9009A - SAN JOSE CREEK EMERGENCY CHANNEL REPAIR PROJECT
APPROXIMATELY 300-FEET DOWNSTREAM OF THE HOLLISTER AVE. BRIDGE

To be Supplemented by the Civil Works Plans (May 2018), Revised Standard Plans, and Specifications. Also see Supplier's Shop Drawings and Record Drawings.

PROJECT LIMITS:
FROM AFROX 300 FEET
SOUTH OF HOLLISTER AVE.
TO AFROX 450 FEET
SOUTH AS MEASURED
ALONG SAN JOSE CR.

Approved for Construction

Mr. Charles W. Ebing, P.E., T.E., Public Works Director / City Engineer
Notes:

1. Channel walls are not quite parallel because the channel is transitional to a narrower width upstream.
2. Existing RSP & steel sheet pile is not shown.
3. Soldier piles supporting wall not shown.
4. Existing RSP is approx. 2-feet deep.
5. ASR is "owner - furnished material."
6. Concrete backfill per sheet WD-1.
7. Subgrade shall be compacted to a minimum density of 90% per ASTM D698.
8. "PG" refers to profile grade on the layout line at the top of ASR.

SAN JUSE CREEK EMERGENCY CHANNEL REPAIR PROJECT

Match Origin. Elev. of ASR.
Note Existing Anchors in Wall.

UPSTREAM CONFORM AT "SJC" STA: 58+64.63
SCALE: 1"=5'

DOWNSTREAM CONFORM AT "SJC" STA: 57+48.24
SCALE: 1"=5'

TYPICAL SECTIONS
(UPSTREAM + DOWNSTREAM CONFORMS)
SCALE AS SHOWN
SHT 2 of 21

Gerald Comati, PE; Project Manager
BENGAL ENGINEERING
360 S. HOPE AVE
SANTA BARBARA, CA 93105
(805) 563-0788

S. Onishuk, PE

SAN JOSE CREEK EMERGENCY CHANNEL REPAIR PROJECT

SHT 2 of 21

Gerald Comati, PE; Project Manager
BENGAL ENGINEERING
360 S. HOPE AVE
SANTA BARBARA, CA 93105
(805) 563-0788

S. Onishuk, PE
NOTES:

1. THIS PLAN IS FOR THE LAYOUT OF THE CHANNEL GRADING.

2. TEMPORARY CONSTRUCTION EASEMENTS ARE NOT SHOWN. SEE RIGHT OF WAY MAPPING BY OTHERS.

3. SEE CONTECH SHOP DRAWING CT1 FOR LOCATION OF ASR & SOIL ANCHORS IN ASR MATTRESSES.

4. SEE SHEET S-12 "SECTIONS & DETAILS, SHT 9" OF RECORD DRAWINGS, DETAIL 2 FOR LAYOUT OF THE 12 ADDITIONAL SOIL ANCHORS AROUND THE CONCRETE FISH WEIR AND ONE SOIL ANCHOR AT TIMBER WEDGE.

5. TEST PIT 1 (2019) ENCOUNTERED GROUND WATER AT 6 FEET FROM (E) SURFACE.

6. TEST PIT 2 (2019) ENCOUNTERED GROUND WATER AT 9 FEET FROM (E) SURFACE.

7. SEE SHEET S-12 "SECTIONS & DETAILS, SHT 9" OF RECORD DRAWINGS.
1. This plan is only for the layout and connection of the ASR to the existing channel walls.
2. The channel walls are built from both cast-in-place and precast components supported by steel soldier piles encased in a rectangular concrete bolster.
3. Do not drill into the soldier piles.
4. At the time of construction, the walls extended 3-feet below the elevation of the ASR, as shown on the typical cross sections.
5. Contractor’s attention is directed to the row of existing eyebolts which attached the ASR to the wall. This row of anchors defines the elevation of the mid-point of the ASR.
6. Width of the concrete backfill distance from wall to ASR varies.
7. ASR may be “open” (Type 50) or “closed” (Type 55). This plan shows the concept of the wall connection - not the style of the ASR.
8. Soil anchors are not shown. See Shop Contech Drawing CT-2 for typical placement.

Eyebolt Connection Typical Detail

Scale: 1" = 1'

- Concrete Channel Wall
- Concrete Backfill
- Revetment Cables
- Eyebolt Connection
- Galvanized Eye Bolt Anchor
- Crimped Sleeve
- Polyester Cable

Section AA

Scale: 1" = 10'

- Eye Bolt Connection Diagram
- Wall Connection Details
- Typical Placement

Gerald Comati, PE; Project Manager
BENGAL ENGINEERING
360 S. HOPE AVE
SANTA BARBARA, CA 93105
(805) 563-0788

S. Onishuk, PE
SAN JOSE CREEK EMERGENCY CHANNEL REPAIR PROJECT

2020 - TYP SEC-WALL CONNECTION.DWG

34" Crushed Rock over RSP Fabric

NOTES:
1. This plan is only for the layout and connection of the ASR to the existing channel walls.
2. The channel walls are built from both cast-in-place and precast components supported by steel soldier piles encased in a rectangular concrete bolster.
3. Do not drill into the soldier piles.
4. At the time of construction, the walls extended 3-feet below the elevation of the ASR, as shown on the typical cross sections.
5. Contractor's attention is directed to the row of existing eyebolts which attached the ASR to the wall. This row of anchors defines the elevation of the mid-point of the ASR.
6. Width of the concrete backfill distance from wall to ASR varies.
7. ASR may be "open" (Type 50) or "closed" (Type 55). This plan shows the concept of the wall connection - not the style of the ASR.
8. Soil anchors are not shown. See Shop Contech Drawing CT-2 for typical placement.
9. Width of the concrete backfill distance from wall to ASR varies.
10. ASR may be "open" (Type 50) or "closed" (Type 55). This plan shows the concept of the wall connection - not the style of the ASR.
11. Soil anchors are not shown. See Shop Contech Drawing CT-2 for typical placement.

S. Onishuk, PE
SAN JOSE CREEK EMERGENCY CHANNEL REPAIR PROJECT

2020 - TYP SEC-WALL CONNECTION.DWG
1. This plan is a concept for diverting creek water during the work.
SAN JOSE CREEK EMERGENCY CHANNEL REPAIR PROJECT

ASR DETAILS
NOT TO SCALE

S. Onishuk, PE

San Jose Creek Capacity Improvement Project
Guatla, California

 block type totals

<table>
<thead>
<tr>
<th>type of wall</th>
<th>open block</th>
<th>closed block</th>
<th>half block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>442345-1</td>
<td>442345-1</td>
</tr>
</tbody>
</table>

REVISIONS

1. Update project name and location.
2. Add material list and specifications.
3. Clarify construction details and requirements.

San Jose Creek Capacity Improvement Project
Guatla, California

armortec
Concrete and Roads

CONTECH
Engineered Solutions LLC

Gerald Comati, PE; Project Manager

BENGAL ENGINEERING
360 S. HOPE AVE
SANTA BARBARA, CA 93105
(805) 563-0788

2020 - TYP SEC-WALL CONNECTION.DWG
JULY 08, 2020 REV.
S. Onishuk, PE
SAN JOSE CREEK CAPACITY IMPROVEMENT PROJECT
GOLETA, CALIFORNIA

NOTES:

1. MAT NUMBERS ARE FOR IDENTIFICATION PURPOSES ONLY. THE NUMBERS DO NOT ESTABLISH OR SUGGEST AN INSTALLATION SEQUENCE. MATS OF IDENTICAL DIMENSIONS ARE INTERCHANGEABLE.
2. ALL MAT LENGTHS ARE AS SPECIFIED ON THE ARMORFLEX MATTRESS LAYOUT.
3. ALL MAT WIDTHS ARE AS SPECIFIED ON THE ARMORFLEX MATTRESS LAYOUT.
4. TERMINATIONS AND SLOPE FACTORS HAVE BEEN ADDED TO LENGTHS OF ALL MATS.
5. ALL VOIDS GREATER THAN 2" BETWEEN MATS SHALL BE FILLED WITH 4,000PSI CONCRETE, GROUT, OR OTHER (AS SPECIFIED BY EOR).
6. REVISES AREA OF COVERAGE TAKEN FROM CONTRACT PLANS SHEET L-1.
7. LOCATIONS OF SOIL ANCHORS ARE NOT SHOWN.
8. JOINTS BETWEEN THE MATTRESSES SHALL BE PER MANUFACTURER DETAILS.

PRELIMINARY:

INFORMATION CONTAINED IN THIS DRAWING IS TO BE USED ONLY AS AN AID TO THE BUYER AND IS NOT TO BE CONSTRUED AS ENGINEERING ADVICE OR AS A WARRANTY AS TO THE QUANTITY REQUIRED OR THE SUITABILITY OF THE FABRIC OR BLOCK FOR A PARTICULAR USE. AUTHORIZATION TO SHIP FABRIC OR BLOCK DESCRIBED HERE EITHER WRITTEN OR VERBAL WILL BE RECOGNIZED AS BUYER'S CONFIRMATION OF THE ACCURACY OF THESE DRAWINGS. NO CREDIT WILL BE ALLOWED FOR ERROR AFTER REVIEW AND ACCEPTANCE BY CLIENT.

The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.

If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.
The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.

If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.

Note open cells in mats: red ellipses. Manta Ray Soil Anchor type MR-4 will pass through these.
Other information which is visible on the plans is not considered part of the 2020 Emergency Repair Contract.

1. Details for the reconstruction of the concrete fish weirs and timber fish wedges
2. Survey control and layout which was used at the time of original construction.
3. Geometry of layout lines
4. Wall construction

These drawings sh. 9 to sh. 21 are provided to show:

- Channel wall construction at the bridge.
- 60+00 to upstream conform.

NOTE REGARDING FUTURE RECONSTRUCTION OF THE HOLLISTER AVE. BRIDGE:
This project will construct channel walls from the southern end of the existing lined channel to the Hollister Ave. Bridge. The channel bottom between these walls will be re-graded to provide a fish passage in the creek. Until the new bridge is constructed, a temporary transition in the channel lining will join the channel improvements constructed in this project with the existing trapezoidal channel downstream of the bridge.
<table>
<thead>
<tr>
<th>Point</th>
<th>NAD83, 1983 CA SPC Zone S</th>
<th>NAVD88</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1037317.55</td>
<td>66.14</td>
</tr>
<tr>
<td>2</td>
<td>1037318.61</td>
<td>61.77</td>
</tr>
<tr>
<td>3</td>
<td>1037024.73</td>
<td>49.49</td>
</tr>
<tr>
<td>4</td>
<td>1036887.03</td>
<td>44.90</td>
</tr>
<tr>
<td>5</td>
<td>1036878.42</td>
<td>34.90</td>
</tr>
<tr>
<td>6</td>
<td>1035659.03</td>
<td>25.61</td>
</tr>
<tr>
<td>7</td>
<td>1035659.03</td>
<td>47.72</td>
</tr>
<tr>
<td>8</td>
<td>1035777.18</td>
<td>53.30</td>
</tr>
<tr>
<td>9</td>
<td>1035942.75</td>
<td>48.81</td>
</tr>
<tr>
<td>10</td>
<td>1036292.31</td>
<td>88.02</td>
</tr>
<tr>
<td>11</td>
<td>1035739.61</td>
<td>25.01</td>
</tr>
<tr>
<td>12</td>
<td>1035420.56</td>
<td>30.00</td>
</tr>
<tr>
<td>13</td>
<td>1035351.71</td>
<td>46.50</td>
</tr>
<tr>
<td>14</td>
<td>1035470.70</td>
<td>22.41</td>
</tr>
<tr>
<td>15</td>
<td>1035573.32</td>
<td>23.59</td>
</tr>
<tr>
<td>16</td>
<td>1035325.24</td>
<td>16.68</td>
</tr>
<tr>
<td>17</td>
<td>1035280.40</td>
<td>16.06</td>
</tr>
<tr>
<td>18</td>
<td>1035219.29</td>
<td>16.57</td>
</tr>
<tr>
<td>19</td>
<td>1035059.95</td>
<td>57.06</td>
</tr>
<tr>
<td>20</td>
<td>1035759.34</td>
<td>61.26</td>
</tr>
<tr>
<td>21</td>
<td>103574.63</td>
<td>15.15</td>
</tr>
<tr>
<td>22</td>
<td>103574.67</td>
<td>39.34</td>
</tr>
<tr>
<td>23</td>
<td>1035777.73</td>
<td>13.61</td>
</tr>
<tr>
<td>24</td>
<td>1035618.91</td>
<td>49.50</td>
</tr>
<tr>
<td>25</td>
<td>1035618.91</td>
<td>14.87</td>
</tr>
<tr>
<td>26</td>
<td>1035739.40</td>
<td>16.21</td>
</tr>
<tr>
<td>27</td>
<td>1035212.58</td>
<td>16.10</td>
</tr>
<tr>
<td>28</td>
<td>1035042.73</td>
<td>22.19</td>
</tr>
<tr>
<td>29</td>
<td>1034845.62</td>
<td>29.13</td>
</tr>
<tr>
<td>30</td>
<td>1034845.62</td>
<td>16.12</td>
</tr>
<tr>
<td>31</td>
<td>1035239.23</td>
<td>6.91</td>
</tr>
<tr>
<td>32</td>
<td>1035270.03</td>
<td>42.89</td>
</tr>
<tr>
<td>33</td>
<td>1035261.64</td>
<td>76.40</td>
</tr>
<tr>
<td>34</td>
<td>1036269.03</td>
<td>71.95</td>
</tr>
<tr>
<td>35</td>
<td>1037867.11</td>
<td>68.45</td>
</tr>
<tr>
<td>36</td>
<td>1037832.82</td>
<td>63.36</td>
</tr>
<tr>
<td>37</td>
<td>1037832.82</td>
<td>62.70</td>
</tr>
<tr>
<td>38</td>
<td>1037832.82</td>
<td>62.70</td>
</tr>
<tr>
<td>39</td>
<td>1038318.40</td>
<td>15.44</td>
</tr>
<tr>
<td>40</td>
<td>1038318.40</td>
<td>64.73</td>
</tr>
<tr>
<td>41</td>
<td>1037823.40</td>
<td>121.42</td>
</tr>
</tbody>
</table>

* Note: This table contains the coordinates of points used for the survey control. The points are referenced to W1492, see NGS Data Sheet.
NOTES:

1. WALL THICKNESS AND REINFORCEMENT SHALL BE THE SAME AS THOSE SHOWN FOR PRECAST WALL DETAILS (UON).
2. WELDED WIRE FABRIC (WWF) SHALL BE 6X6-W1.4XW1.4
3. WHERE CONC. WALL IS CURVED, THE SOLDIER PILE SHALL BE PERPENDICULAR TO WALL AT THAT LOCATION.
4. CONCRETE CORNERS SHALL HAVE MIN. 3/4" CHAMFERS.
5. FOR CRUSHED ROCK BACKFILL, SEE SECTION...
ADDITIONAL REINFORCING AT CIRCULAR OPENINGS IN CONCRETE WALLS (12" DIAMETER OR LARGER)

1. CIRCULAR OPENING
2. ADD BARS ON EACH SIDE OF OPENING (TYP)
3. NORMAL REINFORCEMENT FOR WALL
4. ADD BARS ON EACH SIDE OF OPENING (TYP)
5. NORMAL REINFORCEMENT FOR WALL

NOTES:
1. CIRCL. "CLR")
2. "X" (TYP)
3. "X"/2 (TYP)
4. "S" (TYP)
5. "S"/2 (TYP)
6. L (TYP)
7. s (TYP)

CIRCULAR OPENING

ADDITIONAL REINFORCING AT CIRCULAR OPENINGS IN CONCRETE WALLS (12" DIAMETER OR LARGER)

1. CIRCULAR OPENING
2. ADD BARS ON EACH SIDE OF OPENING (TYP)
3. NORMAL REINFORCEMENT FOR WALL
4. ADD BARS ON EACH SIDE OF OPENING (TYP)
5. NORMAL REINFORCEMENT FOR WALL

NOTES:
1. CIRCL. "CLR")
2. "X" (TYP)
3. "X"/2 (TYP)
4. "S" (TYP)
5. "S"/2 (TYP)
6. L (TYP)
7. s (TYP)

CIRCULAR OPENING

ADDITIONAL REINFORCING AT CIRCULAR OPENINGS IN CONCRETE WALLS (12" DIAMETER OR LARGER)

1. CIRCULAR OPENING
2. ADD BARS ON EACH SIDE OF OPENING (TYP)
3. NORMAL REINFORCEMENT FOR WALL
4. ADD BARS ON EACH SIDE OF OPENING (TYP)
5. NORMAL REINFORCEMENT FOR WALL

NOTES:
1. CIRCL. "CLR")
2. "X" (TYP)
3. "X"/2 (TYP)
4. "S" (TYP)
5. "S"/2 (TYP)
6. L (TYP)
7. s (TYP)

CIRCULAR OPENING

ADDITIONAL REINFORCING AT CIRCULAR OPENINGS IN CONCRETE WALLS (12" DIAMETER OR LARGER)

1. CIRCULAR OPENING
2. ADD BARS ON EACH SIDE OF OPENING (TYP)
3. NORMAL REINFORCEMENT FOR WALL
4. ADD BARS ON EACH SIDE OF OPENING (TYP)
5. NORMAL REINFORCEMENT FOR WALL

NOTES:
1. CIRCL. "CLR")
2. "X" (TYP)
3. "X"/2 (TYP)
4. "S" (TYP)
5. "S"/2 (TYP)
6. L (TYP)
7. s (TYP)

CIRCULAR OPENING

ADDITIONAL REINFORCING AT CIRCULAR OPENINGS IN CONCRETE WALLS (12" DIAMETER OR LARGER)

1. CIRCULAR OPENING
2. ADD BARS ON EACH SIDE OF OPENING (TYP)
3. NORMAL REINFORCEMENT FOR WALL
4. ADD BARS ON EACH SIDE OF OPENING (TYP)
5. NORMAL REINFORCEMENT FOR WALL

NOTES:
1. CIRCL. "CLR")
2. "X" (TYP)
3. "X"/2 (TYP)
4. "S" (TYP)
5. "S"/2 (TYP)
6. L (TYP)
7. s (TYP)

CIRCULAR OPENING

ADDITIONAL REINFORCING AT CIRCULAR OPENINGS IN CONCRETE WALLS (12" DIAMETER OR LARGER)

1. CIRCULAR OPENING
2. ADD BARS ON EACH SIDE OF OPENING (TYP)
3. NORMAL REINFORCEMENT FOR WALL
4. ADD BARS ON EACH SIDE OF OPENING (TYP)
5. NORMAL REINFORCEMENT FOR WALL

NOTES:
1. CIRCL. "CLR")
2. "X" (TYP)
3. "X"/2 (TYP)
4. "S" (TYP)
5. "S"/2 (TYP)
6. L (TYP)
7. s (TYP)

CIRCULAR OPENING

ADDITIONAL REINFORCING AT CIRCULAR OPENINGS IN CONCRETE WALLS (12" DIAMETER OR LARGER)

1. CIRCULAR OPENING
2. ADD BARS ON EACH SIDE OF OPENING (TYP)
3. NORMAL REINFORCEMENT FOR WALL
4. ADD BARS ON EACH SIDE OF OPENING (TYP)
5. NORMAL REINFORCEMENT FOR WALL

NOTES:
1. CIRCL. "CLR")
2. "X" (TYP)
3. "X"/2 (TYP)
4. "S" (TYP)
5. "S"/2 (TYP)
6. L (TYP)
7. s (TYP)

CIRCULAR OPENING

ADDITIONAL REINFORCING AT CIRCULAR OPENINGS IN CONCRETE WALLS (12" DIAMETER OR LARGER)

1. CIRCULAR OPENING
2. ADD BARS ON EACH SIDE OF OPENING (TYP)
3. NORMAL REINFORCEMENT FOR WALL
4. ADD BARS ON EACH SIDE OF OPENING (TYP)
5. NORMAL REINFORCEMENT FOR WALL

NOTES:
1. CIRCL. "CLR")
2. "X" (TYP)
3. "X"/2 (TYP)
4. "S" (TYP)
5. "S"/2 (TYP)
6. L (TYP)
7. s (TYP)

CIRCULAR OPENING

ADDITIONAL REINFORCING AT CIRCULAR OPENINGS IN CONCRETE WALLS (12" DIAMETER OR LARGER)

1. CIRCULAR OPENING
2. ADD BARS ON EACH SIDE OF OPENING (TYP)
3. NORMAL REINFORCEMENT FOR WALL
4. ADD BARS ON EACH SIDE OF OPENING (TYP)
5. NORMAL REINFORCEMENT FOR WALL

NOTES:
1. CIRCL. "CLR")
2. "X" (TYP)
3. "X"/2 (TYP)
4. "S" (TYP)
5. "S"/2 (TYP)
6. L (TYP)
7. s (TYP)

CIRCULAR OPENING

ADDITIONAL REINFORCING AT CIRCULAR OPENINGS IN CONCRETE WALLS (12" DIAMETER OR LARGER)

1. CIRCULAR OPENING
2. ADD BARS ON EACH SIDE OF OPENING (TYP)
3. NORMAL REINFORCEMENT FOR WALL
4. ADD BARS ON EACH SIDE OF OPENING (TYP)
5. NORMAL REINFORCEMENT FOR WALL

NOTES:
1. CIRCL. "CLR")
2. "X" (TYP)
3. "X"/2 (TYP)
4. "S" (TYP)
5. "S"/2 (TYP)
6. L (TYP)
7. s (TYP)

CIRCULAR OPENING

ADDITIONAL REINFORCING AT CIRCULAR OPENINGS IN CONCRETE WALLS (12" DIAMETER OR LARGER)

1. CIRCULAR OPENING
2. ADD BARS ON EACH SIDE OF OPENING (TYP)
3. NORMAL REINFORCEMENT FOR WALL
4. ADD BARS ON EACH SIDE OF OPENING (TYP)
5. NORMAL REINFORCEMENT FOR WALL

NOTES:
1. CIRCL. "CLR")
2. "X" (TYP)
3. "X"/2 (TYP)
4. "S" (TYP)
5. "S"/2 (TYP)
6. L (TYP)
7. s (TYP)

CIRCULAR OPENING

ADDITIONAL REINFORCING AT CIRCULAR OPENINGS IN CONCRETE WALLS (12" DIAMETER OR LARGER)

1. CIRCULAR OPENING
2. ADD BARS ON EACH SIDE OF OPENING (TYP)
3. NORMAL REINFORCEMENT FOR WALL
4. ADD BARS ON EACH SIDE OF OPENING (TYP)
5. NORMAL REINFORCEMENT FOR WALL

NOTES:
1. CIRCL. "CLR")
2. "X" (TYP)
3. "X"/2 (TYP)
4. "S" (TYP)
5. "S"/2 (TYP)
6. L (TYP)
7. s (TYP)

CIRCULAR OPENING

ADDITIONAL REINFORCING AT CIRCULAR OPENINGS IN CONCRETE WALLS (12" DIAMETER OR LARGER)

1. CIRCULAR OPENING
2. ADD BARS ON EACH SIDE OF OPENING (TYP)
3. NORMAL REINFORCEMENT FOR WALL
4. ADD BARS ON EACH SIDE OF OPENING (TYP)
5. NORMAL REINFORCEMENT FOR WALL

NOTES:
1. CIRCL. "CLR")
2. "X" (TYP)
3. "X"/2 (TYP)
4. "S" (TYP)
5. "S"/2 (TYP)
6. L (TYP)
7. s (TYP)
NOTE:
PERMANENT FISH WEIR LOCATION "SJC" LINE
- STA 48+00 TO 60+00 @ 100'-0" O.C.
(SEE CIVIL PLANS FOR "SJC" LINE STATIONING)

1. ANCHOR DETAILS SHOWN FOR WEIRS AND WEDGES ARE FOR CONCEPTUAL PURPOSES ONLY.
2. THE CONTRACTOR SHALL SUBMIT SHOP DRAWINGS OF ANCHOR DETAILS FOR REVIEW AND APPROVAL BY THE ENGINEER PRIOR TO INSTALLATION.
3. GALV. PIPE SHALL BE FILLED WITH PEA GRAVEL.
4. ANCHOR TIE DOWN SHOWN ARE IN ADDITION TO MANUFACTURED RECOMMEND ANCHOR TIE DOWN.
5. THE CONTRACTOR SHALL SUBMIT SHOP DRAWINGS OF TIMBER WEDGE AND ATTACHMENT DETAILS FOR REVIEW AND APPROVAL BY THE ENGINEER PRIOR TO INSTALLATION.