress routes and egress locations are indicated by hardwired with battery backup illuminated exit signs.

Survey Condition and Analysis

The observed components appeared to be in good condition. Routine maintenance, including regularly-scheduled testing and as-needed replacement, is anticipated during the evaluation period.
6.0 INTERIOR ELEMENTS

6.1 Common Areas

Significant common areas at the subject property consist of the lobby, stairwells and corridors. In addition, restrooms are provided on each floor.

Corridor finishes consist of carpet flooring, painted gypsum board walls, suspended acoustic ceilings tiles. Lighting consists of suspended fluorescent fixtures.

Common area finishes consist of carpet flooring, painted gypsum board walls and acoustic ceilings tiles. Lighting consists of suspended fluorescent fixtures.

Stairwell and interior corridor doors are typically hollow core wood set in painted steel frames. Hardware consists of lever handles.

The restroom finishes consist of ceramic tile floors and walls, painted gypsum board walls and ceilings, and plastic laminate toilet partitions.

Survey Condition and Analysis

Common area finishes were observed to be in fair condition with wear noted throughout. Replacement of common area finishes is recommended in the near term. An opinion of cost is included in Table 2.

6.2 Amenities and Special Features

Significant amenities are not provided.

6.3 Support Areas

No support areas are present.

6.4 Commercial Tenant Spaces

This subject property building is occupied by two tenants. The subject building can be subdivided to be occupied for several tenants. Part of the building second floor is currently vacant; however, represents areas to be used as several office areas, conference rooms, break rooms, restrooms and a storage area.

The ground level occupied by City of Goleta City Hall is provided with several offices, conference rooms, break rooms, Counsel Chamber, garage-warehouse and bathrooms. Employee break rooms are provided with a kitchenette consisting of a counter, sink and cabinets.

The warehouse area finishes consist of vinyl tile flooring, painted concrete tilt-up perimeter walls, and open ceiling structure. Lighting is provided by exposed lamp attached fluorescent strip light fixtures.

Office areas and break rooms finishes consists of ceramic tile flooring, carpet, painted gypsum board walls, and acoustical panel ceilings. Lighting consists of 2-foot by 2-foot suspended fluorescent light fixtures.

Restroom finishes consist of ceramic floor tile, painted gypsum board walls and ceilings. Office areas, break and conference rooms at vacant second floor are unfurnished.

Interior doors are typically painted hollow core wood set in metal frames.
Tenant Space Details

<table>
<thead>
<tr>
<th>Tenant Space ID</th>
<th>Square Footage</th>
<th>Tenant</th>
<th>Occupied</th>
<th>Condition Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suite 130</td>
<td>27,000</td>
<td>City of Goleta City Hall</td>
<td>Y</td>
<td>Observed in good to fair condition with uneven flooring, stained ceiling tiles and dated interior finishes</td>
</tr>
<tr>
<td>Suite 150</td>
<td>13,000</td>
<td>Vacant</td>
<td>N</td>
<td>Observed in good to fair condition stained ceiling tiles and dated interior finishes</td>
</tr>
<tr>
<td>Total</td>
<td>40,000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Survey Condition and Analysis

The tenant finishes and furnishings appear to be in good to fair condition. Sections of uneven flooring observed at office areas can be repair during flooring replacement. Stained ceiling tiles can be replaced as part of regular maintenance. Maintenance, repair, and replacement of the tenant area finishes are generally tenant responsibilities, and as such an opinion of cost for this work are not included in this report.
7.0 ACCESSIBILITY

Americans with Disabilities Act

As part of this assessment, a limited, visual, accessibility survey was conducted. The survey did not include taking measurements or counting accessibility elements. The scope of the survey was limited to determining the existence of architectural barriers or physical attributes of the subject property, which affect on-site parking, path of travel into and through public areas of the building and elevators, as applicable. Furthermore, the scope of our survey includes only the federal requirements of the ADA; it is not intended to address state or local codes. Our observations were limited to the places of public accommodation on the subject property.

Survey Condition and Analysis

Based on current use, the subject property is a “public accommodation”.

Exterior routes from public transportation stops, accessible parking spaces and public sidewalks at the subject property appeared to be generally accessible. Exterior entrances provided at the subject property appeared to be generally accessible.

Mr. Valdez indicated that the City is proposing a lot line adjustment with a proposed west lot line generally equidistant between Buildings 120 and 130 Cremona. Based on that proposed lot line, Partner determined that approximately a total of 131 spaces would be provided for the subject building, including two ADA-designated parking spaces, of which, one is van accessible.

The ADA-designated parking spaces did appear to be correctly configured and identified. According to the ADA Accessibility Guidelines (ADAAG), public accommodations with between 101-150 total parking spaces are required to maintain at least five ADA-designated parking spaces, with at least one of those being a van accessible space. Partner recommends conversion of three parking spaces into ADA-designated spaces. Alternately, a reciprocal agreement with the ownership of Building 120 Cremona could be negotiated to share accessible parking spaces.

Interior routes connecting all public areas within the subject building facilities appeared to be generally accessible. Common toilet facilities are provided, are a tenant responsibility and not addressed in this report. An opinion of cost for correction of non-accessible items is included in Table 1.
8.0 SUSPECT WATER INTRUSION AND MICROBIAL GROWTH

As part of performing this PCA, visual observations for overt signs of suspect mold growth were also performed. These observations were not performed to discover all affected areas, nor were areas of the subject property observed specifically for the purpose of identifying areas of suspect mold growth. The subject property areas viewed were limited to those necessary to perform the primary scope of this PCA.

Survey Condition and Analysis

Olfactory indications of significant suspect microbial growth were not observed. However, visual signs of a past water leak was observed at the ceiling tiles in the computer room on the second floor. The cause of the roof leaks appear to be from roof penetrations that have been repaired. The tiles were dry and can be replaced as part of routine maintenance.
9.0 NATURAL HAZARD INFORMATION

Partner referenced readily-available materials to obtain the following information. Determination of site-specific conditions is not within the scope of this report and may require additional investigation.

9.1 Flood Zone

According to Flood Insurance Rate Map, Community Panel Number 06083C1361H, dated September 28, 2018, the subject property appears to be located in:

Zone X (unshaded); defined as minimal risk areas outside the 1-percent and .2-percent-annual-chance floodplains.

9.2 Seismic Zone

According to the seismic zone map, published in the Uniform Building Code 1997, Volume 2, Table 16.2, the subject property appears to be located in Seismic Zone 4.

9.3 Wind Zone

Partner performed a review of the Wind Zone Map, published by the Federal Emergency Management Agency. According to the map, the subject property appears to be located in Wind Zone I, an area with design winds speeds up to 130 miles per hour. The subject property does appear to be located in a special wind region or hurricane-susceptible zone.
10.0 OUT OF SCOPE CONSIDERATIONS

These following items are categorically excluded from the scope of work.

- **Utilities:** Operating conditions of any systems or accessing manholes or utility pits.
- **Structural Frame and Building Envelope:** Entering of crawl or confined space areas (however, the field observer will observe conditions to the extent easily visible from the point of access to the crawl or confined space areas), determination of previous substructure flooding or water penetration unless easily visible or if such information is provided.
- **Roofs:** Walking on pitched roofs, or any roof areas that appear to be unsafe, or roofs with no built-in access, or determining any roofing design criteria.
- **Plumbing:** Determining adequate pressure and flow rate, fixture unit values and counts, verifying pipe sizes, or verifying the point of discharge for underground systems.
- **Heating:** Observation of flue connections, interiors of chimneys, flues or boiler stacks, or tenant owned or maintained equipment. Entering of plenum or confined space areas.
- **Air conditioning & Ventilation:** Process-related equipment or condition of tenant owned or maintained equipment. Entering of plenum or confined space areas. Testing or measurements of equipment or air flow.
- **Electrical:** Removing of electrical panel and device covers, except if removed by building staff, EMF issues, electrical testing, or operating any electrical devices. Opining on process related equipment or tenant-owned equipment.
- **Vertical Transportation:** Examining of cables, sheaves, controllers, motors, inspection tags, or entering elevator/escalator pits or shafts.
- **Life Safety/ Fire Protection:** Determining NFPA hazard classifications, classifying, or testing fire rating of assemblies. Determination of the necessity for or the presence of fire areas, fire walls, fire barriers, paths of travel, construction groups or types, or use classifications.
- **Interior Elements:** Operating appliances or fixtures, determining or reporting STC (Sound Transmission Class) ratings and flammability issues/regulations.

Activity Exclusions - These activities listed below generally are excluded from or otherwise represent limitations to the scope of a PCA prepared in accordance with this guide (ASTM 2018-15). These should not be construed as all-inclusive or imply that any exclusion not specifically identified is a PCA requirement under this guide.

- Providing opinions of costs that are either individually or in the aggregate less than a threshold amount of $3,000 for like items unless specifically requested by the addressee.
- Identifying capital improvements, enhancements, or upgrades to building components, systems, or finishes;
- Removing, relocating, or repositioning of materials, ceiling, wall, or equipment panels, furniture, storage containers, personal effects, debris material or finishes; conducting exploratory probing or testing; dismantling or operating of equipment or appliances; or disturbing personal items or property, that obstruct access or visibility;
- Determining adequate pressure and flow rate, fixture-unit values and counts, verifying pipe sizes, or verifying the point of discharge for underground drains;
• Determining NFPA hazard classifications, identifying, classifying, or testing fire rating of assemblies. Determination of the necessity for or the presence of fire areas, fire walls, fire barriers, accessible routes, construction groups or types, or use classifications;
• Preparing engineering calculations to determine any system’s, component’s or equipment’s adequacy or compliance with any specific or commonly accepted design requirements or building codes, or preparing designs or specifications to remedy any physical deficiencies;
• Identification of code or OSHA compliance beyond what has been reported through communication with local regulatory offices.
• Taking measurements or quantities to establish or confirm any information provided by the owner or user;
• Reporting on the presence or absence of pests or insects;
• Reporting on the condition of subterranean or concealed conditions as well as items or systems that are not permanently installed or are tenant-owned and maintained;
• Entering or accessing any area deemed to potentially pose a threat of dangerous or adverse conditions with respect to the field observer’s health or safety;
• Performing any procedure, that may damage or impair the physical integrity of the property, any system, or component;
• Providing an opinion on the operation of any system or component that is shut down;
• Evaluating the Sound Transmission Class or acoustical or insulating characteristics of systems or components;
• Providing an opinion on matters regarding security and protection of occupants or users from unauthorized access;
• Evaluating the flammability of materials and related regulations;
• Providing an opinion on matters regarding security of the subject property and protection of its occupants or users from unauthorized access;
• Operating or witnessing the operation of lighting or any other system controlled by a timer, operated by the maintenance staff, or operated by service companies;
• Providing an environmental assessment or opinion on the presence of any environmental issues such as potable water quality, asbestos, hazardous wastes, toxic materials, the location and presence of designated wetlands, IAQ, etc. unless specifically defined within the agreed scope;
• Evaluating systems or components that require specialized knowledge or equipment;
• Entering of plenum or confined space areas.
11.0 LIMITATIONS

This assessment is based upon the guidelines set forth by the ASTM Standard current to the issuance of this report and subject to the limitations stated therein. Our review of the subject property consisted of a visual assessment of the site, the structure(s) and the accessible interior spaces. Any technical analyses made are based on the appearance of the improvements at the time of this assessment and the evaluator’s judgment of the physical condition of the subject property components, their ages and their EUL. Consequently, this report represents the condition of the subject property at the time of observation. Acceptance and use of this report infers acknowledgment that the condition of the property may have changed subsequent to site observations and/or that additional information may have been discovered and that Partner, its officers, employees, vendors, successors or assigns, are not liable for changes in the condition of the property, failures in property components or systems and damages that may occur as a result of the changes or failures.

Information regarding the subject property is obtained from a site walk-through survey, local government agency records review, interviews and client-, tenant- or property owner-provided documents. No material sampling, invasive or destructive investigations, equipment or system testing was performed. The observations and related comments within this report are limited in nature and should not be inferred as a full and comprehensive survey of the building components and systems.

Information regarding operations, conditions and test data provided by the Addressee, property owner, or their respective representatives has been assumed to be factual and complete. Information obtained from readily-available sources, including internet research and interview of municipal officials or representatives is assumed to be factual and complete. No warranty is expressed or implied, except that the services rendered have been performed in accordance with generally-accepted practices applicable at the time and location of the study.

The actual performance of systems and components may vary from a reasonably expected standard and will be affected by circumstances that occur after the date of the evaluation. This assessment, analyses and opinions expressed within this report are not representations regarding either the design integrity or the structural soundness of the project.

The report does not identify minor, inexpensive repairs or maintenance items, which should be part of the subject property owner’s current operating budget so long as these items appear to be addressed on a regular basis. The report does identify infrequently occurring maintenance items of significant cost, such as exterior painting, roofing, deferred maintenance and repairs and replacements that normally involve major expense or outside contracting.

The assessment of the roof, façade and substructure contained herein cannot specifically state that these items are free of leaks and/or water intrusion and should not be interpreted as such. Comments made with respect to the condition of the systems are limited to visual observation and information provided by the designated site contacts and/or on-site representatives and their contractors/vendors. The evaluation of these systems did not include any sampling and/or testing. A more extensive evaluation may be required if a comprehensive report on the condition of these systems is required.
Performance of a comprehensive building, fire or zoning code review is outside of the scope of work for this report. Information provided within this report is based on readily-available information or interview of municipal officials.

This report presents an evaluation of the accessibility of the subject property as specified in the engagement agreement. This report does not present an audit of all components specified in federal, state or local accessibility regulations. Instead, this review observed general design components such as routes of travel, door hardware, plumbing amenities, elevator controls and signals, basic emergency alarm components and signage. This report is not a comprehensive Americans with Disabilities Act review.
FIGURES

1. Site Location Map

2. Site Plan
Figure 2: Site Plan

Project No. 19-234639.1

KEY:
- Subject Property

Proposed line of parcel separation
APPENDIX A: SITE PHOTOGRAPHS
1. City of Goleta City Hall building looking southeast

2. City of Goleta City Hall building looking northeast

3. Topographic overview of north drive aisle and parking area

4. Topographic overview of south drive aisle and parking area

5. Topographic overview of southeast parking area

6. Topographic overview of east parking area

APPENDIX A: SITE PHOTOGRAPHS
Project No. 18-234639.1
7. Concrete stormwater collection swale across parking spaces

8. Stormwater drain at north parking perimeter

9. Stormwater drain at eastern perimeter

10. Typical stormwater discharge from roof overflow drain

11. Stormwater drain at landscaping areas

12. Northwest vehicular entrance
APPENDIX A: SITE PHOTOGRAPHS

Project No. 18-234639.1
APPENDIX A: SITE PHOTOGRAPHS
Project No. 18-234639.1

19. Typical concrete walkway
20. Concrete walkway in front of building main entrance
21. Concrete walkway overview
22. Concrete stairs from Cremona Drive to seating areas at north perimeter of site
23. Front landscaping overview
24. Landscaping around parking areas
25. Landscaping at property west perimeter

26. Typical landscaping around building

27. Front landscaping next to building entrance

28. Monument signage at front landscaping area

29. Mounted building identification signage

30. Typical exterior lighting at parking areas
Appendix A: Site Photographs

Project No. 18-234639.1
37. Steel beams and wood rafters supporting second floor

38. Building structural members overview

39. Glu-lam beams at roof structure. Note unvented insulation at roof deck

40. Typical concrete tilt-up (CTU) building exterior wall

41. Curved CTU wall panel

42. Typical CTU walls
APPENDIX A: SITE PHOTOGRAPHS
Project No. 18-234639.1
49. Typical secondary hollow metal door and frame at back of building

50. Roll-up metal door at storage area

51. Typical parapet overview

52. Parapet metal counter-flashing terminating at a metal reglet

53. Thermoplastic Polyolefin (TPO) roof overview

54. Roof overview and equipment screen
55. Overview of roof at mechanical area

56. Typical fiberglass skylight with metal fall protection screen

57. Typical roof drain with emergency overflow roof drain

58. Clogged drain at roof

59. Front stairs leading to second level

60. Stair overview
61. One of two emergency exit stairs at rear of building

62. Gas meters back of building

63. Electric water heater serving bathrooms at first level

64. Electric water heater serving bathrooms at second level

65. Point-of-use electric tankless heaters under sinks of kitchenettes

66. Point-of-use electric tankless heaters under sinks of kitchenettes

APPENDIX A: SITE PHOTOGRAPHS
Project No. 18-234639.1
67. HVAC Split condensing unit system at roof
68. Cooling unit at computer room area
69. HVAC Split condensing unit system at roof
70. Roof top HVAC packaged unit
71. Roof top HVAC packaged unit
72. Older roof top HVAC packaged unit

APPENDIX A: SITE PHOTOS
Project No. 18-234639.1

PARTNER
73. Metal screen fence at roof mechanical area

74. Entry gate at roof mechanical area

75. Electrical transformer at south landscaping area

76. Main electrical meter/panel at electrical room southeast corner of building

77. Main electrical service of 1600 amps. 480Y/277V, 3-phase 4-wire

78. Typical interior sub-electrical panel with a service of 225 amps. 208Y/120V 3-phase 4-wire

APPENDIX A: SITE PHOTOGRAPHS
Project No. 18-234639.1
79. Ground Fault Circuit Interrupter (GFCI) outlet at kitchens and bathrooms

80. Electrical transformer at electrical room

81. Emergency CAT electrical generator at south parking area

82. Fire Department connection at north landscaping area

83. Interior fire riser at fire room west area

84. Fire sprinkler spare head box at fire room
APPENDIX A: SITE PHOTOGRAPHS
Project No. 18-234639.1

85. Typical handed fire extinguisher throughout the building interiors

86. Fire alarm panel at mechanical room

87. Fire pull box at interior corridors

88. Emergency means of egress illuminated signs

89. Emergency lighting at bathrooms

90. City of Goleta Building Department interiors
Appendix A: Site Photographs

Project No. 18-234639.1

91. Office interior conditions
92. Conference room interiors
93. Typical working areas
94. Typical workstation overview
95. Break room interior conditions
96. Copy room overview
APPENDIX A: SITE PHOTOGRAPHS
Project No. 18-234639.1

97. Private office

98. City Council chambers

99. City Council chambers interior finishes

100. Restroom interior finishes

101. Restroom interior finishes

102. Shower finishes
103. ADA toilet stall room interior finishes
104. Restroom finishes. No-flush urinal
105. Conference room at second floor City offices
106. Open office area at second floor City offices
107. Emergency path of travel at open office area at second floor vacant suite
108. Second floor vacant suite
109. Asphalt pavement with linear cracking

110. Broken concrete at seating area stairs

111. Evidence of water migration through the at wall at the seating area

112. Tree root growth near building at northeast landscaping area

113. Water penetration under the door sill plate north entrance

114. Deteriorated sealant at the northeast exterior wall

APPENDIX A: SITE PHOTOGRAPHS
Project No. 18-234639.1
115. Loose window seal at east storefront

116. Rusted conditions at metal door

117. Insufficient sealant bead at metal counterflashing at parapet

118. Roof repairs

119. Observed areas of water ponding at roof

120. Possible failure of lid at assumed floor raceway trench

APPENDIX A: SITE PHOTOGRAPHS
Project No. 18-234639.1
121. Observed typical stained ceiling tiles at isolated interior spaces

122. Water leak stain at second level office from roof drain in Photo 124

123. Damaged ceiling tiles at computer room from past roof leaks. Tiles are dry

124. Evidence of water leak at roof drain

125. Typical water ponding next to metal screen wall anchorage

126. Rusted door closer at mechanical screen gate
APPENDIX B: SUPPORTING DOCUMENTATION
Assessor Parcel Information Details

Property Information

<table>
<thead>
<tr>
<th>Property Information</th>
<th>073-330-014</th>
<th>Value Notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parcel Number:</td>
<td>073-330-014</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td>120 CREMONA DR #110</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GOLETA, CA 93117</td>
<td></td>
</tr>
<tr>
<td>Transfer Date:</td>
<td>06/19/1996</td>
<td></td>
</tr>
<tr>
<td>TRA:</td>
<td>008007</td>
<td></td>
</tr>
<tr>
<td>Document #:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfer Tax Amount:</td>
<td>$0.00</td>
<td></td>
</tr>
</tbody>
</table>

Property Characteristics

<table>
<thead>
<tr>
<th>Property Characteristics</th>
<th>Light Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Description:</td>
<td>Light Manufacturing</td>
</tr>
<tr>
<td>Jurisdiction:</td>
<td>City of Goleta</td>
</tr>
<tr>
<td>Acreage:</td>
<td>5.23</td>
</tr>
<tr>
<td>Square Feet:</td>
<td></td>
</tr>
<tr>
<td>Year Built:</td>
<td></td>
</tr>
<tr>
<td>Bedrooms:</td>
<td></td>
</tr>
<tr>
<td>Bathrooms:</td>
<td></td>
</tr>
<tr>
<td>Fireplaces:</td>
<td></td>
</tr>
</tbody>
</table>

[Assessor Parcel Map]
This map complies with FEMA’s standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA’s basemap accuracy standards.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 3/15/2019 at 4:18:12 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

Legend

- **Without Base Flood Elevation (BFE) Zone A, AE, AJ, AJV**
- **With BFE or Depth Zone A, AO, AH, VE, AR**
- **Regulatory Floodway**

SPECIAL FLOOD HAZARD AREAS

- 0.2% Annual Chance Flood Hazard. Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile **Zone X**
- Future Conditions 1% Annual Chance Flood Hazard **Zone X**
- Area with Reduced Flood Risk due to Levee. See Notes. **Zone X**
- Area with Flood Risk due to Levee **Zone X**

OTHER AREAS OF FLOOD HAZARD

- **NO SCREEN**
- **Area of Minimal Flood Hazard Zone X**
- **Effective LOMRs**
- **Area of Undetermined Flood Hazard Zone D**

GENERAL STRUCTURES

- **Channel, Culvert, or Storm Sewer**
- **Levee, Dike, or Floodwall**

OTHER FEATURES

- **Cross Sections with 1% Annual Chance Water Surface Elevation**
- **Coastal Transect**
- **Base Flood Elevation Line (BFE)**
- **Limit of Study**
- **Jurisdiction Boundary**
- **Coastal Transect Baseline**
- **Profile Baseline**
- **Hydrographic Feature**

MAP PANELS

- **Digital Data Available**
- **No Digital Data Available**
- **Unmapped**

The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.
July 23, 2010 (1 Site Visit): Contractor had excavated the soil at the column base exposing the top of the footing, sealed the cracks on exterior face of column and set injection ports. The injection of the Sinak was observed starting at the bottom of the column and proceeding port-to-port vertically. Approximately 7 gallons were injected.

July 24, 2010 (3 Site Visits): Demolition on the right side of the column for installation of the new tube column was in progress most of the day. Initially, the area at the top of the column at the assumed location of the existing bearing plate was chipped out. In lieu of the steel bearing plate shown on the original drawings, approximately 6x6 plastic shims were found. Once the location of the column was determined, vertical saw cuts were made to facilitate the concrete removal for the new right side tube column. Once demolition was complete, the tube column was field fabricated to length and checked for vertical and horizontal alignment. Epoxy was applied to the top bearing plate and the column was wedged into final position. In order to facilitate the connection of the base plate to the pad footing, the confining angle was locate on the steel column’s exterior face and two (2) – 5/8” diameter Simpson Titen Concrete Screws Anchors were used in lieu of the 1 epoxy bolt shown on the drawings. It was mutually agreed that a minimum of 3” of concrete cover would be provided over the base plate, confining angle and bolts if they project beyond the face of the restored concrete column.

July 25, 2010 (2 Site Visits): The same demolition procedure as the previous day was followed on the left side of the column. Plastic shims were found in lie of a steel bearing plate. The steel column was installed in the same manner as the previous day.

John W. Spiess, SE 2844
July 27, 2010 (1 Site Visit): Prior to starting the concrete removal, the connection between the tilt-up panel and the top of the cast-in-place column was viewed from the inside of the building. The purpose was to verify that this connection was not affected by installation of the new steel columns. The welded connections were observed and no damage was noted. Demolition of the circular exterior face of the concrete column started. Initially, the concrete was removed to the depth previously removed for installation of the new steel columns with removal starting at the top of the column and moving downward.

July 28, 2010 (3 Site Visits): Demolition continues.

July 29, 2010 (2 Site Visits): Demolition continues.

July 31, 2010 (2 Site Visits): At this point, the circular face of the column had been removed to a depth of approximately 8 inches. Using a hammer the surface was tapped in order to determine the soundness of the concrete. Several areas were detected where the concrete appear to be loose and delaminated. Using smaller chipping hammers the removal process continued and the vertical reinforcing bar that was located closest to the original circular surface was partially exposed along with the column ties. It was decided to remove concrete back to be approximately 2 inches from the column ties.

John W. Spiess, SE 2844
August 1, 2010 (2 Site Visits): Final concrete removal and cleanup continued. Dowels were set in epoxy at the footing and the face of the existing column.

August 2, 2010 (1 Site Visit): The surface of the column was sandblasted and the exposed reinforcing was coated with the Sika Armatec 110. Cracks on the interior face of the column were sealed with epoxy and injection ports were installed.

August 3, 2010 (1 Site Visit): The new reinforcing cage, #3@6” o.c. horizontal and vertical, was installed in accordance with the drawings. Sinak was injected via the ports previously installed on the interior face of the column. Visual observations from the exterior confirmed that the Sinak was able to penetrate completely through the remaining column section at some crack locations (see attached photographs).

August 4, 2010 (1 Site Visit): Using the same ports on the interior face of the column, epoxy was injected and again was visibly confirmed to penetrate completely through the column (see attached photographs).

August 7, 2010 (ESH not present): The new shotcrete was installed with continuous inspection by Jeff Corbett, GeoSolutions, Inc. The concrete surface was treated with a curing compound, covered with burlap and kept moist for 5 days.

August 19, 2010 (1 Site Visit): Since the burlap has been removed, the column has been observed and the finished concrete surface is smooth with no visible voids. After the concrete has cured 21-28 days, the final finish can be installed.
September 7, 2010 (1 Site Visits): Final finish painting was in progress. The joint sealants and waterproofing at the bottom of the panel were complete. Backfilling is scheduled for tomorrow.

September 8, 2010 (1 Site Visit): Backfilling is complete and the site has been cleaned of debris. The landscaping area next to the column has not been replanted. All work shown on the drawings is now complete and was performed in substantial compliance with the approved drawings.

John W. Spiess, SE 2844
<table>
<thead>
<tr>
<th>Project: City of Goleta City Hall</th>
<th>City and State: Goleta, California 93117</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proj. #: 19-234639.1</td>
<td>Date of Survey: March 5, 2019</td>
</tr>
<tr>
<td>1.0 History</td>
<td>Yes</td>
</tr>
<tr>
<td>1.1 An ADA compliance survey has previously been completed for this property.</td>
<td>X</td>
</tr>
<tr>
<td>1.2 An approved Barrier Removal Plan exists for this property.</td>
<td>X</td>
</tr>
<tr>
<td>1.3 Has the Barrier Removal Plan been reviewed/approved by an arms-length third party such as an engineering firm, architectural firm, building department, or other agency, etc.?</td>
<td></td>
</tr>
<tr>
<td>1.4 ADA compliance improvements have been made to this property.</td>
<td>X</td>
</tr>
<tr>
<td>1.5 Property Management reports unresolved ADA complaints or litigation.</td>
<td>X</td>
</tr>
<tr>
<td>2.0 Parking</td>
<td>Yes</td>
</tr>
<tr>
<td>2.1 Does the required number of standard ADA-designated spaces appear to be provided?</td>
<td>X</td>
</tr>
<tr>
<td>2.2 Does the required number of van-accessible designated spaces appear to be provided?</td>
<td>X</td>
</tr>
<tr>
<td>2.3 Are accessible spaces part of the shortest accessible route to an accessible building entrance?</td>
<td>X</td>
</tr>
<tr>
<td>2.4 Is a sign with the International Symbol of Accessibility at the head of each space?</td>
<td>X</td>
</tr>
<tr>
<td>2.5 Does each accessible space have an adjacent access aisle?</td>
<td>X</td>
</tr>
<tr>
<td>2.6 Does signage exist directing you to accessible parking and an accessible building entrance?</td>
<td>X</td>
</tr>
<tr>
<td>2.7 Do parking spaces and access aisles appear to be relatively level and without obstruction?</td>
<td>X</td>
</tr>
<tr>
<td>3.0 Exterior Accessible Route</td>
<td>Yes</td>
</tr>
<tr>
<td>3.1 Is an accessible route present from public transportation stops and municipal sidewalks on the property?</td>
<td>X</td>
</tr>
<tr>
<td>3.2 Are curb cut ramps present at transitions through curbs on an accessible route?</td>
<td>X</td>
</tr>
<tr>
<td>3.3 Do the curb cut ramps appear to have the proper slope for all components?</td>
<td>X</td>
</tr>
<tr>
<td>3.4 Do ramps on an accessible route appear to have a compliant slope?</td>
<td>X</td>
</tr>
<tr>
<td>3.5 Do ramps on an accessible route appear to have a compliant length and width?</td>
<td>X</td>
</tr>
<tr>
<td>3.6 Do ramps on an accessible route appear to have compliant end and intermediate landings?</td>
<td>X</td>
</tr>
<tr>
<td>3.7 Do ramps on an accessible route appear to have compliant handrails?</td>
<td>X</td>
</tr>
<tr>
<td>4.0 Building Entrances</td>
<td>Yes</td>
</tr>
<tr>
<td>4.1 Do a sufficient number of accessible entrances appear to be provided?</td>
<td>X</td>
</tr>
<tr>
<td>4.2 If the main entrance is not accessible, is an alternate accessible entrance provided?</td>
<td>X</td>
</tr>
<tr>
<td>4.3 Is signage provided indicating the location of alternate accessible entrances?</td>
<td>X</td>
</tr>
<tr>
<td>4.4 Do doors at accessible entrances appear to have compliant clear floor area on each side?</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Question</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4.5</td>
<td>Do doors at accessible entrances appear to have compliant hardware?</td>
</tr>
<tr>
<td>4.6</td>
<td>Do doors at accessible entrances appear to have a compliant clear opening width?</td>
</tr>
<tr>
<td>4.7</td>
<td>Do pairs of accessible entrance doors in series appear to have the minimum clear space between them?</td>
</tr>
<tr>
<td>4.8</td>
<td>Do thresholds at accessible entrances appear to have a compliant height?</td>
</tr>
<tr>
<td>5.0</td>
<td>Interior Accessible Routes and Amenities</td>
</tr>
<tr>
<td>5.1</td>
<td>Does an accessible route appear to connect with all public areas inside the building?</td>
</tr>
<tr>
<td>5.2</td>
<td>Do accessible routes appear free of obstructions and/or protruding objects?</td>
</tr>
<tr>
<td>5.3</td>
<td>Do ramps on accessible routes appear to have a compliant slope?</td>
</tr>
<tr>
<td>5.4</td>
<td>Do ramps on accessible routes appear to have a compliant length and width?</td>
</tr>
<tr>
<td>5.5</td>
<td>Do ramps on accessible routes appear to have compliant end and intermediate landings?</td>
</tr>
<tr>
<td>5.6</td>
<td>Do ramps on accessible routes appear to have compliant handrails?</td>
</tr>
<tr>
<td>5.7</td>
<td>Are adjoining public areas and areas of egress identified with accessible signage?</td>
</tr>
<tr>
<td>5.8</td>
<td>Do public transaction areas have an accessible, lowered counter section?</td>
</tr>
<tr>
<td>5.9</td>
<td>Do public telephones appear mounted with an accessible height and location?</td>
</tr>
<tr>
<td>5.10</td>
<td>Are publicly-accessible swimming pools equipped with an entrance lift?</td>
</tr>
<tr>
<td>6.0</td>
<td>Interior Doors</td>
</tr>
<tr>
<td>6.1</td>
<td>Do doors at interior accessible routes appear to have compliant clear floor area on each side?</td>
</tr>
<tr>
<td>6.2</td>
<td>Do doors at interior accessible routes appear to have compliant hardware?</td>
</tr>
<tr>
<td>6.3</td>
<td>Do doors at interior accessible routes appear to have compliant opening force?</td>
</tr>
<tr>
<td>6.4</td>
<td>Do doors at interior accessible routes appear to have a compliant clear opening width?</td>
</tr>
<tr>
<td>7.0</td>
<td>Elevators</td>
</tr>
<tr>
<td>7.1</td>
<td>Are hallway call buttons configured with the “UP” button above the “DOWN” button?</td>
</tr>
<tr>
<td>7.2</td>
<td>Is accessible floor identification signage present on the hoistway sidewalls?</td>
</tr>
<tr>
<td>7.3</td>
<td>Do the elevators have audible and visual arrival indicators at the entrances?</td>
</tr>
<tr>
<td>7.4</td>
<td>Do the elevator hoistway and car interior appear to have a minimum compliant clear floor area?</td>
</tr>
<tr>
<td>7.5</td>
<td>Do the elevator car doors have automatic re-opening devices to prevent closure on obstructions?</td>
</tr>
<tr>
<td>7.6</td>
<td>Do elevator car control buttons appear to be mounted at a compliant height?</td>
</tr>
<tr>
<td>7.7</td>
<td>Are tactile and Braille characters mounted to the left of each elevator car control button?</td>
</tr>
<tr>
<td>7.8</td>
<td>Are audible and visual floor position indicators provided in the elevator car?</td>
</tr>
<tr>
<td></td>
<td>Toilet Rooms</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>7.9</td>
<td>Is the emergency call system at the base of the control panel and not require voice communication?</td>
</tr>
<tr>
<td>8.0</td>
<td>Toilet Rooms</td>
</tr>
<tr>
<td>8.1</td>
<td>Are common-area public toilet rooms located on an accessible route?</td>
</tr>
<tr>
<td>8.2</td>
<td>Do publicly-accessible toilet rooms appear to have a minimum compliant floor area?</td>
</tr>
<tr>
<td>8.3</td>
<td>Does the lavatory appear to be mounted at a compliant height and with compliant knee area?</td>
</tr>
<tr>
<td>8.4</td>
<td>Does the lavatory faucet have compliant handles?</td>
</tr>
<tr>
<td>8.5</td>
<td>Is the plumbing piping under lavatories configured to protect against contact?</td>
</tr>
<tr>
<td>8.6</td>
<td>Are grab bars provided at compliant locations around the toilet?</td>
</tr>
<tr>
<td>8.7</td>
<td>Do toilet stall doors appear to provide the minimum compliant clear width?</td>
</tr>
<tr>
<td>8.8</td>
<td>Do toilet stalls appear to provide the minimum compliant clear floor area?</td>
</tr>
<tr>
<td>8.9</td>
<td>Do urinals appear to be mounted at a compliant height and with compliant approach width?</td>
</tr>
<tr>
<td>8.10</td>
<td>Do accessories and mirrors appear to be mounted at a compliant height?</td>
</tr>
<tr>
<td>8.11</td>
<td>Are there audible and visual fire alarm devices in the toilet rooms?</td>
</tr>
<tr>
<td>9.0</td>
<td>Hospitality Guestrooms</td>
</tr>
<tr>
<td>9.1</td>
<td>Does property management report the minimum required accessible guestrooms?</td>
</tr>
<tr>
<td>9.2</td>
<td>Does property management report the minimum required accessible guestrooms with roll-in showers?</td>
</tr>
<tr>
<td>9.3</td>
<td>Are swimming pools and spas provided with accessible means of entry?</td>
</tr>
<tr>
<td>9.4</td>
<td>If fitness equipment is provided, are walkways between equipment free of obstruction and wide enough for a wheelchair (at least 36 in. wide)?</td>
</tr>
</tbody>
</table>
APPENDIX C: QUALIFICATIONS
Education
Ph. D. Architecture technology, UCLA (3 years Sustainable Architecture studies)
Master of Architecture UCLA (Second professional Degree)
Master of Architecture, Urban Planning. UABC Mex.
Bachelor of Architecture (B. Arch.) UABC Mex.

Highlights
15 years of experience as project Architect in healthcare field and sustainability application
3 years performing residential construction and housing development
2 years of experience in bar and restaurant construction

Experience Summary
Mr. Zepeda has over 20 years of experience working in different areas of architecture, construction and sustainable implementation. He will use his deep knowledge of the environmental consulting industry toward developing Property Condition Assessments on commercial, industrial and multi-family residential properties for clients.

During his 20 years of experience in Architecture Mr. Zepeda was involved in all phases of the project development such as planning, energy analysis implementation, design, construction documents, construction administration, retrofitting and site supervision.

Project Clients & Experience
Healthcare
Mercy San Juan Medical Center, Carmichael, CA. 180,000 square feet. Cost $75 Million. Mercy San Juan Medical center was a new 7 level patient tower with 106 beds, this project consisted of 136,000 s.f. of new construction and 44,000 s.f. of remodel. Mr. Zepeda’s participation on this project from early stages consisted on doing building climate analysis adapting it to the area climate conditions. He was in charge of creating a design guide line, materials selection, building orientation and coordinate elements that could create a better energy efficient building performance. After design was completed Mr. Zepeda created a set of construction documents and coordinate all disciplines within the project, Structural, Mechanical, electrical, Plumbing and Civil.

Boise State University Research Center, Boise, ID. 97,000 square feet. Cost $36.4 Million. Boise State University project, houses five floors of laboratory, classroom and office space for Geoscience and civil engineering; as well as integrated areas for Public Policy Administration, and Political Science. Mr. Zepeda’s participation in this project was to provide energy saving design strategies to incorporate them in the selection of HVAC system, wall and roof insulation, windows and building envelope with the creation of a design guide line for energy conservation. After this he participated on the creation of the construction documents coordinating with all engineers to create a complete set of drawings and obtain construction building permits.

UCLA Hospital, Westwood, CA. Mr. Zepeda participated in the creation of construction documents and coordinated with other disciplines to obtain construction permits.
LAC-USC Medical Center, Los Angeles, CA. Los Angeles County + USC Medical Center is one of the largest public hospitals in the country with 600 beds. LAC+USC operates special units that serve patients from throughout Southern California, including a Burn Center, a Level III Neonatal Intensive Care Unit, and a Level-One Trauma Center for the most severe injuries. Mr. Zepeda’s participation in this project was the creation of construction documents.

Saint John Hospital, Santa Monica, CA. 266 Bed Hospital. Mr. Zepeda's participation in this project was the creation of construction documents.

White Memorial Medical Center, Los Angeles, CA. Medical Office Building. Mr. Zepeda was in charge of creating the set of construction documents and coordination with engineers to complete the set of drawings and obtain the building permit.

Entertainment

Sony Studios, Culver City, CA. Mr. Zepeda designed different projects inside the lot of Columbia Pictures.

La Sirena Restaurant, Beverly Hills, CA. Mr. Zepeda was responsible for the production of shop drawings and coordination of manufacture and installation of equipment and furniture.

Fig and Olive restaurant, Newport Beach, CA. Mr. Zepeda was responsible for producing shop drawings, furniture fabrication, coordination and installation of equipment and furniture.

Chi Lin Restaurant Bar, Beverly Hills, CA. Mr. Zepeda was responsible for producing shop drawings, furniture fabrication, coordination and installation of equipment and furniture.

Residential

17,000 s.f. Private Residence, Bel Air, CA. Mr. Zepeda was in charge of creating construction documents to obtain the building permit, site supervision and coordination with engineers and builders.

5,700 s.f. Residence, Mar Vista, CA. Mr. Zepeda was in charge of designing, creating construction documents and construction permits, site supervision and coordination with builders.

2,700 s.f. Residence, Victorville, CA. Mr. Zepeda was in charge of the design, creation of construction documents, construction permit, site supervision and coordination with builders.

Housing Development, Hesperia, CA. Las Ventanas Housing Development. As a developer, designer and builder, Mr. Zepeda designed a housing complex and coordinated with city authorities, civil engineers and contractors.

5,000 s.f. Residence Beach House, Rosarito, B.C. Mexico. Mr. Zapeda was in charge of design, creating construction documents, construction permit, site supervision and coordination with builders.

Contact

rzepeda@partnersi.com
Education
B.S. Urban and Regional Planning, California State Polytechnic University, Pomona, CA

Training
Safety Assessment Volunteer, State of California

Highlights
35 years in the architectural and construction fields
Extensive knowledge of real estate due diligence
25 years of experience with institutional and private clients
Acquisitions/dispositions and mortgage lending property condition assessments
Construction monitoring services

Experience Summary
Mr. Arias serves as the Technical Director for the Investment Advisory Group (IAG) of the Building Science Division of Partner Engineering and Science, Inc. (Partner). IAG provides technical support to the Equity Asset Management industry by providing capital improvement cost-benefit analysis on real estate transactions. IAG produces a more thorough Property Condition Assessment for the institutional and equity client beyond the “ASTM E2018-08 Standard Guide for Property Condition Assessments: Baseline Property Condition Assessment Process”. In order to provide a detailed level of assessment, IAG engages both in-house engineers and trade specialists including, but not limited to, structural/seismic engineers, Mechanical/Electrical/Plumbing engineers, Fire/Life Safety and Code specialists and elevator, roof and accessibility specialists. IAG supports equity acquisitions and dispositions assessments on office buildings, multi-family residential, retail, hotel and industrial properties.

Mr. Arias has completed hundreds of Property Condition Assessments (PCAs) including planning, field work, report preparation/quality control, and client contact on a myriad of acquisition/disposition projects including: high-rise offices; suburban office; regional and local retail centers; industrial; and multi-family housing projects. He has provided owner’s representation services on various projects for institutional investors. Mr. Arias managed the review of numerous document reviews for institutional-level development projects in all disciplines on a variety of projects including office, retail, industrial, multi-family, etc. These reviews consisted of projects noted in the Owner’s Representation Services. He has also performed job captain and project manager responsibilities for a design/build general construction firm specializing in industrial concrete tilt-up construction, retail centers and auto dealerships. He has significant knowledge of the accessibility requirements of ADA and FHA, and is currently a candidate for California’s CASp (Certified Access Specialist) program.

Additionally, over the past 15 years, Mr. Arias’ responsibilities also included evaluation of staff; developing new skills and improving existing skills within the staff; scheduling of personnel; maintaining quality control practices consistent with company goals; and participated in development of protocols and practices to serve national clients of the firm.
Project Experience

Multi-Family Project, Oakland, CA. Organized and led a team of engineers and specialists to conduct an equity-level property condition assessment of a five-story, 300+ unit apartment project in downtown Oakland, CA. The project had been dormant prior to the client purchasing the property, therefore, the client required a detailed assessment of the building systems but also an assessment of investigation and construction documentation. The team consisted of structural engineers performing a seismic risk assessment; elevator, roof and façade specialists; mechanical, electrical, plumbing and fire/life safety engineers and an acoustical engineer. Mr. Arias assessed all other systems including the ADA and FFHA accessibility elements of the project. Mr. Arias led team in meetings with client and their counsel.

Hospitality Project, San Jose, CA. Organized and led a team of engineers and specialists to conduct an equity-level property condition assessment of a 28-story, 500+ guestroom, 400,000-square foot hospitality project in downtown San Jose, CA. The institutional client required a detailed assessment of the building systems including an assessment of the façade from the building’s swing stage due to observed water intrusion issues. The team consisted of structural engineers performing a seismic risk assessment; elevator, roof and façade specialists; mechanical, electrical, plumbing and fire/life safety engineers, as well as a specialist to sample the fire sprinkler water to identify microbial influence corrosion (MIC) in the fire sprinkler piping system. Mr. Arias assessed all other systems including the ADA accessibility elements of the project.

Retail Project, Emeryville, CA. Organized and led a team of engineers and specialists to conduct an equity-level property condition assessment of a popular and active 800,000-square foot mixed-use project in Emeryville, CA. The institutional client required a detailed assessment of the building systems including destructive testing of several locations of the façade to confirm construction of the exterior walls. The team consisted of structural engineers performing a seismic risk assessment, roof and façade specialists, mechanical, electrical, plumbing and fire/life safety engineers. Mr. Arias assessed all other systems including the ADA accessibility elements of the project.

Senior Housing Portfolio, Numerous Sites in US. Assisted with organizing teams to conduct disposition property condition assessments of 30 senior housing projects throughout the West and Midwest. The client required a summary of issues identified by the field assessors. Mr. Arias reviewed all property condition assessments for accuracy and quality control.

Owners’ Representation Services. Mr. Arias has provided owner’s representation services on various projects for institutional investors, including recent developments of numerous 50 to 250-unit multi-family projects in Santa Monica, Los Angeles, and Glendale, CA., several concrete tilt-up industrial developments in the Inland Empire area of Southern California and San Diego totaling over 1 million square feet; major hospitality projects consisting of the W-Hotel and Manchester Grand Hyatt Hotel in San Diego and several large “big box” retail centers in the San Fernando Valley in Southern California.

Project Management Services, Southern California. Mr. Arias managed staff and performed Project Management services on numerous projects including reconstruction of balcony decks of an existing multi-family project in Pasadena, California; forensic analysis and resealing of a plaza deck, also in Pasadena and an exterior wall repair, plaza deck waterproofing, and structural repair project for a homeowner association of a large condominium project in Marina del Rey.
Affiliations
American Institute of Architects, Associate
Certified Access Specialist Institute, Associate
International Code Council

Contact
marias@partneresi.com
Education
Bachelor of Arts, Public Administration & Economics, San Diego State University
Executive MBA Program, 2000-2003

Highlights
Over 20 years of experience in the environmental and engineering consulting industry
Property Condition Assessments (PCAs)
Fannie Mae, Freddie Mac, and HUD due diligence

Experience Summary
Mr. Lambson is a true veteran of the commercial real estate services industry. He has over 20 years of experience managing and performing environmental and engineering consulting projects on a national level. Mr. Lambson serves as a Principal for Partner and is located in Partner’s San Diego County office. Mr. Lambson currently provides client management and consulting to a nationwide client base and specializes in advising “equity” clients during the acquisition phase of commercial property transactions in the U.S., Mexico, and Canada.

Mr. Lambson has assisted clients on over 10,000 commercial real estate transactions throughout his career. His due diligence resume includes experience at all levels, and includes advising REITs, developers, property managers, retail companies, commercial real estate brokers, mortgage brokers, attorneys, lenders, universities, and real estate investment groups with the following nationwide services:

- Property Condition Assessments (PCAs)
- Individual Building System Inspections for Roof, Mechanical Electrical Plumbing (MEP), Elevator, Structure, Façade, and ADA/Accessibility
- Phase I Environmental Site Assessments (ESAs)
- Phase II Subsurface Investigations (Soil and groundwater sampling and analysis)
- Phase III Environmental Remediation Services
- Asbestos, Lead, Radon, Mold Sampling
- Seismic and Structural Assessments (PMLs)
- Energy Audits, Benchmarking, AB1103 Energy Disclosure, and LEED-related services
- Hydrology, Water Conservation and Efficiency
- Fannie Mae / Freddie Mac / HUD Due Diligence
- Geotechnical and Soils Reports
- Zoning Reports
- ALTA Surveys

Building Sciences
Property Condition Assessment, MEP Report, Roof Report, Elevator Report, Structural and Seismic Assessment for a high-profile Class A office campus acquisition in the San Francisco Bay Area

ADA Compliance and Accessibility Reviews for a national bank branch portfolio

Fannie Mae Property Condition / Physical Needs Assessment services for a 5400-unit multifamily portfolio in Nevada
Environmental Assessments
Phase I and Phase II Environmental Assessments for a 75-acre aerospace facility in the Northwest United States

Over 500 Phase I Environmental Site Assessments for a national fast-food chain

Environmental consulting for over 1 million acres of desert land in California, Nevada, and Arizona

Land Surveys
ALTA Surveys for 2400-unit apartment portfolio in the Midwest

Multi-Site Portfolios
113-site office portfolio acquisition for a national REIT

122-site hotel portfolio for a national lending institution

55-site hotel portfolio acquisition for a private investment group

68-site healthcare portfolio acquisition for a national REIT

50-site country club/golf course acquisition for a private investment group

Energy and Water Efficiency
Energy & Water consulting for a national property owner that operates and manages 30 retail and office centers on the West Coast and Texas

Affiliations
National Association of Real Estate Investment Trusts (NAREIT)
International Council of Shopping Centers (ICSC)
U.S Green Building Council (USGBC)
Society of Industrial and Office Realtors, San Diego County (SIOR)
National Association of Industrial & Office Parks, Southern California (NAIOP)
San Diego Habitat Conservancy, Board of Directors. 2010 - 2014

Speaking
Bisnow Conference, Panel Moderator, La Jolla, CA, October 2014. Moderated panel on Southern California Real Estate Trends.

Globestreet, ICSC Western States Conference, San Diego, CA May 2013. Video interview regarding retail real estate trends and due diligence.

Publications
Shopping Centers Today, 2010. Authored article on LEED applications for shopping centers and retail assets.

Contact
mlambson@partneresi.com