March 30, 2009

Vice Chancellor Gene Lucas
University of California
Santa Barbara, CA 93106-1030

RE: Recirculated DEIR for the UCSB Long Range Development Plan

Dear Vice Chancellor Lucas:

The City of Goleta appreciates the opportunity to comment on the Recirculated Draft Environmental Impact Report (RDEIR) for the Vision 2025 Long Range Development Project. The City provides these comments in recognition of our common planning area, our common public infrastructure, and our common natural resource setting. These comments, when taken together with our prior letters of June 21, 2007 and June 23, 2008, identify significant flaws with the RDEIR and the base DEIR. The City hereby attaches our prior comment letters and reiterates the concerns stated therein as they have not been fully addressed in the RDEIR. The City asks that the University properly address the issues as outlined in these comment letters, and that the University work with us on identifying and, ultimately, implementing ways that environmental damage can be avoided or substantially reduced.

First and foremost, I want to express the desire of the City to improve the dialogue with the University from the conversations conducted over the past year or more. The City is looking for a dialogue with the University that acknowledges and addresses our common needs, desires and issues as seen by of Goleta Valley residents and business interests. We hope for a dialogue that meaningfully respects the capacity of the valley’s natural resource systems, as well as the tolerances of the public infrastructure systems. There is only so much room and resources to go around, as is evidenced in the Draft LRDP, the County’s policy papers on an ongoing update of the Goleta Community Plan, and the City’s General Plan/Coastal Land Use Plan. This is an important opportunity for collaborative and integrated planning work, rather than isolation of interests.
City staff has reviewed the RDEIR in detail. The City's comments are provided in two attachments, one that generally addresses air quality, population and housing, transportation and circulation, water supply, and wastewater, and one that addresses the traffic model. The City remains concerned about many issues, but there are three critical issues as follows:

1. The transportation/traffic modeling and, in particular, the assumptions that form the basis for the analysis, findings, mitigation measures and alternative considerations are fatally flawed. Reasonable worst case conditions are not properly identified, modeled and mitigated, as required under the California Environmental Quality Act. There is a gross underestimation of impacts that is caused by skewed assumptions on trip generation and distribution pattern. Sensitivity analysis on the model bears this fact out at several key road segments and intersections throughout the Goleta Valley.

2. The DEIR fails to address the extended effects on Goleta's public infrastructure and services, particularly in the areas of public safety, emergency services, parks, roads, transportation systems, libraries, utilities, etc. The lack of such recognition and analysis of off-campus effects presents the unrealistic picture of a University expansion that is isolated, self-contained and self-mitigating. Nothing could be further from the truth.

3. The RDEIR does not sufficiently account for and fails to address the effects of student enrollment growth and faculty/staff employment growth absent concurrent mitigation. The document does not identify and analyze the relationship between the timing of growth and the development and occupancy of on-campus housing or the timing of service provisions that are vital to accommodate that growth. In our discussions, the University has refused to provide guarantees of financial backing for the mitigation measures that are identified. To allow growth impacts to precede the enactment of mitigation measures by several years, obfuscates the role of CEQA, the California Coastal Act, as well as the very nature of long range development planning envisioned under the California Government Code and shifts the burden of the project from UCSB to the residents of the Goleta Valley.

The technical attachments go into much greater detail on these and other points of concern. This second round of document-making presents a narrow posture of a University concerned with legal defensibility rather than accurate analysis of environmental impacts. The City of Goleta urges the University to reject such a posture and seize this important opportunity for meaningful dialogue, rational compromise, and partnership with the community at-large.
Vice Chancellor Gene Lucas
RE: Recirculated DEIR for the UCSB Long Range Development Plan
March 30, 2009
Page 3

Respectfully submitted,

[Signature]
Daniel Singer
City Manager

Enclosures
Attachment A: Technical Comments
Attachment B: Traffic Model Analysis

C: Henry T. Yang, Chancellor, UCSB
Tye Simpson, Director of Campus Planning and Design, UCSB
Marc Fisher, AIA, Associate Vice Chancellor for
Campus Design & Facilities, UCSB

Jack Ainsworth, Deputy Director, California Coastal Commission, Ventura Office

Michael Brown, County of Santa Barbara
John Baker, County of Santa Barbara

James Armstrong, City of Santa Barbara

Kamil Azoury, Goleta Sanitary District

Eric Ford, Goleta Water District

Goleta City Council
Introduction and Summary

Page 1.0-1 Section 1.2 - Air Quality Subsection. This section states that the Air Quality Section of the DEIR overstated vehicle emissions...and the ...air quality modeling has been adjusted accordingly. As indicated in the Transportation section comments in a following section of this attachment, the City disputes the transportation modeling and analysis assumptions. Specifically, a review of the RDEIR traffic model resulted in underestimation of impacts, both existing and future conditions. As a result, conclusions arrived at in the Air Quality Section 4.2 dependent upon the transportation data, are flawed and must be updated to reflect reasonable worst case conditions. The Final EIR must reflect reasonable worst case traffic conditions (see Transportation comments), therefore, necessitating changes to the air quality analysis beyond the scope defined in Section 1.2. Additionally, Section 1.2 Air Quality subsection must be updated to describe the additional analysis, plus document an impact level for Greenhouse Gas Emissions, with corresponding mitigation as none is provided in the technical section.

Page 1.0-2 Section 1.2 - Transportation Subsection. This section states that the Transportation section has been augmented to include further discussion of the University’s contribution to traffic congestion on area roadways and intersections... As elaborated in the Transportation section comments in a following section of this attachment, City staff disputes the transportation modeling and analysis assumptions. Specifically, a review of the RDEIR traffic model (see Attachment B) resulted in documentation of underestimation of impacts, both existing and future conditions. As a result, conclusions arrived at in the Transportation Section 4.13 are flawed and must be updated in the Final EIR to reflect reasonable worst case conditions. Section 1.2 Transportation subsection must be updated to describe the additional analysis, impacts, and mitigations.

Page 1.0-2 Section 1.2 – Water Supply Subsection. This section states that any shortfall in potable water supply would be small and alternative sources are identified to meet the potential shortfall. City staff disputes the assumptions that are built into the supply and demand analysis which results in an underestimation of impacts (demand) and overestimation of the resource (supply). As a result, conclusions arrived at in the Water Section 4.14 are flawed and must be updated in the Final EIR to reflect reasonable worst case conditions. Section 1.2 Water Supply subsection must be updated to describe the additional analysis, impacts, and mitigations. Refer to Section 4.14 comments for more detail.

Page 1.0-2 Section 1.2 – Wastewater Subsection. This section concludes that the impact to wastewater capacity is significant and unavoidable because the University would need to acquire additional capacity from sanitary districts in order to meet demand upon build out. This conclusion is not adequately established. City staff disagrees with this conclusion and believe with carefully crafted mitigation, the impact
could be reduced to less than significant. Refer to Wastewater comments below for more detail. Section 1.2 Wastewater subsection should be updated to describe the mitigation and the reduced level of significance.

Page 1.0-4 Table 1.4 Summary of Impacts and Mitigation Measures. This table must be updated to reflect modifications that are necessitated to address comments and rectify deficiencies identified in this attachment.

Air Quality

Page 4.2-1. The second bullet point addresses a revision to the DEIR and states *URBEMIS2007 [was used] to estimate residential area sources and transportation sources rather than hand calculating vehicular emissions based EMFAC2007.* As indicated in the Transportation comments below, City staff disputes the transportation modeling and resulting conclusions. Specifically, an underestimation of impacts is documented in Attachment B. As a result, the conclusions arrived at in the Air Quality section dependent upon the transportation data, may be significantly flawed and must be updated.

Page 4.2-23. LRDP Impact AIR-1 indicates that campus growth under the 2008 LRDP would result in daily operational emissions above the significance thresholds; may contribute to a violation of air quality standards or hinder attainment of the 2007 Clean Air Plan. To adequately attempt to mitigate this impact, the first sentence of LRDP Mitigation AIR-1B must be revised from “The LRDP shall support the full implementation” to “The LRDP will require the full implementation…”

Page 4.2-43 to 63. The RDEIR Air Quality section fails to identify cumulative impacts of the LRDP related to Greenhouse Gas Emissions and Climate Change as a potential impact. While there is significant discussion related to this topic, including the University’s approach to addressing this issue to comply with recent State regulatory requirements, the Green House Gas (GHG). Significance Determination alone (page 4.2-61) is inadequate. In order for mitigation to be feasible, it must be included within a mitigation measure. As such, this EIR must detail a GHG impact (new impact AIR-7) and include a corresponding mitigation (new mitigation AIR-6). The mitigation measure could be the incorporation of additional LRDP policies CC-1 through CC-6, as presented in Sections 4.2.3.5 and 4.2.3.6. Significance levels must be expressly identified.

Population and Housing

Pages 4.10-1 and thereafter. While the document attempts to quantify the additional on-campus populations proposed to be accommodated by the LRDP, the RDEIR does not adequately identify the total additional on-campus populations that would result from implementation of the LRDP. For example, the population associated with the families
of married students, faculty, and staff (i.e. inclusive of spouses and children) is not estimated or included in the projected population figures. This underestimation of population will lead to a corresponding understatement of the level of significance of a wide range of environmental impacts that will occur as a result of the project. Impacts to the non-campus environment will be more profound in a number of areas, including but not limited to traffic, air quality, water and wastewater demand, public school enrollment and housing. In order for the RDEIR to be meaningful as an informational document, these impacts must be properly identified and analyzed. Revise the population projection to account for family members as noted above and modify the impacts and mitigation accordingly.

Page 4.10-2 and 4.10-3. Data for the 2007-2008 academic years is more current and therefore must be used as the current conditions baseline instead of 2006-2007. Use of the 2006-2007 data significantly understates the growth rate of student enrollment and the growth in the number of faculty and staff. For example, the 2006-2007 student enrollment data reports only 0.8% growth over the previous year while the 2007-2008 data represents 2.3% in growth over the previous year. Revise Table 4.10-1 and related text to reflect the 2007-2008 data. Modify impacts and mitigations accordingly.

Page 4.10-9. The first paragraph states “between the years 2007 and 2008, many of the cities in the County saw a growth rate of between 1.0 and 2.5 percent (including the City of Goleta). The City of Santa Barbara experienced growth at 1.2 %, while the County’s growth rate was approximately 1%.” The paragraph continues to list the annual growth rate of other cities within the County with no mention of the actual growth figure for Goleta. As currently written, the paragraph incorrectly infers an annual growth rate of up to 2.5% for Goleta, when the same Department of Finance figures cited in Table 4.10-9 document an annual growth rate of only 1% percent for Goleta for 2007-2008 and an annual net loss of 0.2% between 2005 and 2008. The implication that Goleta’s growth rate is the higher 2.5% deceptively exaggerates the City’s contribution to cumulative impacts such as traffic levels of service and correspondingly, erroneously appears to the cumulative impact contribution by the LRDP. Revise the setting to accurately represent the Goleta annual growth rate data in Table 4.10-9.

Page 4.10-16. Modify the Regional Housing section to reflect South Coast statistics. Include Goleta-specific data when including data specific to Isla Vista.

Page 4.10-16. The third paragraph under Regional Housing documents countywide vacancy rates at 6.7% in 2006. Update this number with 2008 data. Also, include the more relevant vacancy rate data for the South Coast, and for Goleta in particular, as it is more germane to the project. Vacancy rates in Goleta are well under 5%, a very relevant statistic. Failing to disclose this information undermines the informational value of the RDEIR.
Page 4.10-17 and -18. The Housing Projection section neglects to describe Goleta in the text and instead, focuses on the City of Santa Barbara. The City of Santa Barbara is significantly more built-out than Goleta, and is geographically further away from UCSB than Goleta. No justification is provided for the omission of this very relevant description. Expand the description to include Goleta.

Page 4.10-26. Section 4.10.2.2 Analytical Methods includes a description of assumptions and the LRDP Growth Summary in Table 4.10-21. Include a new column in the table to reflect the percent change from current to proposed future conditions for comparative purposes.

Page 4.10-29. LRDP Impact POP-1 concludes that “development under the 2008 LRDP would not directly cause substantial population growth in the area due to provision of adequate housing on campus.” Although the number of additional student family units would accommodate the percentage of graduate students who are living with partners or spouses (historically, approximately 14% of the total student population is at the graduate level and 34% are living with a spouse or partner = 238 of the new 5,000), the number of new student family units does not account for the number of graduate students who might be living with children but no spouse/partner, nor does it account for new undergraduate students living with a spouse, partner or children (3% of total or 150). An additional 150 family units would be needed to accommodate the undergraduate demand for family housing under the LRDP. Modify the impact accordingly.

Page 4.10-29. The last paragraph indicates that the LRDP plans for the addition of 300 additional faculty; however, Table 4.10-21 on page 4.10-26 indicates 336 additional faculty. The correct number should be clarified.

Page 4.10-30. LRDP Mitigation POP-3A (formerly POP-2A) remains inadequate. Specifically, the measure continues to set goals and not binding requirements. Furthermore, the measure allows the University four years to construct additional housing for each increment of new enrollment. This delay may lead to significant short-term housing impacts (shortages). In order to feasibly mitigate the impact, the mitigation must mandate enrollment controls and freezes to ensure enrollment is managed based on the number of housing units available. If construction of new units does not keep pace, then enrollment must be frozen or scaled back as necessary until completion of new housing units by the University. Unless there is a measurable, binding, and enforceable mitigation measure to assure that expansions of academic and support space (and increases in the numbers of students, faculty, and staff) do not outpace on-
campus housing development, significant adverse unmitigated impacts on adjacent communities, including Goleta, is foreseeable and likely. This off-campus impact must be identified, quantified and mitigated.

Additionally, this mitigation measure should eliminate “apartment complexes” from the mitigatory action. If the University were to lease or otherwise acquire existing apartment complexes in the City of Goleta, non-University residents would be displaced. The displacement of City residents would be a significant impact. A second, potentially significant impact would be created because the displacement of residents would exacerbate the housing shortage within the City and surrounding communities. Create a new mitigation measure accordingly.

Page 4.10-38. The second paragraph refers to a Mitigation POP-2A which does not appear to exist. Correct the error.

Transportation

Section 4.13 (Traffic Analysis Overview Comments). The traffic analysis presented in Section 4.13 of the RDEIR is based upon a traffic model that was derived from the City of Goleta’s General Plan traffic model. The City’s model was calibrated on actual traffic counts collected in 2003-2005. The use of the City’s calibrated traffic model to determine future traffic impacts associated with the proposed LRDP is appropriate and supported by the City. The LRDP EIR consultant team made several changes to the City’s traffic model to create the LRDP traffic model. The LRDP traffic model was then calibrated on more recent traffic counts and used to forecast future traffic conditions associated with the proposed LRDP. The results of the LRDP traffic model were used to identify project specific and cumulative traffic impacts as well as mitigation measures pursuant to CEQA. This is a standard practice that the City supports. However, many of the changes incorporated into the LRDP traffic model are based on assumptions that do not meet the CEQA test of “reasonable worst case”. The cumulative effect of these changes result in significant reductions to the LRDP model generated baseline traffic conditions and future forecasted trip generation amounts. This in turn results in an incorrect assumption of current traffic conditions and an underestimation of future traffic impacts associated with the proposed LRDP. As such the RDEIR fails to adequately identify and mitigate the Project’s impacts on traffic (and air quality) pursuant to CEQA guidelines section 15126.2(a).

In order to better understand how the changes incorporated into the LRDP traffic model affect future traffic volume forecasts, the City hired a well known traffic model consulting firm, Dowling Associates, Inc., to review the LRDP traffic model and the traffic analysis presented in the RDEIR. A copy of a technical memorandum from Dowling Associates (dated March 16th) is provided in Attachment B to this comment letter and is incorporated herein by reference.
Section 4.13 and Appendix 4.13-3 (Traffic Model Calibration General Comments). The City is pleased that the revised RDEIR includes documentation on the process used to calibrate the LRDP traffic model. A comprehensive calibration process is a critical step in assuring that a traffic model correctly reflects baseline traffic conditions before being used to forecast future traffic conditions. Appendix 4.13-3 of the RDEIR includes a detailed description of the LRDP traffic model validation process. The LRDP traffic model validation results are compared to the City’s General Plan traffic model validation results to support the determination that LRDP model meets certain validation criteria and that is as good as or better than the model it is derived from. This is a standard practice that the City supports. However, while the LRDP model meets certain validation criteria based on a holistic statistical analysis of 147 roadway sections, it fails to meet the allowable deviation (difference between actual traffic counts and model generated counts) at 14 roadway locations. This number of roadways not meeting the allowable deviation in itself is not significant. However, when you consider which roadways fail and the magnitude by which the baseline LRDP traffic model underestimate the current traffic volumes on these roadways, the entire RDEIR traffic analysis, traffic impact identification, and mitigation is called into question.

The roadways of particular concern to the City of Goleta are Storke Road, Los Carneros Road and Fairview Avenue. These roadways are the City’s primary north-south arterials that provide access to and from UCSB. As such they are the roadways most impacted by the future traffic growth associated with the LRDP. The RDEIR has identified these roadways as locations where project specific and cumulative traffic impacts will occur. Another roadway of concern due to current capacity limitations is Calle Real.

Attachment H to Appendix 4-13.3 of the RDEIR is a table that lists information on each roadway section included in the LRDP traffic model validation effort. The validation information provided on sections of the above referenced roadways is summarized in the below table:

<table>
<thead>
<tr>
<th>Roadway Section</th>
<th>Traffic Count</th>
<th>LRDP Model Volume</th>
<th>Difference</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storke Road</td>
<td>756</td>
<td>518</td>
<td>-238</td>
<td>-31.5%</td>
</tr>
<tr>
<td>Los Carneros Road</td>
<td>750</td>
<td>326</td>
<td>-424</td>
<td>-56.5%</td>
</tr>
<tr>
<td>Fairview Road</td>
<td>1949</td>
<td>1725</td>
<td>-224</td>
<td>-11.5%</td>
</tr>
<tr>
<td>Calle Real</td>
<td>374</td>
<td>69</td>
<td>-305</td>
<td>-81.6%</td>
</tr>
</tbody>
</table>

As shown above the LRDP model volumes are significantly lower than the measured traffic counts taken at several critical roadway locations where current capacity issues exist. Since the LRDP baseline model volumes are used to forecast future traffic volumes the differences shown above are carried forward in the LRDP forecasted model volumes. This results in a significant underestimation of future traffic volumes...
and impacts to critical roadway facilities in the City of Goleta. Until LRDP traffic model is calibrated to better reflect actual traffic counts on roadways where traffic impacts due to traffic growth are expected, the RDEIR fails to adequately identify and mitigate impacts pursuant to CEQA.

Section 4.13 and Appendix 4.13-3 (LRDP Model Land Use Assumptions for UCSB). The data presented in Section 4.10 Population and Housing of the RDEIR cites the following UC-Affiliated Populations information for the 2006-07 academic year at UCSB:

- 21,082 Total Students (total enrollment irrespective of full or part time status)
- 20,556 Full Time Equivalent (students enrolled for at least three quarters)
- 9,500 Faculty and Staff (includes full and part time employees)
- 6,000 Faculty and Staff Full Time Equivalent

The source of this information is the annual Campus Profiles prepared by the Office of Institutional Research and Planning at UCSB. As stated in the RDEIR and in accordance with the UC CEQA Handbook, total students (full and part time) and total employees (full and part time) are used for CEQA and the RDEIR to analyze significant effects on the environment.

The following table compares the number of UCSB students and employees identified in the population and housing section of the RDEIR to numbers used in the LRDP traffic model and the City’s General Plan model.

<table>
<thead>
<tr>
<th>Land Use Parameter</th>
<th>UCSB IRP 2006-07</th>
<th>City Calibrated Model Baseline 2005</th>
<th>LRDP Baseline 2005-06</th>
<th>City Model General Plan 2030</th>
<th>LRDP No-Project 2030</th>
<th>LRDP Final 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCSB Students</td>
<td>21,082</td>
<td>19,039</td>
<td>16,530</td>
<td>25,000</td>
<td>16,530</td>
<td>18,046</td>
</tr>
<tr>
<td>UCSB Employees</td>
<td>9,500</td>
<td>9,529</td>
<td>4,689</td>
<td>11,400</td>
<td>4,685</td>
<td>6,385</td>
</tr>
</tbody>
</table>

UCSB reflects baseline levels (2006-07) with all other areas reflecting 2030 conditions.

As shown above, there are significant discrepancies in the number of student and employees identified in the RDEIR and used in the LRDP traffic model. The LRDP traffic model excludes 4,552 UCSB students from the traffic analysis (21,082 UCSB IRP Published Enrollment data - 16,530 LRDP Baseline). As documented in RDEIR Appendix 4.13-3 (page 5), the explanation for this adjustment was to ensure that students who reside in UCSB residence halls were not double counted in the trip generation analysis given that residence halls are subject to separate trip generation factors. As shown in Appendix 4.13-3 (Table 2, p. 5), the number of students residing in residence halls is 3,460. Based on the RDEIR documentation, the LRDP incorrectly exceeded the number of UCSB students that should be reduced by more than a thousand (4,552 − 3,460 = 1,092). The correct LRDP UCSB student baseline
adjustment assumption should yield 17,622 students versus 16,530. This error in the reduction of students is carried forward in the LRDP future traffic model volumes and results in decreased trip generation to and from the project area. This in turn decreases the baseline and future traffic volumes and associated traffic impacts associated with the LRDP.

Other revisions included in the LRDP traffic model resulted in the removal of roughly half the number of current UCSB employees (from 9,500 UCSB IRP Published Employment data to 4,689 LRDP Baseline). As documented in Appendix 4.13-3 (p. 7), the explanation for this reduction was to remove part-time student employees of UCSB since these students are already on campus and therefore included in the student land use category. The part-time employees of interest are graduate students Truncating 4,843 UCSB students based on their graduate student status - assuming they are already on campus and are therefore already reflected in the student land use category is an incorrect adjustment. The LRDP traffic model should categorizes graduate students as UCSB students not UCSB employees. This LRDP traffic model adjustment is without justification as no supporting data is provided in the RDEIR that accurately stratifies/categorizes UCSB part-time employees by employment type (e.g., graduate students, food service, operations and maintenance, other etc.). Without this supporting data it is difficult to verify the accuracy and/or justify this reduction in UCSB employees for modeling purposes. Nonetheless, as stated in the RDEIR and in accordance with the UC CEQA Handbook, total students (full and part time) and total employees (full and part time) are required to be used for CEQA and the RDEIR to analyze significant effects on the environment. The changes incorporated into the LRDP traffic model based on the above assumptions result in significant reductions in trip generation and modeled traffic volumes. This in turn results in an underestimation of the future traffic impacts associated with the LRDP. Until changes to the LRDP traffic model are incorporated to reflect the actual number of students and employees as required by CEQA, the RDEIR fails to adequately identify and mitigate traffic impacts pursuant to CEQA.

Section 4.13 and Appendix 4.13-3 (LRDP UCSB Trip Generation Survey & Analysis). As part of the LRDP traffic modeling, the City’s traffic model trip generation rates for UC Santa Barbara land use categories were updated to reflect existing travel characteristics (p. 11 Appendix 4.13-3). These updates were based on a survey of three UCSB facilities: one faculty housing facility; one residence hall; and, one family student housing facility. Each facility type’s survey results were applied to all existing and future on-campus housing complexes serving faculty, staff and students respectively. This reflects a single observation of trip generation per land use category. The statistical veracity of applying trip rate estimates generated from a single observation per facility type (i.e., land use category) is questionable. The potential for sample bias is also a concern given that the single residence hall survey was conducted at Francisco Torres which is primarily a freshman/lower class residential facility. Given that freshman
students are far less likely to have access to a vehicle than older students, have smaller activity space and less likely to have part-time jobs – a survey at this facility alone would potentially introduce bias as it would generate a lower vehicle trip generation estimate relative to other UCSB residence halls that have a much larger proportion of junior and senior year students (e.g., Tropicana Gardens). Hence, a demographic survey of the student residence halls should have been conducted to help develop the trip generation studies to control for potential sampling bias. Using this single observation to justify a reduction to trip generation for all similar land use types results in across the board reductions in vehicle trips and doesn’t meet the CEQA guidelines criteria of using “reasonable worst case” assumptions in the identification and mitigation of impacts.

The 2002-2006 UCSB Transportation Survey results reported in Appendix 4.13-3 (Table 9, p. 15) does not distinguish and/or characterize faculty/staff and students travel mode distribution by time of day. Although the survey did collect information regarding arrival and departure times – this temporal data is not reflected in the model split survey results included in the RDEIR. This is an important omission given that the LRDP travel forecasting is based on the AM and PM peak hours only. All UCSB transportation survey results used to justify adjustments to the LRDP traffic model trip generation rates must be limited to the AM and PM peak hours for it to be relevant for modeling/analysis purposes.

Similarly, omission of the survey instrument in the RDEIR and Final EIR technical appendix precludes clear understanding and nexus between both the 2002 and 2006 UCSB Transportation Surveys and their application in the LRDP analysis.

Pages 4.13-64 through -68 (Trip Generation). An analysis of the UCSB LRDP model trip generation estimates for all model analysis zones with UCSB affiliated functions reveal large discrepancies from past calibrated modeling efforts performed by the City of Goleta. The LRPD 2005/06 baseline generates 2,844 PM peak hour trips less than the City’s calibrated 2005 baseline model (4,201 trips vs. 7,045 trips). The LRDP 2030 Final is projected to generate 926 and 2,182 PM peak hour trips less that the City’s 2005 Baseline and 2030 General Plan models respectively. This does not appear to be a reasonable forecast of trip generation.

Trip Generation in UCSB Related Model Traffic Analysis Zones

<table>
<thead>
<tr>
<th>Vehicle Trip Definition</th>
<th>City Calibrated Baseline 2005</th>
<th>LRPD Baseline 2005-06</th>
<th>City Model General Plan 2030</th>
<th>LRPD No-Project¹ 2030</th>
<th>LRPD Final 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trip Origins</td>
<td>4,150</td>
<td>3,898</td>
<td>4,859</td>
<td>4,438</td>
<td>5,562</td>
</tr>
<tr>
<td>Trip Destinations</td>
<td>3,532</td>
<td>3,077</td>
<td>4,171</td>
<td>3,694</td>
<td>4,836</td>
</tr>
<tr>
<td>Internal Trips</td>
<td>2,895</td>
<td>303</td>
<td>3,442</td>
<td>453</td>
<td>557</td>
</tr>
<tr>
<td>Total Trip Production²</td>
<td>7045</td>
<td>4,201</td>
<td>8,301</td>
<td>4,891</td>
<td>6,119</td>
</tr>
</tbody>
</table>

¹. No-Project reflects UCSB baseline levels (2006-07) with all other areas reflecting 2030 conditions.
². Total Trip Production = Trip Origins + Internal trips
Pages 4.13-64 through -68 (Trip Generation). A review of total trip generation broken out by trip type reveals a significant departure by the UCSB LRDP travel model in the percent of Home Based College (HBC) trips. The City of Goleta’s calibrated 2005 Baseline model estimates a total of 2,873 HBC trips – roughly 6 percent of total trips in the Goleta Valley. Conversely, the LRDP 2005/06 baseline generates 1,453 HBC trips – approximately 3 percent of total trips. As part of its General Plan 2030 forecast, the City forecast HBC trips to grow to 3,399 trips - remaining at approximately 6 percent of total trips. The UCSB LRDP travel model forecasts significantly less HBC trips under both the No-Project and Final LRDP alternatives: 1,719 HBC trips and 1,996 HBC trips respectively. This equates to approximately half the amount of HBC trips forecast by the City’s calibrated 2005 model baseline. The percentage share of HBC trips relative to all other trip types drops from 6% to roughly 3.5%. This represents a significant departure from the calibrated model baseline. These assumed reductions in HBC trips result in reductions in the amount and level of traffic impacts identified in the RDEIR. The traffic model memorandum released on June 16, 2008 identify three campus locations that where used in determining the reduced trip generations rates identified above. The City doesn’t believe a survey of three locations provide enough justification to significantly reduce the trip generations rates as proposed. Underestimating the trip generation rates will result in underestimating the traffic impacts associated with the proposed projects.

<table>
<thead>
<tr>
<th>Trip Type</th>
<th>2005 City Baseline Trip Gen</th>
<th>2005 LRDP Baseline Trip Gen</th>
<th>2030 General Plan Trip Gen</th>
<th>2030 LRDP NP Trip Gen</th>
<th>2030 LRDP Final Trip Gen</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-W</td>
<td>1,848.03</td>
<td>1,800.31</td>
<td>2,219.66</td>
<td>2,167.86</td>
<td>2,246.44</td>
</tr>
<tr>
<td>W-H</td>
<td>10,835.33</td>
<td>10,310.00</td>
<td>12,925.25</td>
<td>12,312.51</td>
<td>12,455.52</td>
</tr>
<tr>
<td>H-O</td>
<td>6,633.26</td>
<td>6,663.35</td>
<td>8,041.80</td>
<td>8,136.80</td>
<td>8,424.87</td>
</tr>
<tr>
<td>O-H</td>
<td>7,256.65</td>
<td>7,106.98</td>
<td>8,822.12</td>
<td>8,711.69</td>
<td>9,037.86</td>
</tr>
<tr>
<td>HBC</td>
<td>2,873.22</td>
<td>1,452.69</td>
<td>3,399.23</td>
<td>1,718.81</td>
<td>1,995.67</td>
</tr>
<tr>
<td>NHB</td>
<td>15,104.65</td>
<td>14,310.94</td>
<td>18,154.75</td>
<td>17,322.74</td>
<td>17,519.00</td>
</tr>
<tr>
<td>X-X</td>
<td>3,298.00</td>
<td>3,298.00</td>
<td>4,711.00</td>
<td>4,711.00</td>
<td>4,711.00</td>
</tr>
<tr>
<td></td>
<td>47,849.13</td>
<td>44,942.27</td>
<td>58,273.81</td>
<td>55,081.40</td>
<td>56,390.36</td>
</tr>
</tbody>
</table>

The reduction in trip generation rates along with the reduction in students and employees identified in above draws into question the overall validity of the traffic impacts identified in the RDEIR. Inclusion of the above assumptions and revisions in the LRDP traffic model result in reduced future forecasted volumes and understates the potential traffic impacts associated with the LRDP.
Pages 4.13-119 through -132 and 4.13-142 through -147 (Mitigation). It only makes sense that, in addition to the cutting edge green building technology envisioned by the LRDP that UCSB commit to and advance public transit improvements well beyond the mix of impacts/mitigation under the plan. The mitigation comments provided below address Mitigation Traffic-1A and -4A and include alterations of the RDEIR-proposed mitigation and new mitigation to be included in the Final EIR.

The requirement for alternative transportation improvements under Mitigation Traffic-1A and -4A (see part 3 of the measures) are triggered after the determination that an intersection is significantly impacted. This mitigation is unacceptable. The attempt to mitigate an impact is required prior to not after the impact. Revise mitigations Traffic-1A and 4A to reflect the implementation of alternative transit improvements etc. prior to the impact triggering the threshold.

Additionally, both mitigations -1A and -4A require coordination with other jurisdictions. Revise mitigations Traffic-1A and -4A to commit University resources without reliance on other jurisdictions.

Given the significant and unavoidable future traffic impacts associated with the LRDP (Impact Traffic-1 and Impact Traffic-4), UCSB must consider additional mitigation strategies that have been proven effective at other campuses in California. One such strategy is prohibiting resident lower level students from having cars on campus. This strategy resonates strongly with the City Council. It is a widely accepted practice that would compliment the implementation of a public transit plan. Progressive steps such as this one need to be identified and analyzed in a public transit plan. This and other such alternative strategies must be considered in addition to the mitigation measures identified in the RDEIR. Expand Mitigation Traffic-1A and -4A to include expanded alternative strategies such as car prohibitions and other measures employed at UC campuses.

The RDEIR must include a UCSB-generated public transit improvement plan as an alternative and supplement to roadway capacity increases and roadway openings through residential neighborhoods. A long-term transit plan for the campus and surrounding areas is needed. As a case in point, if the proposed Mesa/Phelps roadway connection does not reduce traffic impacts below significant levels; additional improvements to the local transit system could provide substantial benefit to current and future proposed levels of UCSB students, faculty and staff, Goleta residents and the environment. The FEIR Mitigation Traffic-1A and -4A must incorporate a public transit improvement plan that identifies specific improvements to the existing public transit system that would improve the mitigation of traffic impacts associated with the LRDP.
Pages 4.13-119 through -132 and 4.13-142 through -147 (Impacts/Mitigation). As noted above, the RDEIR assumes that enrollment growth will occur in pace with the provision of housing to accommodate the additional students and employees. While this is a worthy goal, there is no stated commitment or guarantee that the planned housing will be constructed. If the enrollment increases outpace the construction of housing, the traffic impact will be greater than shown in the RDEIR. The RDEIR must be either:

a. amended to include a more conservative project alternative that accounts for the potential lag or reduction in the amount of housing constructed; or

b. revised to include a measurable and binding mitigation measure to limit future increases in students, faculty, and staff commensurate with future amounts of on-campus housing constructed.

Otherwise, population and traffic will be displaced to adjacent communities such as Goleta. The traffic impacts associated with the potential displacement due to a lag or reduction in housing are not analyzed in the RDEIR. Periodic traffic surveys to monitor increases of university-related traffic on city streets/intersections should also be required. The RDEIR must be revised to accommodate one of the above options.

Pages 4.13-119 through -132 and 4.13-142 through -147 (Impacts/Mitigation). The RDEIR provides for fair share mitigation fee payments to the City of Goleta (Mitigation-1A and -1B. While the City supports this concept, the adequacy of payment of proportionate share will depend on accuracy of the LRDP traffic model which assumes all on-campus housing. As noted in previous comments, the City asserts that the LRDP traffic model is inaccurate in this regard and is an unrealistic tool for determining proportionate share. Mitigation fees must be adjustable (i.e. pay initial plus supplemental fees) in event on-campus housing does not keep pace with increases in numbers of additional students, faculty, and staff or in event monitored traffic increases exceed the numbers on which the initial proportionate share calculations are based. The RDEIR (Mitigation 1A and -1B, for example) must be revised to clarify that mitigation fee payments shall be adjusted in the future based on the actual traffic impacts of the proposed LRDP.

Page 4.13-163 Impact Traffic-10. The RDEIR acknowledges the project would increase parking demands in Isla Vista but fail to acknowledge that similar spill over parking demand will likely impact the City of Goleta. Monitoring of parking usage in new family housing areas must be required to ensure the parking impacts are mitigated in Goleta as well as Isla Vista. The mitigation must also include a requirement to construct supplemental parking if demand exceeds supply. The RDEIR must be revised to include these measures specific to Goleta to ensure the parking impacts are properly mitigated.
Water Supply

Page 4.14-4. The first paragraph mentions that the Goleta Water District applied for a grant to rehabilitate a 7th well, San Ricardo, which, if approved, work would begin in 2008 and be completed in 2009. What is the status of that grant application and well project? If this well rehabilitation is not completed, then the available water supply may be reduced. A reduction in the available water supply would make the University’s impacts more significant than reported. Again, pursuant to CEQA, the University must report a reasonable worst case scenario, and update the impact’s significance as appropriate. It is inappropriate to rely upon a speculative resource to mitigate the project impacts.

Page 4.14-13. Siltation. This section indicates that Cachuma Operation and Maintenance Board (COMB) was going to be conducting a bathymetric study in summer 2008 to determine Cachuma’s current capacity. Was this study done and if so, why were the results not included in the DEIR? How do the results of this updated study affect the water availability assumptions made in the DEIR? If this study revealed that the capacity of Cachuma has been significantly reduced due to the level of siltation, then the LRDP’s impacts may be underestimated. Again, pursuant to CEQA, the University must report a reasonable worst case scenario and update the impact’s significance as appropriate.

Page 4.14-30 to -32. Additional explanation is needed to justify the water demand impact correlation between existing units and new units at UCSB under the proposed LRDP. For the purpose of evaluating impacts, the EIR needs to demonstrate how the characteristics of the new units will be comparable to the existing units. For the water demand analysis, the EIR should provide information on the number of bathrooms per beds and whether the ratio for new units will remain at the current ratio; information should be provided about new laundry facilities and the ratio of new washing machines to beds compared with the existing ratios; and information on landscaped open space for each new residential complex should be provided and how that percentage compares to existing residential complexes. This information is needed to demonstrate the logic and validity of using the 0.152 Acre Feet per Year (AFY) per dwelling unit factor based roughly on the water use data for various University housing projects from July 2005 to June 2006. If the design of future units with regard to occupancy and water demand factors noted above will be significantly different from the existing units, the use of this water demand factor has no merit and could in fact significantly underestimate the demand. There is no explanation of how the 0.152 AFY per dwelling unit factor was actually derived. As such, this explanation must be included.

Depending on the type of residential building to be constructed under the LRDP, water demand could vary between 0.110 AFY per unit to as much as 0.195 AFY per unit. To simply use a modified average of the existing residential unit demand may
underestimate future demand, particularly if the new residential units will mimic the units exhibiting higher water demand. The water supply analysis must address reasonable worst-case scenarios. Therefore, unless it can be definitively demonstrated that new housing units will generate a water demand which will not exceed 0.152 AFY per unit, the reasonable worst-case demand factor of 0.195 AFY per unit must also be used to evaluate impacts. According to relevant CEQA case law on the analysis of water demand, this document must also evaluate a range of scenarios.

As listed above, the Cumulative Impacts section must be updated as mentioned above, to both justify the assumptions, address a more reasonable worst-case demand scenario, and to provide a range of water demand scenarios. Water supply is a critical issue for our region and it is essential to accurately predict demand to the absolute best of your ability and to assess the supply considering all future pressures and restrictions.

Page 4.14-31. UCSB’s water demand predictions may underestimate demand in that they are based solely on residential units and total non-residential square footage (per 1,000 square feet based on the average demand of classrooms, labs and other combined facilities). This does not account for new landscaping or open space being proposed which could increase the water demand and associated impacts considerably. As such, the water demand for these other “uses” must be provided and included within the analysis.

Page 4.14-31. Use of an “average” to determine water demand of non-residential building space may significantly underestimate the impact to the available water supply. For example, if the square footage of lab space proposed is disproportionate to the square footage of classroom space proposed and the two uses have significant differences in water demand, use of averaging could significantly underestimate demand. Averages should not be used, but rather the water demand for each building space classification must be quantified separately and then the total demand of the aggregate provided. Re-evaluate impacts based on the demands of the individual uses.

Page 4.14-34. Impact W-3 finds that the cumulative demand of development associated with the LRDP in conjunction with additional development within the service area of GWD may increase demand beyond available supply and therefore the impact is significant. Table 4.14-11 on Page 4.14-36 appears to indicate that the demand analysis includes only the City of Goleta and Isla Vista Master Plan. If the other unincorporated areas served by the GWD are not included in the demand analysis, then the results are misleading and the conclusion that water supply will be greater than demand may be incorrect. The analysis must include all potential future development within the boundaries of the GWD, not just the demand within the City and Isla Vista.
Additionally, the subsequent mitigation discussion does not satisfy the requirements for CEQA analysis and disclosure per *Vineyard Area Citizens for Responsible Government v. City of Rancho Cordova*, 40 Cal. 4th 412 (2007). As a result, mitigation measure W-3G is unlawful. The University must update the discussion for compliance with State statutes.

Page 4.14-36. To prevent the University from acquiring all available water in any given year based on the GWD’s first come, first serve policy and the 1% annual cap mandated by the SAFE Ordinance, there should be a mitigation restricting UCSB to a maximum annual new service water supply based on a percentage of the available 1%. Without an annual cap applied to UCSB, new service requests related to implementation of the LRDP could capture the entire amount available in a given year, which would eliminate all other development in that year. This would result in significant impacts related to the City of Goleta’s ability to meet its affordable housing or RHNA requirements and would exacerbate the disparity in the jobs-housing balance by preventing any development to occur outside the University. Such an imbalance will translate into additional impacts on transportation . . . that are not identified, quantified or analyzed in the RDEIR. An example of mitigation might be “UCSB’s applications for new water service may not exceed 30% of the annual water allocation available for new service connections.”

Appendix 4.14-1 Water Supply Assessment. The introduction states that the proposed LRDP update meets many of the definitions of a “project” as set forth in §10912 of the California Water Code (CWC), and that the “Water Supply Assessment” (WSA) was prepared in accordance with the requirements of §10910 of the CWC. However, it appears that the WSA was not prepared by the “Public Water System” but by UCSB staff. Given the significant impacts to the entire region posed by the proposed project, an updated water supply assessment must legally be prepared by, or in consultation with and approved by, the “Public Water System.”

Wastewater

Page 4.15-1. The first bulleted item in the introduction states...This revised section estimates future wastewater flows using the 2007 Goleta West Sanitary District (GWSD) Wastewater Master Plan. City objects because of the inability of the general public to adequately review this revised section, as the above referenced plan is not readily available. City staff conducted an exhaustive search to view the document, but the 2007 GWSD Master Plan was not available on the GWSD website, or the Goleta Valley Public Library, or the UCSB Library. The City was only able to acquire a copy of the document after repeated requests to the GWSD and considerable expense. This issue could be the subject of a potential re-circulation. As such, the University must immediately make this document available on it’s website for public review.
Page 4.15-9. Impact WW-1. This impact correctly documents that the University's growth will add considerable wastewater flow volumes resulting in significant impacts. Mitigation is proposed to request that the permit for the treatment plant be re-issued to address the proposed LRDP growth (WW-1A). Another mitigation (WW-1B) identifies that the University will negotiate the acquisition of additional design capacity in the treatment plant to accommodate the proposed average annual growth. The residual significance is “significant and unavoidable”.

The level of impact can be reduced to less than significant with more sincere mitigation that is reasonable, realistic, and responsible. As a suggestion, the mitigation could be re-crafted such that the University must implement a binding, and enforceable mitigation measure to freeze, or reduce enrollment increases, in the event that expansion of treatment plant is delayed, or the treatment plant’s capacity to accommodate the resulting increase in effluent is compromised.

Page 4.15-10. Tables 4.15-2, -3, and -4 rely upon averages for both residential and institutional uses. Use of an “average” to determine wastewater generation may significantly underestimate residential and non-residential impacts to the available wastewater collection systems.

Residential Example: the University is proposing construction of a variety of housing types to facilitate expansion on campus. Single students residing in residence halls will generate far less wastewater than a family living in a single family dwelling. Each residential unit classification should be quantified separately and then the total demand of the aggregate provided. Wastewater Impacts should be re-evaluated based on the demands of the individual residential unit types.

Institutional Example: The LRDP proposes approximately 1,798,000 square feet of new institutional space broken down into the following classifications:

- Instruction and Research
- Organized Research Units
- Library
- Public Services
- Academic Support
- Student Services
- Institutional Services

Facilities which are utilized by a high percentage of the student population, such as the library, generate significantly more wastewater than research areas which may require greater square footage but serve a proportionately smaller number of students, staff, and faculty. As such, averages should not be used, but rather the wastewater generation for each institutional building space classification must be quantified
separately and the total wastewater generation of the aggregate provided. Therefore, wastewater impacts must be re-evaluated based on the demands of the individual building uses.

Page 4.15-11. The first bulleted item is in error and must be updated, The City of Goleta’s General Plan was adopted in 2006 (not 2007).
Memorandum

attachment B

To: Steve Wagner

cc: Jim Biega

From: Jim Damkowitch, Principal

Reference #: P08064

Subject: UCSB Long Range Development Plan Traffic Analysis Comments

This memorandum identifies outstanding issues/concerns identified by Dowling Associates regarding the re-circulated UCSB Long Range Development Plan DEIR travel forecasts and documentation.

Comments are grouped based on the following five general analysis topics.

1) LRDP Model Baseline UCSB – City Screenline Comparisons
2) LRDP Model Land Use Assumptions for UCSB
3) LRDP UCSB Trip Generation Survey & Analysis
4) LRDP Travel Forecasts on Selected Roadways
5) LRDP Study Intersections

The re-circulated UCSB LRDP DEIR does do a better job at documenting the holistic model validation results and providing explanations for certain analysis assumptions that were questioned by the City of Goleta during its initial review of the draft DEIR. However as described herein, several issues still appear to require additional clarification/correction.
1) LRDP Model Baseline UCSB – City Screenline Comparisons

To isolate model performance as it relates to the interface between UCSB and the City of Goleta, two UCSB-Goleta screenlines were developed (See Figure 1). Comparisons between model baseline counts performed by the City in 2003-05 and the City and LRDP baseline model results are shown below. Based on these screenline comparisons, the LRDP model baseline shows 247 less PM peak hour UCSB Main Campus trips and 1,081 less PM peak hour UCSB trips interfacing (as either origins or destinations) with the City of Goleta relative to actual counts.

UCSB Main Campus

- 2003-05 Traffic Counts = 3,722 PM Peak Hour Trips
- City 2005 Model Baseline = 3,501 PM Peak Hour Trips
- LRDP Model Baseline = 3,475 PM Peak Hour Trips

UCSB & Isla Vista

- 2003-05 Traffic Counts = 6,314 PM Peak Hour Trips
- City 2005 Model Baseline = 5,536 PM Peak Hour Trips
- LRDP Model Baseline = 5,233 PM Peak Hour Trips

Given that the LRDP data collection effort conducted in 2006 did not select representative segment locations consistent with this UCSB-City screenline, a direct comparison with UCSB's traffic counts is not possible. It should be noted that during City's baseline model traffic data collection, gas prices were generally lower than during the time of the LRDP data collection effort. Lower traffic counts would then be expected. However, as seen in Figure 2, gas prices are now more similar to the 2003-05 timeframe which further reinforces the validity of the City Model traffic counts as a basis for comparison of model performance.

Figure 2. Historical Fuel Price Comparison

[Graph showing historical fuel price comparison for San Diego.]
2) LRDP Model Land Use Assumptions for UCSB

The data presented in Section 4.10 Population and Housing of the DEIR cites the following UC-Affiliated Populations information for the 2006-07 academic year at UCSB:

- 21,082 Total Students (total enrollment irrespective of full or part time status)
- 20,556 Full Time Equivalent (students enrolled for at least three quarters)
- 9,500 Faculty and Staff (includes full and part time employees)
- 6,000 Faculty and Staff Full Time Equivalent

The source of this information is the annual Campus Profiles prepared by the Office of Institutional Research and Planning at UCSB. As stated in the DEIR and in accordance with the UC CEQA Handbook, total students (full and part time) and total employees (full and part time) are used for CEQA and the DEIR to analyze significant effects on the environment.

Table 1 compares the UCSB LRDP model land use inputs relative to the City’s calibrated model and published UCSB data. Significant land use discrepancies between the modeling performed for the LRDP DEIR and the City’s 2005 baseline.

<table>
<thead>
<tr>
<th>Land Use Parameter</th>
<th>UCSB IRP 2006-07</th>
<th>City Calibrated Model Baseline 2005</th>
<th>LRDP Baseline 2005-06</th>
<th>City Model General Plan 2030</th>
<th>LRDP No-Project 2030</th>
<th>LRDP Final 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCSB Students</td>
<td>21,082</td>
<td>19,039</td>
<td>16,530</td>
<td>25,000</td>
<td>16,530</td>
<td>18,046</td>
</tr>
<tr>
<td>UCSB Employees</td>
<td>9,500</td>
<td>9,529</td>
<td>4,689</td>
<td>11,400</td>
<td>4,685</td>
<td>6,365</td>
</tr>
</tbody>
</table>

*UCSB reflects baseline levels (2006-07) with all other areas reflecting 2030 conditions.

Reflects all housing dwelling units (SFDU, MFDU, Student Housing, Student Family Housing, Faculty Housing).

n/a: Institutional Research and Planning only tracks University owned student and faculty housing.

Inputs reflects all model analysis zones (TAZ's) related to UCSB functions - including Isla Vista

As shown in Table 1, the LRDP EIR traffic modeling removes 4,552 UCSB students from the traffic analysis (21,082 UCSB IRP Published Enrollment data - 16,530 LRDP Baseline). As documented in DEIR Appendix 4.13-3 (page 5), the explanation for this adjustment was to ensure that students who reside in UCSB residence halls were not double counted in the trip generation analysis given that residence halls are subject to separate trip generation factors. As shown in Appendix 4.13-3 (Table 2, p. 5), the number of students residing in residence halls is 3,460. Based on the DEIR documentation, the LRDP incorrectly exceeded the number of UCSB students that should be reduced by more than a thousand (4,552 - 3,460 = 1,092). The correct LRDP UCSB student baseline adjustment assumption should yield 17,622 students versus 16,530. This -1,100 student underestimation error is carried forward in all the LRDP future year traffic forecasts.

The LRDP traffic analysis also removed roughly half the number of UCSB employees (from 9,500 UCSB IRP Published Employment data to 4,689 LRDP Baseline) from the traffic analysis. As documented in Appendix 4.13-3 (p. 7), the explanation for this reduction was to remove part-time student employees of UCSB since these students are already on campus and therefore included in the student land use category. The part-time employees of interest are graduate students (personal communication Sarah Brandenberg, Fehr & Peers). Truncating 4,843 UCSB students based on their graduate student status - assuming they are already on campus and are therefore already reflected in the student land use category is an incorrect adjustment. The City’s model categorizes graduate students as UCSB students – not UCSB employees.
Therefore this LRDP adjustment is without justification. Also, no supporting data is provided in the DEIR that accurately stratifies/categorizes UCSB part-time employees by employment type (e.g., graduate students, food service, operations and maintenance, other etc.). Without this supporting data it is difficult to verify the accuracy and/or justify this reduction in UCSB employees for modeling purposes. Nonetheless, as stated in the DEIR and in accordance with the UC CEQA Handbook, total students (full and part time) and total employees (full and part time) are required to be used for CEQA and the DEIR to analyze significant effects on the environment.

3) LRDP UCSB Trip Generation Survey & Analysis

As part of the LRDP traffic modeling, the City’s traffic model trip generation rates for UC Santa Barbara land use categories were updated to reflect existing travel characteristics (p. 11 Appendix 4.13-3). These updates were based on a survey of three UCSB facilities: one faculty housing facility; one residence hall; and, one family student housing facility. Each facility type’s survey results were applied to all existing and future on-campus housing complexes serving faculty, staff and students respectively. This reflects a single observation per land use category. The statistical veracity of applying trip rate estimates generated from a single observation per facility type (i.e., land use category) is questionable. The potential for sample bias is also a concern given that the single residence hall survey was conducted at a primarily freshman dominated facility (Francisco Torres). Given that student freshman are far less likely to have access to a vehicle than older students, have smaller activity space and less likely to have part-time jobs – a survey at this facility alone would potentially introduce bias as it would generate the lowest vehicle trip generation estimates relative to other UCSB residence halls that have a much larger proportion of sophomore, junior and senior year students (e.g., Tropicana Gardens). Hence, a demographic survey of the student residence halls should have been conducted to help develop the trip generation studies to control for potential sampling bias.

Similarly, the 2002-2006 UCSB Transportation Survey results reported in Appendix 4.13-3 (Table 9, p. 15) does not distinguish/characterize faculty/staff and students travel mode distribution by time of day. Although the survey did collect information regarding arrival and departure times – this temporal data is not reflected in the model split survey results. This is an important omission given that the LRDP travel forecasting is based on the AM and PM peak hours only. All UCSB transportation survey results must be specific to these analysis hours if the information reported is to be considered relevant for modeling purposes. The survey instrument used for both the 2002 and 2006 UCSB Transportation Surveys should be included in the technical appendix for review.

It should be noted that the City’s model developed its HBC trip generation rates in a very similar fashion to the LRDP - by conducting campus cordon counts, controlling for campus cut-through traffic, license plate surveys and measured trip generation studies at specific campus housing facilities (surveys were conducted in mid-90’s by Associated Transportation Engineers for the County of Santa Barbara). The City model did not rely on ITE trip rates. For comparative purposes, the LRDP traffic analysis compares its measured trip rates with ITE trip rates (Appendix 4.13-3). No comparison was made to document the differences between the LRDP trip generation rates with those developed for the City’s traffic model. These are shown in Table 2. Summing across all UCSB affiliated land use categories, the LRDP trip generation rates are roughly half to those in the calibrated City model. Such a significant difference would not be expected even despite the span of time between surveys (2008 – mid 90’s). The
direction of change (lower trip rates) is also suspect given the greater auto ownership of today's students than in during the 1990's (unsubstantiated consultant observation).

Table 2. City vs. LRDP Trip Generation Estimates

<table>
<thead>
<tr>
<th>Land Use</th>
<th>City Model Productions</th>
<th>UCSB Model Productions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home-College</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCSB</td>
<td>0.0275</td>
<td>0.0126</td>
</tr>
<tr>
<td>STU_HSE</td>
<td>0.1176</td>
<td>0.1856</td>
</tr>
<tr>
<td>STUDENT_HO</td>
<td>0.1176</td>
<td>0.1856</td>
</tr>
<tr>
<td>FACULTY_ST</td>
<td>0.1156</td>
<td>0.0529</td>
</tr>
<tr>
<td>STU_FAM_HSE</td>
<td>0.0162</td>
<td>0.0046</td>
</tr>
<tr>
<td>FACULTY_HSE</td>
<td>0.0986</td>
<td>0.1175</td>
</tr>
<tr>
<td>SUM</td>
<td>0.3783</td>
<td>0.4367</td>
</tr>
</tbody>
</table>

Home-Work		
------------	------------------------	
UCSB	0	0.0046
STU_HSE	0.0366	0.0046
STUDENT_HO	0.0366	0
FACULTY_ST	0	0.0151
STU_FAM_HSE	0.0366	0
FACULTY_HSE	0.0329	0
SUM	0.0872	0.0283

Changes to trip rates combined with use of incorrect estimates of UCSB employees result in significantly less UCSB affiliated trip production estimates than the City's calibrated model – specifically for the HBC trip purpose. A review to total trip generation broken out by trip type reveals a significant departure by the UCSB LRDP travel model in the percent of Home Based College (HBC) trips (Table 3). The City of Goleta's calibrated 2005 Baseline model estimates a total of 2,873 HBC trips – roughly 6 percent of total trips in the Goleta Valley. Conversely, the LRDP 2005/06 baseline generates 1,453 HBC trips – approximately 3 percent of total trips. As part of its General Plan 2030 forecast, the City forecast HBC trips to grow to 3,399 trips - remaining at approximately 6 percent of total trips. The UCSB LRDP travel model forecasts significantly less HBC trips under both the No-Project and Final LRDP alternatives: 1,719 HBC trips and 1,996 HBC trips respectively. This equates to approximately half the amount of HBC trips forecast by the City's calibrated 2005 model baseline. The percentage share of HBC trips relative to all other trip types drops from 6% to roughly 3.5%. This represents a significant departure from the calibrated model baseline.

As stated in Appendix 4.13-3 (p. 23, last bullet), the explanation for this inconsistency is the greater refinement of TAZs implemented in the LRDP model – resulting in less intra-zonal trips which by definition do not produce vehicle trips on the model network. This explanation is incorrect and misleading. It implies that trip generation is affected or influenced by traffic analysis zone size which untrue. Trip generation is completely independent of zone size. If a large TAZ is split into smaller zones (as was done for the main campus area in the model) – there will be a decrease in intra-zonal trips but a commensurate increase in inter-zonal trips given the smaller zone sizes. The LRDP does not adequately explain why splitting the UCSB TAZ into 19 zones results in 1,420 HBC vehicle trips to disappear from the model (see City Baseline vs. LRDP Baseline).
4) LRDP Travel Forecasts on Selected Roadways

Comparison of LRDP forecasted PM peak hour 2030 roadway volumes to forecasted City General Plan 2030 roadway volumes are shown in the table below. Comparing the LRDP No-Project relative to the City’s General Plan analysis, significant PM peak hour volume differences result at key locations within the City. Of most concern, the No Project analysis projects approximately 120-250 more peak hour trips northbound on Storke/Glen Annie. Under the LRDP Final Alternative, forecast PM peak hour trips exceeds the City’s General Plan forecasts (GP-1 Forecast – does not reflect regional roadway improvements) – indicating significant impacts at several key locations. Conversely, under the LRDP Final Mitigated Alternative, forecast PM peak hour trips shows significantly less PM peak hour traffic than the City’s General Plan (GP-7 Forecast – reflects regional roadway improvements) forecasts. These PM peak hour volume reductions are significant and suggest that the modifications made to the City’s model as described above result in significantly less forecasted traffic on key City facilities. Without any information and/or documentation on the LRDP traffic model it appears that the DEIR may be understating the traffic impacts associated with the proposed project.
Table 4. Segment Volume Comparisons of Key City Roadways

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>LRDP No-Project vs. City GP-1 Forecast</th>
<th>LRPD Final vs. City GP-1 Forecast</th>
<th>LRPD Mitigated vs. City GP-7 Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storke s/o Hollister</td>
<td>Northbound +118</td>
<td>+220</td>
<td>-24</td>
</tr>
<tr>
<td></td>
<td>Southbound -177</td>
<td>-105</td>
<td>-283</td>
</tr>
<tr>
<td>Storke n/o Hollister</td>
<td>Northbound +261</td>
<td>+307</td>
<td>-133</td>
</tr>
<tr>
<td></td>
<td>Southbound -134</td>
<td>-76</td>
<td>-364</td>
</tr>
<tr>
<td>Los Carneros s/o Hollister</td>
<td>Northbound +48</td>
<td>+143</td>
<td>+88</td>
</tr>
<tr>
<td></td>
<td>Southbound +115</td>
<td>+142</td>
<td>-73</td>
</tr>
<tr>
<td>Los Carneros n/o Hollister</td>
<td>Northbound +106</td>
<td>+119</td>
<td>+39</td>
</tr>
<tr>
<td></td>
<td>Southbound +68</td>
<td>+97</td>
<td>-190</td>
</tr>
<tr>
<td>Fairview s/o Hollister</td>
<td>Northbound -42</td>
<td>-17</td>
<td>-74</td>
</tr>
<tr>
<td></td>
<td>Southbound +61</td>
<td>+38</td>
<td>+125</td>
</tr>
<tr>
<td>Fairview n/o Hollister</td>
<td>Northbound -41</td>
<td>-42</td>
<td>-290</td>
</tr>
<tr>
<td></td>
<td>Southbound +39</td>
<td>+15</td>
<td>-495</td>
</tr>
<tr>
<td>SR-217</td>
<td>Northbound -368</td>
<td>-75</td>
<td>-377</td>
</tr>
<tr>
<td></td>
<td>Southbound -73</td>
<td>+232</td>
<td>+71</td>
</tr>
<tr>
<td>HWY 101 Storke - Los Carneros</td>
<td>Northbound -45</td>
<td>-66</td>
<td>-264</td>
</tr>
<tr>
<td></td>
<td>Southbound +211</td>
<td>+201</td>
<td>-129</td>
</tr>
<tr>
<td>HWY 101 Los Carneros - Fairview</td>
<td>Northbound -117</td>
<td>-104</td>
<td>-479</td>
</tr>
<tr>
<td></td>
<td>Southbound +336</td>
<td>+332</td>
<td>-214</td>
</tr>
<tr>
<td>HWY 101 Fairview - Patterson</td>
<td>Northbound +35</td>
<td>+35</td>
<td>-713</td>
</tr>
<tr>
<td></td>
<td>Southbound +329</td>
<td>+298</td>
<td>-209</td>
</tr>
</tbody>
</table>

5) LRDP Study Intersections

The DEIR identifies several City intersections where traffic impacts are expected to occur as a result of the LRDP. However there are several key City intersections that are not identified that will likely also be impacted by the proposed project. These include:

- Storke Road/Market Place Dr.
- Los Carneros/Calle Koral
- Fairview/Calle Real
- Patterson/Highway 101 North Bound Ramp
- Patterson/Highway 101 South Bound Ramp

These intersections should also be analyzed. Current and future traffic volumes and associated levels of service along with mitigation measures as required should be included in the DEIR.

At the City Council meeting on June 17th, several public comments were received about the Mesa/Los Carneros (existing) and Mesa/Phelps (future) intersections. Particular attention needs
to be paid to the operations/level of service of these intersections, in light of the City's contention that the LRDP traffic model underestimates students/employees per dwelling unit, trip generation rates, trip types, traffic volumes and location and significance of impacted roadways. This is a critical issue.